Search results for: equivalent stress gradient (ESG) specimen
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5698

Search results for: equivalent stress gradient (ESG) specimen

3418 Seismic Response of Reinforced Concrete Buildings: Field Challenges and Simplified Code Formulas

Authors: Michel Soto Chalhoub

Abstract:

Building code-related literature provides recommendations on normalizing approaches to the calculation of the dynamic properties of structures. Most building codes make a distinction among types of structural systems, construction material, and configuration through a numerical coefficient in the expression for the fundamental period. The period is then used in normalized response spectra to compute base shear. The typical parameter used in simplified code formulas for the fundamental period is overall building height raised to a power determined from analytical and experimental results. However, reinforced concrete buildings which constitute the majority of built space in less developed countries pose additional challenges to the ones built with homogeneous material such as steel, or with concrete under stricter quality control. In the present paper, the particularities of reinforced concrete buildings are explored and related to current methods of equivalent static analysis. A comparative study is presented between the Uniform Building Code, commonly used for buildings within and outside the USA, and data from the Middle East used to model 151 reinforced concrete buildings of varying number of bays, number of floors, overall building height, and individual story height. The fundamental period was calculated using eigenvalue matrix computation. The results were also used in a separate regression analysis where the computed period serves as dependent variable, while five building properties serve as independent variables. The statistical analysis shed light on important parameters that simplified code formulas need to account for including individual story height, overall building height, floor plan, number of bays, and concrete properties. Such inclusions are important for reinforced concrete buildings of special conditions due to the level of concrete damage, aging, or materials quality control during construction. Overall results of the present analysis show that simplified code formulas for fundamental period and base shear may be applied but they require revisions to account for multiple parameters. The conclusion above is confirmed by the analytical model where fundamental periods were computed using numerical techniques and eigenvalue solutions. This recommendation is particularly relevant to code upgrades in less developed countries where it is customary to adopt, and mildly adapt international codes. We also note the necessity of further research using empirical data from buildings in Lebanon that were subjected to severe damage due to impulse loading or accelerated aging. However, we excluded this study from the present paper and left it for future research as it has its own peculiarities and requires a different type of analysis.

Keywords: seismic behaviour, reinforced concrete, simplified code formulas, equivalent static analysis, base shear, response spectra

Procedia PDF Downloads 223
3417 Computational Analysis on Thermal Performance of Chip Package in Electro-Optical Device

Authors: Long Kim Vu

Abstract:

The central processing unit in Electro-Optical devices is a Field-programmable gate array (FPGA) chip package allowing flexible, reconfigurable computing but energy consumption. Because chip package is placed in isolated devices based on IP67 waterproof standard, there is no air circulation and the heat dissipation is a challenge. In this paper, the author successfully modeled a chip package which various interposer materials such as silicon, glass and organics. Computational fluid dynamics (CFD) was utilized to analyze the thermal performance of chip package in the case of considering comprehensive heat transfer modes: conduction, convection and radiation, which proposes equivalent heat dissipation. The logic chip temperature varying with time is compared between the simulation and experiment results showing the excellent correlation, proving the reasonable chip modeling and simulation method.

Keywords: CFD, FPGA, heat transfer, thermal analysis

Procedia PDF Downloads 177
3416 The Role of Attachment and Dyadic Coping in Shaping Relational Intimacy

Authors: Anna Wendolowska, Dorota Czyzowska

Abstract:

An intimate relationship is a significant factor that influences romantic partners’ well-being. In the face of stress, avoidant partners often employ a defense-against-intimacy strategy, leading to reduced relationship satisfaction, intimacy, interdependence, and longevity. Dyadic coping can buffer the negative effects of stress on relational satisfaction. Emotional competence mediates the relationship between insecure attachment and intimacy. In the current study, the link between attachment, different forms of dyadic coping, and various aspects of relationship satisfaction was examined. Both partners completed the attachment style questionnaire, the well matching couple questionnaire, and the dyadic coping inventory. The data was analyzed using the actor–partner interdependence model. The results highlighted a negative association between insecure-avoidant attachment style and intimacy. The actor effects of avoidant attachment on relational intimacy for women and for men were significant, whilst the partner effects for both spouses were not significant. The emotion-focused common dyadic coping moderated the relationship between avoidance of attachment and the partner's sense of intimacy. After controlling for the emotion-focused common dyadic coping, the actor effect of attachment on intimacy for men was slightly weaker, and the actor effect for women turned out to be insignificant. The emotion-focused common dyadic coping weakened the negative association between insecure attachment and relational intimacy. The impact of adult attachment and dyadic coping significantly contributes to subjective relational well-being.

Keywords: adult attachment, dyadic coping, relational intimacy, relationship satisfaction

Procedia PDF Downloads 151
3415 Failure Analysis Using Rtds for a Power System Equipped with Thyristor-Controlled Series Capacitor in Korea

Authors: Chur Hee Lee, Jae in Lee, Minh Chau Diah, Jong Su Yoon, Seung Wan Kim

Abstract:

This paper deals with Real Time Digital Simulator (RTDS) analysis about effects of transmission lines failure in power system equipped with Thyristor Controlled Series Capacitance (TCSC) in Korea. The TCSC is firstly applied in Korea to compensate real power in case of 765 kV line faults. Therefore, It is important to analyze with TCSC replica using RTDS. In this test, all systems in Korea, other than those near TCSC, were abbreviated to Thevenin equivalent. The replica was tested in the case of a line failure near the TCSC, a generator failure, and a 765-kV line failure. The effects of conventional operated STATCOM, SVC and TCSC were also analyzed. The test results will be used for the actual TCSC operational impact analysis.

Keywords: failure analysis, power system, RTDS, TCSC

Procedia PDF Downloads 115
3414 Comparative Study of Properties of Iranian Historical Gardens by Focusing on Climate

Authors: Malihe Ahmadi

Abstract:

Nowadays, stress, tension and neural problems are among the most important concerns of the present age. The environment plays key role on improving mental health and reducing stress of citizens. Establishing balance and appropriate relationship between city and natural environment is of the most important approaches of present century. Type of approach and logical planning for urban green spaces as one of the basic sections of integration with nature, not only plays key role on quality and efficiency of comprehensive urban planning; but also it increases the system of distributing social activities and happiness and lively property of urban environments that leads to permanent urban development. The main purpose of recovering urban identity is considering culture, history and human life style in past. This is a documentary-library research that evaluates the historical properties of Iranian gardens in compliance with climate condition. Results of this research reveal that in addition to following Iranian gardens from common principles of land lot, structure of flowers and plants, water, specific buildings during different ages, the role of climate at different urban areas is among the basics of determining method of designing green spaces and different buildings located at diverse areas i.e. Iranian gardens are a space for merging natural and artificial elements that has inseparable connection with semantic principles and guarantees different functions. Some of the necessities of designing present urban gardens are including: recognition and recreation.

Keywords: historical gardens, climate, properties of Iranian gardens, Iran

Procedia PDF Downloads 393
3413 Allium Cepa Extract Provides Neuroprotection Against Ischemia Reperfusion Induced Cognitive Dysfunction and Brain Damage in Mice

Authors: Jaspal Rana, Alkem Laboratories, Baddi, Himachal Pradesh, India Chitkara University, Punjab, India

Abstract:

Oxidative stress has been identified as an underlying cause of ischemia-reperfusion (IR) related cognitive dysfunction and brain damage. Therefore, antioxidant based therapies to treat IR injury are being investigated. Allium cepa L. (onion) is used as culinary medicine and is documented to have marked antioxidant effects. Hence, the present study was designed to evaluate the effect of A. cepa outer scale extract (ACE) against IR induced cognition and biochemical deficit in mice. ACE was prepared by maceration with 70% methanol and fractionated into ethylacetate and aqueous fractions. Bilateral common carotid artery occlusion for 10 min followed by 24 h reperfusion was used to induce cerebral IR injury. Following IR injury, ACE (100 and 200 mg/kg) was administered orally to animals for 7 days once daily. Behavioral outcomes (memory and sensorimotor functions) were evaluated using Morris water maze and neurological severity score. Cerebral infarct size, brain thiobarbituric acid reactive species, reduced glutathione, and superoxide dismutase activity was also determined. Treatment with ACE significantly ameliorated IR mediated deterioration of memory and sensorimotor functions and rise in brain oxidative stress in animals. The results of the present investigation revealed that ACE improved functional outcomes after cerebral IR injury, which may be attributed to its antioxidant properties.

Keywords: stroke, neuroprotection, ischemia reperfusion, herbal drugs

Procedia PDF Downloads 97
3412 Comparison of the Effect of Heart Rate Variability Biofeedback and Slow Breathing Training on Promoting Autonomic Nervous Function Related Performance

Authors: Yi Jen Wang, Yu Ju Chen

Abstract:

Background: Heart rate variability (HRV) biofeedback can promote autonomic nervous function, sleep quality and reduce psychological stress. In HRV biofeedback training, it is hoped that through the guidance of machine video or audio, the patient can breathe slowly according to his own heart rate changes so that the heart and lungs can achieve resonance, thereby promoting the related effects of autonomic nerve function; while, it is also pointed out that if slow breathing of 6 times per minute can also guide the case to achieve the effect of cardiopulmonary resonance. However, there is no relevant research to explore the comparison of the effectiveness of cardiopulmonary resonance by using video or audio HRV biofeedback training and metronome-guided slow breathing. Purpose: To compare the promotion of autonomic nervous function performance between using HRV biofeedback and slow breathing guided by a metronome. Method: This research is a kind of experimental design with convenient sampling; the cases are randomly divided into the heart rate variability biofeedback training group and the slow breathing training group. The HRV biofeedback training group will conduct HRV biofeedback training in a four-week laboratory and use the home training device for autonomous training; while the slow breathing training group will conduct slow breathing training in the four-week laboratory using the mobile phone APP breathing metronome to guide the slow breathing training, and use the mobile phone APP for autonomous training at home. After two groups were enrolled and four weeks after the intervention, the autonomic nervous function-related performance was repeatedly measured. Using the chi-square test, student’s t-test and other statistical methods to analyze the results, and use p <0.05 as the basis for statistical significance. Results: A total of 27 subjects were included in the analysis. After four weeks of training, the HRV biofeedback training group showed significant improvement in the HRV indexes (SDNN, RMSSD, HF, TP) and sleep quality. Although the stress index also decreased, it did not reach statistical significance; the slow breathing training group was not statistically significant after four weeks of training, only sleep quality improved significantly, while the HRV indexes (SDNN, RMSSD, TP) all increased. Although HF and stress indexes decreased, they were not statistically significant. Comparing the difference between the two groups after training, it was found that the HF index improved significantly and reached statistical significance in the HRV biofeedback training group. Although the sleep quality of the two groups improved, it did not reach that level in a statistically significant difference. Conclusion: HRV biofeedback training is more effective in promoting autonomic nervous function than slow breathing training, but the effects of reducing stress and promoting sleep quality need to be explored after increasing the number of samples. The results of this study can provide a reference for clinical or community health promotion. In the future, it can also be further designed to integrate heart rate variability biological feedback training into the development of AI artificial intelligence wearable devices, which can make it more convenient for people to train independently and get effective feedback in time.

Keywords: autonomic nervous function, HRV biofeedback, heart rate variability, slow breathing

Procedia PDF Downloads 170
3411 Falling and Rising of Solid Particles in Thermally Stratified Fluid

Authors: Govind Sharma, Bahni Ray

Abstract:

Ubiquitous nature of particle settling is governed by the presence of the surrounding fluid medium. Thermally stratified fluid alters the settling phenomenon of particles as well as their interactions. Direct numerical simulation (DNS) is carried out with an open-source library Immersed Boundary Adaptive Mesh Refinement (IBAMR) to quantify the fundamental mechanism based on Distributed Lagrangian Multiplier (DLM). The presence of background density gradient due to thermal stratification replaces the drafting-kissing-tumbling in a homogeneous fluid to drafting-kissing-separation behavior. Simulations are performed with a varying range of particle-fluid density ratios, and it is shown that the stratification effect on particle interactions varies with density ratio. It is observed that the combined role of buoyancy and inertia govern the physical mechanism of particle-particle interaction.

Keywords: direct numerical simulation, distributed lagrangian multiplier, rigidity constraint, sedimentation, stratification

Procedia PDF Downloads 131
3410 Effect of Lead Content on Physical Properties of the Al–Si Eutectic Alloys

Authors: Hasan Kaya

Abstract:

Effect of lead content on the microstructure, mechanical (microhardness, ultimate tensile strength) and electrical resistivity properties of Al–Si eutectic alloys has been investigated. Al–12.6 Si–xSn (x=1, 2, 4, 6 and 8 wt. %) were prepared using metals of 99.99% high purity in the vacuum atmosphere. These alloys were directionally solidified under constant temperature gradient (5.50 K/mm) and growth rate (8.25 μm/s) by using a Bridgman–type directional solidification furnace. Eutectic spacing, microhardness, ultimate tensile strength and electrical resistivity were expressed as functions of the composition by using a linear regression analysis. The dependency of the eutectic spacing, microhardness, tensile strength and electrical resistivity on the composition (Sn content) were determined. According to experimental results, the microhardness, ultimate tensile strength and electrical resistivity of the solidified samples increase with increasing the Sn content, but decrease eutectic spacing. Variation of electrical resistivity with the temperature in the range of 300-500 K for studied alloys was also measured by using a standard d.c. four-point probe technique.

Keywords: content elements, solidification, microhardness, strength

Procedia PDF Downloads 290
3409 The Gradient Complex Protective Coatings for Single Crystal Nickel Alloys

Authors: Evgeniya Popova, Vladimir Lesnikov, Nikolay Popov

Abstract:

High yield complex coatings have been designed for thermally stressed cooled HP turbine blades from single crystal alloys ZHS32-VI-VI and ZHS36 with crystallographic orientation [001]. These coatings provide long-term protection of single crystal blades during operation. The three-layer coatings were prepared as follows: the diffusion barrier layer formation on the alloy surface, the subsequent deposition of the condensed bilayer coatings consisting of an inner layer based on Ni-Cr-Al-Y systems and an outer layer based on the alloyed β-phase. The structure, phase composition of complex coatings and reaction zone interaction with the single-crystal alloys ZHS32-VI and ZHS36-VI were investigated using scanning electron microscope (SEM). The effect of complex protective coatings on the properties of heat-resistant nickel alloys was studied.

Keywords: single crystal nickel alloys, complex heat-resistant coatings, structure, phase composition, properties

Procedia PDF Downloads 413
3408 Fluid-Structure Interaction Study of Fluid Flow past Marine Turbine Blade Designed by Using Blade Element Theory and Momentum Theory

Authors: Abu Afree Andalib, M. Mezbah Uddin, M. Rafiur Rahman, M. Abir Hossain, Rajia Sultana Kamol

Abstract:

This paper deals with the analysis of flow past the marine turbine blade which is designed by using the blade element theory and momentum theory for the purpose of using in the field of renewable energy. The designed blade is analyzed for various parameters using FSI module of Ansys. Computational Fluid Dynamics is used for the study of fluid flow past the blade and other fluidic phenomena such as lift, drag, pressure differentials, energy dissipation in water. Finite Element Analysis (FEA) module of Ansys was used to analyze the structural parameter such as stress and stress density, localization point, deflection, force propagation. Fine mesh is considered in every case for more accuracy in the result according to computational machine power. The relevance of design, search and optimization with respect to complex fluid flow and structural modeling is considered and analyzed. The relevancy of design and optimization with respect to complex fluid for minimum drag force using Ansys Adjoint Solver module is analyzed as well. The graphical comparison of the above-mentioned parameter using CFD and FEA and subsequently FSI technique is illustrated and found the significant conformity between both the results.

Keywords: blade element theory, computational fluid dynamics, finite element analysis, fluid-structure interaction, momentum theory

Procedia PDF Downloads 293
3407 Multicenter Evaluation of the ACCESS HBsAg and ACCESS HBsAg Confirmatory Assays on the DxI 9000 ACCESS Immunoassay Analyzer, for the Detection of Hepatitis B Surface Antigen

Authors: Vanessa Roulet, Marc Turini, Juliane Hey, Stéphanie Bord-Romeu, Emilie Bonzom, Mahmoud Badawi, Mohammed-Amine Chakir, Valérie Simon, Vanessa Viotti, Jérémie Gautier, Françoise Le Boulaire, Catherine Coignard, Claire Vincent, Sandrine Greaume, Isabelle Voisin

Abstract:

Background: Beckman Coulter, Inc. has recently developed fully automated assays for the detection of HBsAg on a new immunoassay platform. The objective of this European multicenter study was to evaluate the performance of the ACCESS HBsAg and ACCESS HBsAg Confirmatory assays† on the recently CE-marked DxI 9000 ACCESS Immunoassay Analyzer. Methods: The clinical specificity of the ACCESS HBsAg and HBsAg Confirmatory assays was determined using HBsAg-negative samples from blood donors and hospitalized patients. The clinical sensitivity was determined using presumed HBsAg-positive samples. Sample HBsAg status was determined using a CE-marked HBsAg assay (Abbott ARCHITECT HBsAg Qualitative II, Roche Elecsys HBsAg II, or Abbott PRISM HBsAg assay) and a CE-marked HBsAg confirmatory assay (Abbott ARCHITECT HBsAg Qualitative II Confirmatory or Abbott PRISM HBsAg Confirmatory assay) according to manufacturer package inserts and pre-determined testing algorithms. False initial reactive rate was determined on fresh hospitalized patient samples. The sensitivity for the early detection of HBV infection was assessed internally on thirty (30) seroconversion panels. Results: Clinical specificity was 99.95% (95% CI, 99.86 – 99.99%) on 6047 blood donors and 99.71% (95%CI, 99.15 – 99.94%) on 1023 hospitalized patient samples. A total of six (6) samples were found false positive with the ACCESS HBsAg assay. None were confirmed for the presence of HBsAg with the ACCESS HBsAg Confirmatory assay. Clinical sensitivity on 455 HBsAg-positive samples was 100.00% (95% CI, 99.19 – 100.00%) for the ACCESS HBsAg assay alone and for the ACCESS HBsAg Confirmatory assay. The false initial reactive rate on 821 fresh hospitalized patient samples was 0.24% (95% CI, 0.03 – 0.87%). Results obtained on 30 seroconversion panels demonstrated that the ACCESS HBsAg assay had equivalent sensitivity performances compared to the Abbott ARCHITECT HBsAg Qualitative II assay with an average bleed difference since first reactive bleed of 0.13. All bleeds found reactive in ACCESS HBsAg assay were confirmed in ACCESS HBsAg Confirmatory assay. Conclusion: The newly developed ACCESS HBsAg and ACCESS HBsAg Confirmatory assays from Beckman Coulter have demonstrated high clinical sensitivity and specificity, equivalent to currently marketed HBsAg assays, as well as a low false initial reactive rate. †Pending achievement of CE compliance; not yet available for in vitro diagnostic use. 2023-11317 Beckman Coulter and the Beckman Coulter product and service marks mentioned herein are trademarks or registered trademarks of Beckman Coulter, Inc. in the United States and other countries. All other trademarks are the property of their respective owners.

Keywords: dxi 9000 access immunoassay analyzer, hbsag, hbv, hepatitis b surface antigen, hepatitis b virus, immunoassay

Procedia PDF Downloads 81
3406 Effects of Waist-to-Hip Ratio and Visceral Fat Measurements Improvement on Offshore Petrochemical Company Shift Employees' Work Efficiency

Authors: Essam Amerian

Abstract:

The aim of this study was to investigate the effects of improving waist-to-hip ratio (WHR) and visceral fat components on the health of shift workers in an offshore petrochemical company. A total of 100 male shift workers participated in the study, with an average age of 40.5 years and an average BMI of 28.2 kg/m². The study employed a randomized controlled trial design, with participants assigned to either an intervention group or a control group. The intervention group received a 12-week program that included dietary counseling, physical activity recommendations, and stress management techniques. The control group received no intervention. The outcomes measured were changes in WHR, visceral fat components, blood pressure, and lipid profile. The results showed that the intervention group had a statistically significant improvement in WHR (p<0.001) and visceral fat components (p<0.001) compared to the control group. Furthermore, there were statistically significant improvements in systolic blood pressure (p=0.015) and total cholesterol (p=0.034) in the intervention group compared to the control group. These findings suggest that implementing a 12-week program that includes dietary counseling, physical activity recommendations, and stress management techniques can effectively improve WHR, visceral fat components, and cardiovascular health among shift workers in an offshore petrochemical company.

Keywords: body composition, waist-hip-ratio, visceral fat, shift worker, work efficiency

Procedia PDF Downloads 71
3405 Compatibility of Copolymer-Based Grinding Aids and Sulfonated Acetone-Formaldehyde Superplasticizer

Authors: Zhang Tailong

Abstract:

Compatibility between sulfonated acetone-formalehyde superplasticizer (SAF) and copolymer-based grinding aids (GA) were studied by fluidity, Zeta potential, setting time of cement pasts, initial slump and slump flow of concrete and compressive strength of concrete. ESEM, MIP, and XRD were used to investigate the changing of microstructure of interior concrete. The results indicated that GA could noticeably enhance the dispersion ability of SAF. It was found that better fluidity and slump-keeping ability of cement paste were obtained in the case of GA. In addition, GA and SAF together had a certain retardation effect on hydration of cement paste. With increasing of the GA dosage, the dispersion ability and retardation effect of admixture increased. The compressive strength of the sample made with SAF and GA after 28 days was higher than that of the control sample made only with SAF. The initial slump and slump flow of concrete increased by 10.0% and 22.9%, respectively, while 0.09 wt.% GA was used. XRD examination indicated that new products were not found in the case of GA. In addition, more dense arrangement of hydrates and lower porosity of the specimen were observed by ESEM and MIP, which contributed to higher compressive strength.

Keywords: copolymer-based grinding aids, superplasiticizer, compatibility, microstructure, cement, concrete

Procedia PDF Downloads 239
3404 Numerical Investigation of a New Two-Fluid Model for Semi-Dilute Polymer Solutions

Authors: Soroush Hooshyar, Mohamadali Masoudian, Natalie Germann

Abstract:

Many soft materials such as polymer solutions can develop localized bands with different shear rates, which are known as shear bands. Using the generalized bracket approach of nonequilibrium thermodynamics, we recently developed a new two-fluid model to study shear banding for semi-dilute polymer solutions. The two-fluid approach is an appropriate means for describing diffusion processes such as Fickian diffusion and stress-induced migration. In this approach, it is assumed that the local gradients in concentration and, if accounted for, also stress generate a nontrivial velocity difference between the components. Since the differential velocity is treated as a state variable in our model, the implementation of the boundary conditions arising from the derivative diffusive terms is straightforward. Our model is a good candidate for benchmark simulations because of its simplicity. We analyzed its behavior in cylindrical Couette flow, a rectilinear channel flow, and a 4:1 planar contraction flow. The latter problem was solved using the OpenFOAM finite volume package and the impact of shear banding on the lip and salient vortices was investigated. For the other smooth geometries, we employed a standard Chebyshev pseudospectral collocation method. The results showed that the steady-state solution is unique with respect to initial conditions, deformation history, and the value of the diffusivity constant. However, smaller the value of the diffusivity constant is, the more time it takes to reach the steady state.

Keywords: nonequilibrium thermodynamics, planar contraction, polymer solutions, shear banding, two-fluid approach

Procedia PDF Downloads 321
3403 Predictive Models of Ruin Probability in Retirement Withdrawal Strategies

Authors: Yuanjin Liu

Abstract:

Retirement withdrawal strategies are very important to minimize the probability of ruin in retirement. The ruin probability is modeled as a function of initial withdrawal age, gender, asset allocation, inflation rate, and initial withdrawal rate. The ruin probability is obtained based on the 2019 period life table for the Social Security, IRS Required Minimum Distribution (RMD) Worksheets, US historical bond and equity returns, and inflation rates using simulation. Several popular machine learning algorithms of the generalized additive model, random forest, support vector machine, extreme gradient boosting, and artificial neural network are built. The model validation and selection are based on the test errors using hyperparameter tuning and train-test split. The optimal model is recommended for retirees to monitor the ruin probability. The optimal withdrawal strategy can be obtained based on the optimal predictive model.

Keywords: ruin probability, retirement withdrawal strategies, predictive models, optimal model

Procedia PDF Downloads 70
3402 Mindful Self-Compassion Training to Alleviate Work Stress and Fatigue in Community Workers: A Mixed Method Evaluation

Authors: Catherine Begin, Jeanne Berthod, Manon Truchon

Abstract:

In Quebec, there are more than 8,000 community organizations throughout the province, representing more than 72,000 jobs. Working in a community setting involves several particularities (e.g., contact with the suffering of users, feelings of powerlessness, institutional pressure, unstable funding, etc.), which can put workers at risk of fatigue, burnout, and psychological distress. A 2007 study shows that 52% of community workers surveyed have a high psychological distress index. The Ricochet project, founded in 2019, is an initiative aimed at providing various care and services to community workers in the Quebec City region, with a global health approach. Within this program, mindful self-compassion training (MSC) is offered at a low cost. MSC is one of the effective strategies proposed in the literature to help prevent and reduce burnout. Self-compassion is the recognition that suffering, failure, and inadequacies are inherent in the human experience and that everyone, including oneself, deserves compassion. MSC training targets several behavioral, cognitive, and emotional learnings (e.g., motivating oneself with caring, better managing difficult emotions, promoting resilience, etc.). A mixed-method evaluation was conducted with the participants in order to explore the effects of the training on community workers in the Quebec City region. The participants were community workers (management or caregiver). 15 participants completed satisfaction and perceived impact surveys, and 30 participated in structured interviews. Quantitative results showed that participants were generally completely satisfied or satisfied with the training (94%) and perceived that the training allowed them to develop new strategies for dealing with stress (87%). Participants perceived effects on their mood (93%), their contact with others (80%), and their stress level (67%). Some of the barriers raised were scheduling constraints, length of training, and guilt about taking time for oneself. The qualitative results show that individuals experienced long-term benefits, as they were able to apply the tools they received during the training in their daily lives. Some barriers were noted, such as difficulty in getting away from work or problems with the employer, which prevented enrollment. Overall, the results of this evaluation support the use of MSC (mindful self-compassion) training among community workers. Future research could support this evaluation by using a rigorous design and developing innovative ways to overcome the barriers raised.

Keywords: mindful self-compassion, community workers, work stres, burnout, wellbeing at work

Procedia PDF Downloads 113
3401 Development of Graph-Theoretic Model for Ranking Top of Rail Lubricants

Authors: Subhash Chandra Sharma, Mohammad Soleimani

Abstract:

Selection of the correct lubricant for the top of rail application is a complex process. In this paper, the selection of the proper lubricant for a Top-Of-Rail (TOR) lubrication system based on graph theory and matrix approach has been developed. Attributes influencing the selection process and their influence on each other has been represented through a digraph and an equivalent matrix. A matrix function which is called the Permanent Function is derived. By substituting the level of inherent contribution of the influencing parameters and their influence on each other qualitatively, a criterion called Suitability Index is derived. Based on these indices, lubricants can be ranked for their suitability. The proposed model can be useful for maintenance engineers in selecting the best lubricant for a TOR application. The proposed methodology is illustrated step–by-step through an example.

Keywords: lubricant selection, top of rail lubrication, graph-theory, Ranking of lubricants

Procedia PDF Downloads 285
3400 Renoprotective Effect of Alcoholic Extract of Bacopa monnieri via Inhibition of Advanced Glycation End Products and Oxidative Stress in Stz-Nicotinamide Induced Diabetic Nephropathy

Authors: Lalit Kishore, Randhir Singh

Abstract:

Diabetic nephropathy (DN) is the major cause of morbidity among diabetic patients. In this study, the effect of Bacopa monnieri Linn. (Brahmi, BM), was studied in a Streptozotocin (STZ)-induced experimental rat model of DN. Diabetic nephropathy was induced in Male Wistar rats (body weight- 300± 10 gms) by single intra-peritoneal injection of STZ (45mg/kg, i.p.) after 15 min of Nicotinamide (230 mg/kg) administration. Different doses of alcoholic extract i.e. 100, 200 and 400 mg/kg was given for 45 days by oral gavage after induction of DN. Blood glucose level, serum insulin, glycosylated haemoglobin, renal parameters (serum urea, uric acid, creatinine and BUN) and lipid profile (total cholesterol, triglycerides, HDL, LDL and VLDL levels) were measured. Concentration of thiobarbituric acid reactive species (TBARS) and levels of antioxidant enzymes of reduced glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT) were evaluated in the kidney, liver and pancreas. At the end of treatment period the alcoholic extract of BM reduced the elevated level of blood glucose, serum insulin, renal parameters, lipid levels, TBARS, AGE’s in kidney and significantly increased body weight, HDL and antioxidant enzymes in dose dependent manner as compared to diabetic control animals. These results suggested the BM possesses significant renoprotective activity.

Keywords: AGE's, lipid profile, oxidative stress, renal parameters

Procedia PDF Downloads 313
3399 Production and Mechanical Properties of Alkali–Activated Inorganic Binders Made from Wastes Solids

Authors: Sonia Vanessa Campos Moreira

Abstract:

The aim of this research is the production and mechanical properties of Alkali-Activated Inorganic Binders (AAIB) made from The Basic Oxygen Furnace Slag (BOF Slag) and Thin Film Transistor Liquid Crystal Display (TFT-LCD), glass powder (waste and industrial by-products). Many factors have an influence on the production of AAIB like the glass powder finesses, the alkaline equivalent content (AE %), water binder ratios (w/b ratios) and the differences curing process. The findings show different behavior in the AAIB related to the factors mentioned, the best results are given with a glass powder fineness of 4,500 cm²/g, w/b=0.30, a curing temperature of 70 ℃, curing duration of 4 days and an aging duration of 14 days results in the highest compressive strength of 18.51 MPa.

Keywords: alkaline activators, BOF slag, glass powder fineness, TFT-LCD, w/b ratios

Procedia PDF Downloads 154
3398 Influence of Nanoparticles Phenomena on the Peristaltic Flow of Pseudoplastic Fluid in an Inclined Asymmetric Channel with Different Wave Forms

Authors: Safia Akram

Abstract:

The influence of nanofluid with different waveforms in the presence of inclined asymmetric channel on peristaltic transport of a pseudoplastic fluid is examined. The governing equations for two-dimensional and two directional flows of a pseudoplastic fluid along with nanofluid are modeled and then simplified under the assumptions of long wavelength and low Reynolds number approximation. The exact solutions for temperature and nanoparticle volume fraction are calculated. Series solution of the stream function and pressure gradient are carried out using perturbation technique. The flow quantities have been examined for various physical parameters of interest. It was found, that the magnitude value of the velocity profile decreases with an increase in volume flow rate (Q) and relaxation times (ζ) and increases in sinusoidal, multisinusoidal, trapezoidal and triangular waves. It was also observed that the size of the trapping bolus decreases with the drop of the width of the channel ‘d’ and increases with a rise of relaxation times ζ.

Keywords: nanofluid particles, peristaltic flow, pseudoplastic fluid, different waveforms, inclined asymmetric channel

Procedia PDF Downloads 225
3397 Features Vector Selection for the Recognition of the Fragmented Handwritten Numeric Chains

Authors: Salim Ouchtati, Aissa Belmeguenai, Mouldi Bedda

Abstract:

In this study, we propose an offline system for the recognition of the fragmented handwritten numeric chains. Firstly, we realized a recognition system of the isolated handwritten digits, in this part; the study is based mainly on the evaluation of neural network performances, trained with the gradient backpropagation algorithm. The used parameters to form the input vector of the neural network are extracted from the binary images of the isolated handwritten digit by several methods: the distribution sequence, sondes application, the Barr features, and the centered moments of the different projections and profiles. Secondly, the study is extended for the reading of the fragmented handwritten numeric chains constituted of a variable number of digits. The vertical projection was used to segment the numeric chain at isolated digits and every digit (or segment) was presented separately to the entry of the system achieved in the first part (recognition system of the isolated handwritten digits).

Keywords: features extraction, handwritten numeric chains, image processing, neural networks

Procedia PDF Downloads 261
3396 An Antidiabetic Dietary Defence Weapon: Oats and Milk Based Probiotic Fermented Product

Authors: Rameshwar Singh Seema

Abstract:

In today’s world where diabetes has become an epidemic, our aim was to potentiate the effect of probiotics by integrating probiotics with cereals to formulate composite foods using Lactobacillus rhamnosus GG (LGG) and Lactobacillus casei NCDC19 against type 2 diabetes. After optimizing the product by Response Surface Methodology, it was studied for their effect on induction and progression of type 2 diabetes in HFD-fed Wistar rats. After 9 weeks study, best results were shown by the group fed with oat and milk based product fermented with LGG and L. casei NCDC19 which resulted in a significant decrease in blood glucose, HBA1c, improved OGTT, oxidative stress, cholesterol and triglycerides level during progression study of type 2 diabetes. During induction study also, there was significant reduction in blood glucose level, oxidative stress, cholesterol level and triglycerides level but slightly less as compared to progression study. Real time PCR gene expression studies were done for 5 genes (GLUT-4, IRS-2, ppar-γ, TNF-α, IL-6) whose expression is directly related to type 2 diabetes. The relative fold change expression was increased in case of GLUT-4, IRS-2, ppar-γ and decreased in case of TNF-α and IL-6 during both induction and progression study of diabetes but more significantly during progression study. Hence it was concluded that oat and milk based probiotic fermented product showed the synergistic effect of probiotics and oats especially in case of progression of type 2 diabetes. The benefits of these probiotic formulations may be further validated by clinical trials.

Keywords: type 2 diabetes, LGG, L.casei NCDC19, food science

Procedia PDF Downloads 412
3395 Ab Initio Study of Structural, Elastic, Electronic and Thermal Properties of Full Heusler

Authors: M. Khalfa, H. Khachai, F. Chiker, K. Bougherara, R. Khenata, G. Murtaza, M. Harmel

Abstract:

A theoretical study of structural, elastic, electronic and thermodynamic properties of Fe2VX, (with X = Al and Ga), were studied by means of the full-relativistic version of the full-potential augmented plane wave plus local orbitals method. For exchange and correlation potential we used both generalized-gradient approximation (GGA) and local-density approximation (LDA). Our calculated ground state properties like as lattice constants, bulk modulus and elastic constants appear more accurate when we employed the GGA rather than the LDA approximation, and these results agree very well with the available experimental and theoretical data. Further, prediction of the thermal effects on some macroscopic properties of Fe2VAl and Fe2VGa are given in this paper using the quasi-harmonic Debye model in which the lattice vibrations are taken into account. We have obtained successfully the variations of the primitive cell volume, volume expansion coefficient, heat capacities and Debye temperature with pressure and temperature in the ranges of 0–40 GPa and 0–1500 K.

Keywords: full Heusler, FP-LAPW, electronic properties, thermal properties

Procedia PDF Downloads 484
3394 Comparative Study of Soliton Collisions in Uniform and Nonuniform Magnetized Plasma

Authors: Renu Tomar, Hitendra K. Malik, Raj P. Dahiya

Abstract:

Similar to the sound waves in air, plasmas support the propagation of ion waves, which evolve into the solitary structures when the effect of non linearity and dispersion are balanced. The ion acoustic solitary waves have been investigated in details in homogeneous plasmas, inhomogeneous plasmas, and magnetized plasmas. The ion acoustic solitary waves are also found to reflect from a density gradient or boundary present in the plasma after propagating. Another interesting feature of the solitary waves is their collision. In the present work, we carry out analytical calculations for the head-on collision of solitary waves in a magnetized plasma which has dust grains in addition to the ions and electrons. For this, we employ Poincar´e-Lighthill-Kuo (PLK) method. To lowest nonlinear order, the problem of colliding solitary waves leads to KdV (modified KdV) equations and also yields the phase shifts that occur in the interaction. These calculations are accomplished for the uniform and nonuniform plasmas, and the results on the soliton properties are discussed in detail.

Keywords: inhomogeneous magnetized plasma, dust charging, soliton collisions, magnetized plasma

Procedia PDF Downloads 462
3393 Case Study on the Effects of Early Mobilization in the Post-Surgical Recovery of Athletes with Open Triangular Fibrocartilage Complex Repair

Authors: Blair Arthur Agero Jr., Lucia Garcia Heras

Abstract:

The triangular fibrocartilage complex (TFCC) is one of the crucial stabilizing ligaments of the wrist. The TFCC is also subject to excessive stress amongst performance athletes and enthusiasts. The excessive loading of the TFCC may lead to a partial or complete rupture that requires surgery. The recovery from an open TFCC surgical repair may take several months. Immobilization of the repaired wrist for a given period is part of all the current protocols in the post-surgical treatment. The immobilization to prevent the rotation of the forearm can last from six weeks to eight weeks with the wrist held in a neutral position. In all protocols reviewed, the pronosupination is only initiated between the 6th week and 8th week or even later after the cast is removed. The prolonged immobilization can cause stiffness of the wrist and hand. Furthermore, the entire period of post-surgical hand therapy has its economic impact, especially for performing athletes. However, delayed mobilization, specifically rotation of the wrist, is necessary to allow ligament healing. This study aims to report the effects of early mobilization of the wrist in athletes who had an open surgical repair of the TFCC. The surgery was done by the co-author, and the hand therapy was implemented by the main author. The cases documented spans from 2014 to 2019 and were all performed in Dubai, United Arab Emirates. All selected participants in this case study were provided with a follow-up questionnaire to ascertain their current condition since their surgery. The respondents reported high satisfaction in the results of their treatment and have verified zero re-rupture of their TFCC despite mobilizing and rotating the wrist at the third-week post-surgery during their hand therapy. There is also a negligible number of respondents who reported a limitation in their ranges of pronosupination. This case study suggests that early mobilization of the wrist after an open TFCC surgical repair can be more beneficial to the patient as opposed to the traditional treatment of prolonged immobilization. However, it should be considered that the patients selected in this case study are professional performance athletes and advanced fitness enthusiasts. Athletes are known to withstand vigorous physical stress in their training that may correlate to their ability to better cope with the progressive stress that was implemented during their hand therapy. Nevertheless, this approach has its merits, and application of it may be adjusted for patients with a similar injury and surgical procedure.

Keywords: hand therapy, performance athlete, TFCC repair, wrist ligament

Procedia PDF Downloads 146
3392 Degradation of Mechanical Properties of Offshoring Polymer Composite Pipes in Thermal Environment

Authors: Hamza Benyahia, Mostapha Tarfaoui, Ahmed El-Moumen, Djamel Ouinas

Abstract:

Composite pipes are commonly used in the oil industry, and extreme flow of hot and cold gas fluid can cause degradation of their mechanical performance and properties. Therefore, it is necessary to consider thermomechanical behavior as an important parameter in designing these tubular structures. In this paper, an experimental study is conducted on composite glass/epoxy tubes, with a thickness of 6.2 mm and 86 mm internal diameter made by filament winding of (Փ = ± 55°), to investigate the effects of extreme thermal condition on their mechanical properties b over a temperature range from -40 to 80°C. The climatic chamber is used for the thermal aging and then, combine split disk system is used to perform tensile tests on these composite pies. Thermal aging is carried out for 8hr but each specimen was subjected to various temperature ranges and then, uniaxial tensile test is conducted to evaluate their mechanical performance. Experimental results show degradation in the mechanical properties of composite pipes with an increase in temperature. The rigidity of pipes increases progressively with a decrease in thermal load and results in a radical decrease in their elongation before fracture, thus, decreasing their ductility. However, with an increase in the temperature, there is a decrease in the yield strength and an increase in yield strain, which confirmed an increase in the plasticity of composite pipes.

Keywords: composite pipes, thermal-mechanical properties, filament winding, thermal degradation

Procedia PDF Downloads 132
3391 Long-term Monitoring on Rangelands in Southwest Algeria and Impact of Overgrazing and Droughts on Biodiversity and Soil: Case of the Rogassa Steppe (Wilaya of El Bayadh)

Authors: Slimani Halima

Abstract:

One of the main problems of degradation of arid steppe rangelands in the southern Mediterranean is the loss of plant diversity and changes in soil properties. During the last decades, these rangelands faced two main driving forces: climate through more or less lasting and recurrent droughts and overgrazing by sheep. In the present work, the preexisting system was an arid steppe with alfa grass (Stipa tenacissima L.) as the dominant plant, which was considered to be the "keystone" species toward the whole ecosystem structure and functioning. Vegetation and soil change was monitored for 45 years along a grazing intensity gradient. Changes in species richness and diversity, in the vegetation and in the soil, enabled to better understand climate fluctuations effects in comparison to overgrazing ones. The aim is to assess the impacts of grazing and climatic variability and change on biodiversity,vegetation and soil over a period of 45 years, based on data from seven reference years.

Keywords: biodiversity, desertification, droughts, el bayadh, overgrazing, soil, steppe

Procedia PDF Downloads 93
3390 Ameliorative Effect of Martynia annua Linn. on Collagen-Induced Arthritis via Modulating Cytokines and Oxidative Stress in Mice

Authors: Alok Pal Jain, Santram Lodhi

Abstract:

Martynia annua Linn. (Martyniaccae) is traditionally used in inflammation and applied locally to tuberculosis glands of camel’s neck. The leaves used topically to bites of venomous insects and wounds of domestic animals. Chemical examination of Martynia annua leaves revealed the presence of glycosides, tannins, proteins, phenols and flavonoids. The present study was aimed to evaluate the anti-arthritic activity of methanolic extract of Martynia annua leaves. Methanolic extract of Martynia annua leaves was tested by using in vivo collagen-induced arthritis mouse model to investigate the anti-rheumatoid arthritis activity. In addition, antioxidant effect of methanolic extract was determined by the estimation of antioxidants level in joint tissues. The severity of arthritis was assessed by arthritis score and edema. Levels of cytokines TNF-α and IL-6, in the joint tissue homogenate were measured using ELISA. A high dose (250 mg/kg) of methanolic extract was significantly reduced the degree of inflammation in mice as compared with reference drug. Antioxidants level and malondialdehyde (MDA) in joint tissue homogenate found significantly (p < 0.05) higher. Methanolic extract at dose of 250 mg/kg modulated the cytokines production and suppressed the oxidative stress in the mice with collagen-induced arthritis. This study suggested that Martynia annua might be alternative herbal medicine for the management of rheumatoid arthritis.

Keywords: Martynia annua, collagen, rheumatoid arthritis, antioxidants

Procedia PDF Downloads 288
3389 Structural and Modal Analyses of an s1223 High-Lift Airfoil Wing for Drone Design

Authors: Johnson Okoduwa Imumbhon, Mohammad Didarul Alam, Yiding Cao

Abstract:

Structural analyses are commonly employed to test the integrity of aircraft component systems in the design stage to demonstrate the capability of the structural components to withstand what it was designed for, as well as to predict potential failure of the components. The analyses are also essential for weight minimization and selecting the most resilient materials that will provide optimal outcomes. This research focuses on testing the structural nature of a high-lift low Reynolds number airfoil profile design, the Selig S1223, under certain loading conditions for a drone model application. The wing (ribs, spars, and skin) of the drone model was made of carbon fiber-reinforced polymer and designed in SolidWorks, while the finite element analysis was carried out in ANSYS mechanical in conjunction with the lift and drag forces that were derived from the aerodynamic airfoil analysis. Additionally, modal analysis was performed to calculate the natural frequencies and the mode shapes of the wing structure. The structural strain and stress determined the minimal deformations under the wing loading conditions, and the modal analysis showed the prominent modes that were excited by the given forces. The research findings from the structural analysis of the S1223 high-lift airfoil indicated that it is applicable for use in an unmanned aerial vehicle as well as a novel reciprocating-airfoil-driven vertical take-off and landing (VTOL) drone model.

Keywords: CFRP, finite element analysis, high-lift, S1223, strain, stress, VTOL

Procedia PDF Downloads 215