Search results for: double nonlinear predictive controller
1849 Determination and Qsar Modelling of Partitioning Coefficients for Some Xenobiotics in Soils and Sediments
Authors: Alaa El-Din Rezk
Abstract:
For organic xenobiotics, sorption to Aldrich humic acid is a key process controlling their mobility, bioavailability, toxicity and fate in the soil. Hydrophobic organic compounds possessing either acid or basic groups can be partially ionized (deprotonated or protonated) within the range of natural soil pH. For neutral and ionogenicxenobiotics including (neutral, acids and bases) sorption coefficients normalized to organic carbon content, Koc, have measured at different pH values. To this end, the batch equilibrium technique has been used, employing SPME combined with GC-MSD as an analytical tool. For most ionogenic compounds, sorption has been affected by both pH and pKa and can be explained through Henderson-Hasselbalch equation. The results demonstrate that when assessing the environmental fate of ionogenic compounds, their pKa and speciation under natural conditions should be taken into account. A new model has developed to predict the relationship between log Koc and pH with full statistical evaluation against other existing predictive models. Neutral solutes have displayed a good fit with the classical model using log Kow as log Koc predictor, whereas acidic and basic compounds have displayed a good fit with the LSER approach and the new proposed model. Measurement limitations of the Batch technique and SPME-GC-MSD have been found with ionic compounds.Keywords: humic acid, log Koc, pH, pKa, SPME-GCMSD
Procedia PDF Downloads 2671848 Body Image Dissatifaction with and Personal Behavioral Control in Obese Patients Who are Attending to Treatment
Authors: Mariela Gonzalez, Zoraide Lugli, Eleonora Vivas, Rosana Guzmán
Abstract:
The objective was to determine the predictive capacity of self-efficacy perceived for weight control, locus of weight control and skills of weight self-management in the dissatisfaction of the body image in obese people who attend treatment. Sectional study conducted in the city of Maracay, Venezuela, with 243 obese who attend to treatment, 173 of the feminine gender and 70 of the male, with ages ranging between 18 and 57 years old. The sample body mass index ranged between 29.39 and 44.14. The following instruments were used: The Body Shape Questionnaire (BSQ), the inventory of body weight self-regulation, The Inventory of self-efficacy in the regulation of body weight and the Inventory of the Locus of weight control. Calculating the descriptive statistics and of central tendency, coefficients of correlation and multiple regression; it was found that a low ‘perceived Self-efficacy in the weight control’ and a high ‘Locus of external control’, predict the dissatisfaction with body image in obese who attend treatment. The findings are a first approximation to give an account of the importance of the personal control variables in the study of the psychological grief on the overweight individual.Keywords: dissatisfaction with body image, obese people, personal control, psychological variables
Procedia PDF Downloads 4351847 Enhancement of Thermal Performance of Latent Heat Solar Storage System
Authors: Rishindra M. Sarviya, Ashish Agrawal
Abstract:
Solar energy is available abundantly in the world, but it is not continuous and its intensity also varies with time. Due to above reason the acceptability and reliability of solar based thermal system is lower than conventional systems. A properly designed heat storage system increases the reliability of solar thermal systems by bridging the gap between the energy demand and availability. In the present work, two dimensional numerical simulation of the melting of heat storage material is presented in the horizontal annulus of double pipe latent heat storage system. Longitudinal fins were used as a thermal conductivity enhancement. Paraffin wax was used as a heat-storage or phase change material (PCM). Constant wall temperature is applied to heat transfer tube. Presented two-dimensional numerical analysis shows the movement of melting front in the finned cylindrical annulus for analyzing the thermal behavior of the system during melting.Keywords: latent heat, numerical study, phase change material, solar energy
Procedia PDF Downloads 3141846 Analogical Reasoning on Preschoolers’ Linguistic Performance
Authors: Yenie Norambuena
Abstract:
Analogical reasoning is a cognitive process that consists of structured comparisons of mental representations and scheme construction. Because of its heuristic function, it is ubiquitous in cognition and could play an important role in language development. The use of analogies is expressed early in children and this behavior is also reflected in language, suggesting a possible way to understand the complex links between thought and language. The current research examines factors of verbal and non-verbal reasoning that should be taken into consideration in the study of language development for their relations and predictive value. The study was conducted with 48 Chilean preschoolers (Spanish speakers) from 4 to 6-year-old. We assessed children’s verbal analogical reasoning, non-verbal analogical reasoning and linguistics skills (Listening Comprehension, Phonemic awareness, Alphabetic principle, Syllabification, Lexical repetition and Lexical decision). The results evidenced significant correlations between analogical reasoning factors and linguistic skills and they can predict linguistic performance mainly on oral comprehension, lexical decision and phonological skills. These findings suggest a fundamental interrelationship between analogical reasoning and linguistic performance on children’s and points to the need to consider this cognitive process in comprehensive theories of children's language development.Keywords: verbal analogical reasoning, non-verbal analogical reasoning, linguistic skills, language development
Procedia PDF Downloads 2691845 The Analysis of the Two Dimensional Huxley Equation Using the Galerkin Method
Authors: Pius W. Molo Chin
Abstract:
Real life problems such as the Huxley equation are always modeled as nonlinear differential equations. These problems need accurate and reliable methods for their solutions. In this paper, we propose a nonstandard finite difference method in time and the Galerkin combined with the compactness method in the space variables. This coupled method, is used to analyze a two dimensional Huxley equation for the existence and uniqueness of the continuous solution of the problem in appropriate spaces to be defined. We proceed to design a numerical scheme consisting of the aforementioned method and show that the scheme is stable. We further show that the stable scheme converges with the rate which is optimal in both the L2 as well as the H1-norms. Furthermore, we show that the scheme replicates the decaying qualities of the exact solution. Numerical experiments are presented with the help of an example to justify the validity of the designed scheme.Keywords: Huxley equations, non-standard finite difference method, Galerkin method, optimal rate of convergence
Procedia PDF Downloads 2201844 The Effects of Consumer Inertia and Emotions on New Technology Acceptance
Authors: Chyi Jaw
Abstract:
Prior literature on innovation diffusion or acceptance has almost exclusively concentrated on consumers’ positive attitudes and behaviors for new products/services. Consumers’ negative attitudes or behaviors to innovations have received relatively little marketing attention, but it happens frequently in practice. This study discusses consumer psychological factors when they try to learn or use new technologies. According to recent research, technological innovation acceptance has been considered as a dynamic or mediated process. This research argues that consumers can experience inertia and emotions in the initial use of new technologies. However, given such consumer psychology, the argument can be made as to whether the inclusion of consumer inertia (routine seeking and cognitive rigidity) and emotions increases the predictive power of new technology acceptance model. As data from the empirical study find, the process is potentially consumer emotion changing (independent of performance benefits) because of technology complexity and consumer inertia, and impact innovative technology use significantly. Finally, the study presents the superior predictability of the hypothesized model, which let managers can better predict and influence the successful diffusion of complex technological innovations.Keywords: cognitive rigidity, consumer emotions, new technology acceptance, routine seeking, technology complexity
Procedia PDF Downloads 2991843 Collaboration in Palliative Care Networks in Urban and Rural Regions of Switzerland
Authors: R. Schweighoffer, N. Nagy, E. Reeves, B. Liebig
Abstract:
Due to aging populations, the need for seamless palliative care provision is of central interest for western societies. An essential aspect of palliative care delivery is the quality of collaboration amongst palliative care providers. Therefore, the current research is based on Bainbridge’s conceptual framework, which provides an outline for the evaluation of palliative care provision. This study is the first one to investigate the predictive validity of spatial distribution on the quantity of interaction amongst various palliative care providers. Furthermore, based on the familiarity principle, we examine whether the extent of collaboration influences the perceived quality of collaboration among palliative care providers in urban versus rural areas of Switzerland. Based on a population-representative survey of Swiss palliative care providers, the results of the current study show that professionals in densely populated areas report higher absolute numbers of interactions and are more satisfied with their collaborative practice. This indicates that palliative care providers who work in urban areas are better embedded into networks than their counterparts in more rural areas. The findings are especially important, considering that efficient collaboration is a prerequisite to achieve satisfactory patient outcomes. Conclusively, measures should be taken to foster collaboration in weakly interconnected palliative care networks.Keywords: collaboration, healthcare networks, palliative care, Switzerland
Procedia PDF Downloads 2711842 Theoretical Approach to Kinetics of Transient Plasticity of Metals under Irradiation
Authors: Pavlo Selyshchev, Tetiana Didenko
Abstract:
Within the framework of the obstacle radiation hardening and the dislocation climb-glide model a theoretical approach is developed to describe peculiarities of transient plasticity of metal under irradiation. It is considered nonlinear dynamics of accumulation of point defects (vacancies and interstitial atoms). We consider metal under such stress and conditions of irradiation at which creep is determined by dislocation motion: dislocations climb obstacles and glide between obstacles. It is shown that the rivalry between vacancy and interstitial fluxes to dislocation leads to fractures of plasticity time dependence. Simulation and analysis of this phenomenon are performed. Qualitatively different regimes of transient plasticity under irradiation are found. The fracture time is obtained. The theoretical results are compared with the experimental ones.Keywords: climb and glide of dislocations, fractures of transient plasticity, irradiation, non-linear feed-back, point defects
Procedia PDF Downloads 2051841 Pharmacognostical, Phytochemical and Biological Studies of Leaves and Stems of Hippophae Salicifolia
Authors: Bhupendra Kumar Poudel, Sadhana Amatya, Tirtha Maiya Shrestha, Bharatmani Pokhrel, Mohan Prasad Amatya
Abstract:
Background: H. salicifolia is a dense, branched, multipurpose, deciduous, nitrogen fixing, thorny willow-like small to moderate tree, restricted to the Himalaya. Among the two species of Nepal (Hippophae salicifolia and H. tibetana), it has been traditionally used as food additive, anticancer (bark), and treating toothache, tooth inflammation (anti-inflammatory) and radiation injury; while people of Western Nepal have largely undermined its veiled treasure by using it for fuel, wood and soil stabilization only. Therefore, the main objective of this study was to explore biological properties (analgesic, antidiabetic, cytotoxic and anti-inflammatory properties of this plant. Methodology: The transverse section of leaves and stems were viewed under microscope. Extracts obtained from soxhlation subjected to tests for phytochemical and biological studies. Rats (used to study antidiabetic and anti-inflammatory properties) and mice (used to study analgesic, CNS depressant, muscle relaxant and locomotor properties) were assumed to be normally distributed; then ANOVA and post hoc tukey test was used to find significance. The data obtained were analyzed by SPSS 17 and Excel 2007. Results and Conclusion: Pharmacognostical analysis revealed the presence of long stellate trichomes, double layered vascular bundle 5-6 in number and double layered compact sclerenchyma. The preliminary phytochemical screening of the extracts was found to exhibit the positive reaction tests for glycoside, steroid, tannin, flavonoid, saponin, coumarin and reducing sugar. The brine shrimp lethality bioassay tested in 1000, 100 and 10 ppm revealed cytotoxic activity inherent in methanol, water, chloroform and ethyl acetate extracts with LC50 (μg/ml) values of 61.42, 99.77, 292.72 and 277.84 respectively. The cytotoxic activity may be due to presence of tannins in the constituents. Antimicrobial screening of the extracts by cup diffusion method using Staphylococcus aereus, Escherichia coli and Pseudomonas aeruginosa against standard antibiotics (oxacillin, gentamycin and amikacin respectively) portrayed no activity against the microorganisms tested. The methanol extract of the stems and leaves showed various pharmacological properties: and antidiabetic, anti-inflammatory, analgesic [chemical writhing method], CNS depressant, muscle relaxant and locomotor activities in a dose-dependent fashion, indicating the possibility of the presence of different constituents in the stems and leaves responsible for these biological activities. All the effects when analyzed by post hoc tukey test were found to be significant at 95% confidence level. The antidiabetic activity was presumed to be due to flavonoids present in extract. Therefore, it can be concluded that this plant’s secondary metabolites possessed strong antidiabetic, anti-inflammatory and cytotoxic activity which could be isolated for further investigation.Keywords: Hippophae salicifolia, constituents, antidiabetic, inflammatory, brine shrimp
Procedia PDF Downloads 3501840 Effect of Magnetic Field on Mixed Convection Boundary Layer Flow over an Exponentially Shrinking Vertical Sheet with Suction
Authors: S. S. P. M. Isa, N. M. Arifin, R. Nazar, N. Bachok, F. M. Ali, I. Pop
Abstract:
A theoretical study has been presented to describe the boundary layer flow and heat transfer on an exponentially shrinking sheet with a variable wall temperature and suction, in the presence of magnetic field. The governing nonlinear partial differential equations are converted into ordinary differential equations by similarity transformation, which are then solved numerically using the shooting method. Results for the skin friction coefficient, local Nusselt number, velocity profiles as well as temperature profiles are presented through graphs and tables for several sets of values of the parameters. The effects of the governing parameters on the flow and heat transfer characteristics are thoroughly examined.Keywords: exponentially shrinking sheet, magnetic field, mixed convection, suction
Procedia PDF Downloads 3331839 The Biochemical and Radiographic Evaluation of the Non-Metastatic Bone Disease in Patients with Renal Cell Carcinoma Undergoing Hemodialysis
Authors: Aliakbar Hafezi, Jalal Taherian, Jamshid Abedi, Mahsa Elahi
Abstract:
Background: Bones are commonly affected by renal cell carcinoma (RCC) (primarily or secondary), and this condition causes bone fragility. The aim of this study was to evaluate the diagnostic value of noninvasive methods for the diagnosis of ROD in RCC patients on hemodialysis (HD) in northern Iran. Methods: In this cross-sectional study, 50 RCC patients with ESRD referred to dialysis units in northern Iran during 2021-2024 were randomly selected and investigated. The biochemical and radiographic evaluation of ROD and its subtypes was performed, and then all patients underwent bone biopsy and histopathological study, and finally, the diagnostic value of the noninvasive methods was assessed. Results: The mean age of patients was 58.9 ± 11.7 years, and 27 cases (54.0%) were female. 38 (76.0%) of RCC patients with ESRD had ROD, and 12 patients (24.0%) had no evidence of bone disorders. The sensitivity, specificity, positive and predictive values and accuracy of the noninvasive methods for the diagnosis of ROD were 92%, 82%, 95%, 75% and 90%, respectively. Conclusion: This study showed that the frequency of ROD in RCC patients with ESRD in northern Iran was high and the biochemical and radiographic markers have a high diagnostic value for ROD as well as histopathological assessment.Keywords: renal cell carcinoma, renal osteodystrophy, hemodialysis, non-metastatic
Procedia PDF Downloads 161838 A Robust Software for Advanced Analysis of Space Steel Frames
Authors: Viet-Hung Truong, Seung-Eock Kim
Abstract:
This paper presents a robust software package for practical advanced analysis of space steel framed structures. The pre- and post-processors of the presented software package are coded in the C++ programming language while the solver is written by using the FORTRAN programming language. A user-friendly graphical interface of the presented software is developed to facilitate the modeling process and result interpretation of the problem. The solver employs the stability functions for capturing the second-order effects to minimize modeling and computational time. Both the plastic-hinge and fiber-hinge beam-column elements are available in the presented software. The generalized displacement control method is adopted to solve the nonlinear equilibrium equations.Keywords: advanced analysis, beam-column, fiber-hinge, plastic hinge, steel frame
Procedia PDF Downloads 3101837 Scattering Operator and Spectral Clustering for Ultrasound Images: Application on Deep Venous Thrombi
Authors: Thibaud Berthomier, Ali Mansour, Luc Bressollette, Frédéric Le Roy, Dominique Mottier, Léo Fréchier, Barthélémy Hermenault
Abstract:
Deep Venous Thrombosis (DVT) occurs when a thrombus is formed within a deep vein (most often in the legs). This disease can be deadly if a part or the whole thrombus reaches the lung and causes a Pulmonary Embolism (PE). This disorder, often asymptomatic, has multifactorial causes: immobilization, surgery, pregnancy, age, cancers, and genetic variations. Our project aims to relate the thrombus epidemiology (origins, patient predispositions, PE) to its structure using ultrasound images. Ultrasonography and elastography were collected using Toshiba Aplio 500 at Brest Hospital. This manuscript compares two classification approaches: spectral clustering and scattering operator. The former is based on the graph and matrix theories while the latter cascades wavelet convolutions with nonlinear modulus and averaging operators.Keywords: deep venous thrombosis, ultrasonography, elastography, scattering operator, wavelet, spectral clustering
Procedia PDF Downloads 4811836 Evaluation of Quasi-Newton Strategy for Algorithmic Acceleration
Authors: T. Martini, J. M. Martínez
Abstract:
An algorithmic acceleration strategy based on quasi-Newton (or secant) methods is displayed for address the practical problem of accelerating the convergence of the Newton-Lagrange method in the case of convergence to critical multipliers. Since the Newton-Lagrange iteration converges locally at a linear rate, it is natural to conjecture that quasi-Newton methods based on the so called secant equation and some minimal variation principle, could converge superlinearly, thus restoring the convergence properties of Newton's method. This strategy can also be applied to accelerate the convergence of algorithms applied to fixed-points problems. Computational experience is reported illustrating the efficiency of this strategy to solve fixed-point problems with linear convergence rate.Keywords: algorithmic acceleration, fixed-point problems, nonlinear programming, quasi-newton method
Procedia PDF Downloads 4911835 Simulation and Analysis of Inverted Pendulum Controllers
Authors: Sheren H. Salah
Abstract:
The inverted pendulum is a highly nonlinear and open-loop unstable system. An inverted pendulum (IP) is a pendulum which has its mass above its pivot point. It is often implemented with the pivot point mounted on a cart that can move horizontally and may be called a cart and pole. The characteristics of the inverted pendulum make identification and control more challenging. This paper presents the simulation study of several control strategies for an inverted pendulum system. The goal is to determine which control strategy delivers better performance with respect to pendulum’s angle. The inverted pendulum represents a challenging control problem, which continually moves toward an uncontrolled state. For controlling the inverted pendulum. The simulation study that sliding mode control (SMC) control produced better response compared to Genetic Algorithm Control (GAs) and proportional-integral-derivative(PID) control.Keywords: Inverted Pendulum (IP) Proportional-Integral-Derivative (PID), Genetic Algorithm Control (GAs), Sliding Mode Control (SMC)
Procedia PDF Downloads 5601834 Energy Management System Based on Voltage Fluctuations Minimization for Droop-Controlled Islanded Microgrid
Authors: Zahra Majd, Mohsen Kalantar
Abstract:
Power management and voltage regulation is one of the most important issues in microgrid (MG) control and scheduling. This paper proposes a multiobjective scheduling formulation that consists of active power costs, voltage fluctuations summation, and technical constraints of MG. Furthermore, load flow and reserve constraints are considered to achieve proper voltage regulation. A modified Jacobian matrix is presented for calculating voltage variations and Mont Carlo simulation is used for generating and reducing scenarios. To convert the problem to a mixed integer linear program, a linearization procedure for nonlinear equations is presented. The proposed model is applied to a typical low-voltage MG and two different cases are investigated. The results show the effectiveness of the proposed model.Keywords: microgrid, energy management system, voltage fluctuations, modified Jacobian matrix
Procedia PDF Downloads 951833 Internal Leakage Analysis from Pd to Pc Port Direction in ECV Body Used in External Variable Type A/C Compressor
Authors: M. Iqbal Mahmud, Haeng Muk Cho, Seo Hyun Sang, Wang Wen Hai, Chang Heon Yi, Man Ik Hwang, Dae Hoon Kang
Abstract:
Solenoid operated electromagnetic control valve (ECV) playing an important role for car’s air conditioning control system. ECV is used in external variable displacement swash plate type compressor and controls the entire air conditioning system by means of a pulse width modulation (PWM) input signal supplying from an external source (controller). Complete form of ECV contains number of internal features like valve body, core, valve guide, plunger, guide pin, plunger spring, bellows etc. While designing the ECV; dimensions of different internal items must meet the standard requirements as it is quite challenging. In this research paper, especially the dimensioning of ECV body and its three pressure ports through which the air/refrigerant passes are considered. Here internal leakage test analysis of ECV body is being carried out from its discharge port (Pd) to crankcase port (Pc) when the guide valve is placed inside it. The experiments have made both in ordinary and digital system using different assumptions and thereafter compare the results.Keywords: electromagnetic control valve (ECV), leakage, pressure port, valve body, valve guide
Procedia PDF Downloads 4131832 Mode-Locked Fiber Laser Using Charcoal and Graphene Saturable Absorbers to Generate 20-GHz and 50-GHz Pulse Trains, Respectively
Authors: Ashiq Rahman, Sunil Thapa, Shunyao Fan, Niloy K. Dutta
Abstract:
A 20-GHz and a 50-GHz pulse train are generated using a fiber ring laser setup that incorporates Rational Harmonic Mode Locking. Two separate experiments were carried out using charcoal nanoparticles and graphene nanoparticles acting as saturable absorbers to reduce the pulse width generated from rational harmonic mode-locking (RHML). Autocorrelator trace shows that the pulse width is reduced from 5.6-ps to 3.2-ps using charcoal at 20-GHz, and to 2.7-ps using graphene at 50-GHz repetition rates, which agrees with the simulation findings. Numerical simulations have been carried out to study the effect of varying the linear and nonlinear absorbance parameters of both absorbers on output pulse widths. Experiments closely agree with the simulations.Keywords: fiber optics, fiber lasers, mode locking, saturable absorbers
Procedia PDF Downloads 1011831 Deep Graph Embeddings for the Analysis of Short Heartbeat Interval Time Series
Authors: Tamas Madl
Abstract:
Sudden cardiac death (SCD) constitutes a large proportion of cardiovascular mortalities, provides little advance warning, and the risk is difficult to recognize based on ubiquitous, low cost medical equipment such as the standard, 12-lead, ten second ECG. Autonomic abnormalities have been shown to be strongly predictive of SCD risk; yet current methods are not trivially applicable to the brevity and low temporal and electrical resolution of standard ECGs. Here, we build horizontal visibility graph representations of very short inter-beat interval time series, and perform unsuper- vised representation learning in order to convert these variable size objects into fixed-length vectors preserving similarity rela- tions. We show that such representations facilitate classification into healthy vs. at-risk patients on two different datasets, the Mul- tiparameter Intelligent Monitoring in Intensive Care II and the PhysioNet Sudden Cardiac Death Holter Database. Our results suggest that graph representation learning of heartbeat interval time series facilitates robust classification even in sequences as short as ten seconds.Keywords: sudden cardiac death, heart rate variability, ECG analysis, time series classification
Procedia PDF Downloads 2371830 Ethno-Religious Conflicts In Nigeria; Implications for National Security
Authors: Samuel Onyekachi Chidi
Abstract:
Nigeria today faces more internal threats stemming from ethnic and religious conflicts than external sources. This article seeks to examine the ethno-religious conflicts in Nigeria from 2015 to 2021 and their impact on national security. The research was guided by six objectives. The theoretical framework adopted for this study is Structural Conflict Theory, which provides an adequate explanation, a predictive rationale for the frequent occurrence of ethno-religious conflicts and a tendency to provide the necessary insight for their resolution. The results of the study revealed that there is a strong relationship between ethnicity, religion, conflict and national security and that the ethno-religious conflicts experienced in Nigeria have gross implications for national security. The study recommends that the secularity of the Nigerian state be restored and preserved and that the state of origin be removed and replaced by the state of residence in all our national documents, as this will reduce ethnic identity, which is in opposition to nationalism. Religious leaders, traditional rulers, the media and other stakeholders should support the government in its fight to reduce ethno-religious conflict by sensitizing its youth, preaching unity and peaceful coexistence, and discouraging the use of violence as a means of settling disputes between groups and individuals.Keywords: ethnicity, religion, conflict, national security
Procedia PDF Downloads 791829 Modeling and Dynamics Analysis for Intelligent Skid-Steering Vehicle Based on Trucksim-Simulink
Authors: Yansong Zhang, Xueyuan Li, Junjie Zhou, Xufeng Yin, Shihua Yuan, Shuxian Liu
Abstract:
Aiming at the verification of control algorithms for skid-steering vehicles, a vehicle simulation model of 6×6 electric skid-steering unmanned vehicle was established based on Trucksim and Simulink. The original transmission and steering mechanism of Trucksim are removed, and the electric skid-steering model and a closed-loop controller for the vehicle speed and yaw rate are built in Simulink. The simulation results are compared with the ones got by theoretical formulas. The results show that the predicted tire mechanics and vehicle kinematics of Trucksim-Simulink simulation model are closed to the theoretical results. Therefore, it can be used as an effective approach to study the dynamic performance and control algorithm of skid-steering vehicle. In this paper, a method of motion control based on feed forward control is also designed. The simulation results show that the feed forward control strategy can make the vehicle follow the target yaw rate more quickly and accurately, which makes the vehicle have more maneuverability.Keywords: skid-steering, Trucksim-Simulink, feedforward control, dynamics
Procedia PDF Downloads 3251828 Optimizing Machine Learning Algorithms for Defect Characterization and Elimination in Liquids Manufacturing
Authors: Tolulope Aremu
Abstract:
The key process steps to produce liquid detergent products will introduce potential defects, such as formulation, mixing, filling, and packaging, which might compromise product quality, consumer safety, and operational efficiency. Real-time identification and characterization of such defects are of prime importance for maintaining high standards and reducing waste and costs. Usually, defect detection is performed by human inspection or rule-based systems, which is very time-consuming, inconsistent, and error-prone. The present study overcomes these limitations in dealing with optimization in defect characterization within the process for making liquid detergents using Machine Learning algorithms. Performance testing of various machine learning models was carried out: Support Vector Machine, Decision Trees, Random Forest, and Convolutional Neural Network on defect detection and classification of those defects like wrong viscosity, color deviations, improper filling of a bottle, packaging anomalies. These algorithms have significantly benefited from a variety of optimization techniques, including hyperparameter tuning and ensemble learning, in order to greatly improve detection accuracy while minimizing false positives. Equipped with a rich dataset of defect types and production parameters consisting of more than 100,000 samples, our study further includes information from real-time sensor data, imaging technologies, and historic production records. The results are that optimized machine learning models significantly improve defect detection compared to traditional methods. Take, for instance, the CNNs, which run at 98% and 96% accuracy in detecting packaging anomaly detection and bottle filling inconsistency, respectively, by fine-tuning the model with real-time imaging data, through which there was a reduction in false positives of about 30%. The optimized SVM model on detecting formulation defects gave 94% in viscosity variation detection and color variation. These values of performance metrics correspond to a giant leap in defect detection accuracy compared to the usual 80% level achieved up to now by rule-based systems. Moreover, this optimization with models can hasten defect characterization, allowing for detection time to be below 15 seconds from an average of 3 minutes using manual inspections with real-time processing of data. With this, the reduction in time will be combined with a 25% reduction in production downtime because of proactive defect identification, which can save millions annually in recall and rework costs. Integrating real-time machine learning-driven monitoring drives predictive maintenance and corrective measures for a 20% improvement in overall production efficiency. Therefore, the optimization of machine learning algorithms in defect characterization optimum scalability and efficiency for liquid detergent companies gives improved operational performance to higher levels of product quality. In general, this method could be conducted in several industries within the Fast moving consumer Goods industry, which would lead to an improved quality control process.Keywords: liquid detergent manufacturing, defect detection, machine learning, support vector machines, convolutional neural networks, defect characterization, predictive maintenance, quality control, fast-moving consumer goods
Procedia PDF Downloads 241827 Improved Simultaneous Performance in the Time Domain and in the Frequency Domain
Authors: Azeddine Ghodbane, David Bensoussan, Maher Hammami
Abstract:
An innovative approach for controlling unstable and invertible systems has demonstrated superior performance compared to conventional controllers. It has been successfully applied to a levitation system and drone control. Simulations have yielded satisfactory performances when applied to a satellite antenna controller. This design method, based on sensitivity analysis, has also been extended to handle multivariable unstable and invertible systems that exhibit dominant diagonal characteristics at high frequencies, enabling decentralized control. Furthermore, this control method has been expanded to the realm of adaptive control. In this study, we introduce an alternative adaptive architecture that enhances both time and frequency performance, helpfully mitigating the effects of disturbances from the input plant and external disturbances affecting the output. To facilitate superior performance in both the time and frequency domains, we have developed user-friendly interactive design methods using the GeoGebra platform.Keywords: control theory, decentralized control, sensitivity theory, input-output stability theory, robust multivariable feedback control design
Procedia PDF Downloads 1171826 Study on Electromagnetic Plasma Acceleration Using Rotating Magnetic Field Scheme
Authors: Takeru Furuawa, Kohei Takizawa, Daisuke Kuwahara, Shunjiro Shinohara
Abstract:
In the field of a space propulsion, an electric propulsion system has been developed because its fuel efficiency is much higher than a conventional chemical one. However, the practical electric propulsion systems, e.g., an ion engine, have a problem of short lifetime due to a damage of generation and acceleration electrodes of the plasma. A helicon plasma thruster is proposed as a long-lifetime electric thruster which has non-direct contact electrodes. In this system, both generation and acceleration methods of a dense plasma are executed by antennas from the outside of a discharge tube. Development of the helicon plasma thruster has been conducting under the Helicon Electrodeless Advanced Thruster (HEAT) project. Our helicon plasma thruster has two important processes. First, we generate a dense source plasma using a helicon wave with an excitation frequency between an ion and an electron cyclotron frequencies, fci and fce, respectively, applied from the outside of a discharge using a radio frequency (RF) antenna. The helicon plasma source can provide a high-density (~1019 m-3), a high-ionization ratio (up to several tens of percent), and a high particle generation efficiency. Second, in order to achieve high thrust and specific impulse, we accelerate the dense plasma by the axial Lorentz force fz using the product of the induced azimuthal current jθ and the static radial magnetic field Br, shown as fz = jθ × Br. The HEAT project has proposed several kinds of electrodeless acceleration schemes, and in our particular case, a Rotating Magnetic Field (RMF) method has been extensively studied. The RMF scheme was originally developed as a concept to maintain the Field Reversed Configuration (FRC) in a magnetically confined fusion research. Here, RMF coils are expected to generate jθ due to a nonlinear effect shown below. First, the rotating magnetic field Bω is generated by two pairs of RMF coils with AC currents, which have a phase difference of 90 degrees between the pairs. Due to the Faraday’s law, an axial electric field is induced. Second, an axial current is generated by the effects of an electron-ion and an electron-neutral collisions through the Ohm’s law. Third, the azimuthal electric field is generated by the nonlinear term, and the retarding torque generated by the collision effects again. Then, azimuthal current jθ is generated as jθ = - nₑ er ∙ 2π fRMF. Finally, the axial Lorentz force fz for plasma acceleration is generated. Here, jθ is proportional to nₑ and frequency of RMF coil current fRMF, when Bω is fully penetrated into the plasma. Our previous study has achieved 19 % increase of ion velocity using the 5 MHz and 50 A of the RMF coil power supply. In this presentation, we will show the improvement of the ion velocity using the lower frequency and higher current supplied by RMF power supply. In conclusion, helicon high-density plasma production and electromagnetic acceleration by the RMF scheme with a concept of electrodeless condition have been successfully executed.Keywords: electric propulsion, electrodeless thruster, helicon plasma, rotating magnetic field
Procedia PDF Downloads 2641825 Modeling, Analysis and Control of a Smart Composite Structure
Authors: Nader H. Ghareeb, Mohamed S. Gaith, Sayed M. Soleimani
Abstract:
In modern engineering, weight optimization has a priority during the design of structures. However, optimizing the weight can result in lower stiffness and less internal damping, causing the structure to become excessively prone to vibration. To overcome this problem, active or smart materials are implemented. The coupled electromechanical properties of smart materials, used in the form of piezoelectric ceramics in this work, make these materials well-suited for being implemented as distributed sensors and actuators to control the structural response. The smart structure proposed in this paper is composed of a cantilevered steel beam, an adhesive or bonding layer, and a piezoelectric actuator. The static deflection of the structure is derived as function of the piezoelectric voltage, and the outcome is compared to theoretical and experimental results from literature. The relation between the voltage and the piezoelectric moment at both ends of the actuator is also investigated and a reduced finite element model of the smart structure is created and verified. Finally, a linear controller is implemented and its ability to attenuate the vibration due to the first natural frequency is demonstrated.Keywords: active linear control, lyapunov stability theorem, piezoelectricity, smart structure, static deflection
Procedia PDF Downloads 3901824 A Large-Strain Thermoviscoplastic Damage Model
Authors: João Paulo Pascon
Abstract:
A constitutive model accounting for large strains, thermoviscoplasticity, and ductile damage evolution is proposed in the present work. To this end, a fully Lagrangian framework is employed, considering plane stress conditions and multiplicative split of the deformation gradient. The full model includes Gurson’s void growth, nucleation and coalescence, plastic work heating, strain and strain-rate hardening, thermal softening, and heat conductivity. The contribution of the work is the combination of all the above-mentioned features within the finite-strain setting. The model is implemented in a computer code using triangular finite elements and nonlinear analysis. Two mechanical examples involving ductile damage and finite strain levels are analyzed: an inhomogeneous tension specimen and the necking problem. Results demonstrate the capabilities of the developed formulation regarding ductile fracture and large deformations.Keywords: ductile damage model, finite element method, large strains, thermoviscoplasticity
Procedia PDF Downloads 881823 Defective Autophagy Leads to the Resistance to PP2 in ATG5 Knockout Cells Generated by CRISPR-Cas9 Endonuclease
Authors: Sung-Hee Hwang, Michael Lee
Abstract:
Upregulated Src activity has been implicated in a variety of cancers. Thus, Src family tyrosine kinase (SFK) inhibitors are often effective cancer treatments. Here, we investigate the role of autophagy in ATG5 knockout cell lines generated by the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas mediated genome editing. The CRISPR-associated protein Cas9 is an RNA-guided DNA endonuclease that uses RNA–DNA complementarity to identify target sites for sequence specific double-stranded DNA (dsDNA) cleavage. Interestingly, ATG5 KO cells clearly showed a greater proliferation rate than WT NIH 3T3 cells, implying that autophagy induction is cytotoxic. Also, the clonogenic survival of ATG5 KO cells was greater than WT cells. The MTT assay revealed that the cytotoxic effect of PP2 was weaker on ATG5 knockout cells than that WT cells. The conversion of non-autophagic LC3-I to autophagic LC3-II and RT-PCR confirmed the functional gene knockout. Furthermore, Cyto-ID autophagy assay also revealed that PP2 failed to induce autophagy in ATG5 knockout cells. Together, our findings suggest that the resistance to PP2 in ATG5 knockout cells is associated with defective autophagy.Keywords: ATG5 knockout, Autophagy, CRISPR/Cas9, PP2
Procedia PDF Downloads 3491822 A Real Time Monitoring System of the Supply Chain Conditions, Products and Means of Transport
Authors: Dimitris E. Kontaxis, George Litainas, Dimitris P. Ptochos
Abstract:
Real-time monitoring of the supply chain conditions and procedures is a critical element for the optimal coordination and safety of the deliveries, as well as for the minimization of the delivery time and cost. Real-time monitoring requires IoT data streams, which are related to the conditions of the products and the means of transport (e.g., location, temperature/humidity conditions, kinematic state, ambient light conditions, etc.). These streams are generated by battery-based IoT tracking devices, equipped with appropriate sensors, and are transmitted to a cloud-based back-end system. Proper handling and processing of the IoT data streams, using predictive and artificial intelligence algorithms, can provide significant and useful results, which can be exploited by the supply chain stakeholders in order to enhance their financial benefits, as well as the efficiency, security, transparency, coordination, and sustainability of the supply chain procedures. The technology, the features, and the characteristics of a complete, proprietary system, including hardware, firmware, and software tools -developed in the context of a co-funded R&D programme- are addressed and presented in this paper.Keywords: IoT embedded electronics, real-time monitoring, tracking device, sensor platform
Procedia PDF Downloads 1811821 Evaluation of Progressive Collapse of Transmission Tower
Authors: Jeong-Hwan Choi, Hyo-Sang Park, Tae-Hyung Lee
Abstract:
The transmission tower is one of the crucial lifeline structures in a modern society, and it needs to be protected against extreme loading conditions. However, the transmission tower is a very complex structure and, therefore, it is very difficult to simulate the actual damage and the collapse behavior of the tower structure. In this study, the actual collapse behavior of the transmission tower due to lateral loading conditions such as wind load is evaluated through the computational simulation. For that, a progressive collapse procedure is applied to the simulation. In this procedure, after running the simulation, if a member of the tower structure fails, the failed member is removed and the simulation run again. The 154kV transmission tower is selected for this study. The simulation is performed by nonlinear static analysis procedure, namely pushover analysis, using OpenSEES, an earthquake simulation platform. Three-dimensional finite element models of those towers are developed.Keywords: transmission tower, OpenSEES, pushover, progressive collapse
Procedia PDF Downloads 3601820 Optimization of Assay Parameters of L-Glutaminase from Bacillus cereus MTCC1305 Using Artificial Neural Network
Authors: P. Singh, R. M. Banik
Abstract:
Artificial neural network (ANN) was employed to optimize assay parameters viz., time, temperature, pH of reaction mixture, enzyme volume and substrate concentration of L-glutaminase from Bacillus cereus MTCC 1305. ANN model showed high value of coefficient of determination (0.9999), low value of root mean square error (0.6697) and low value of absolute average deviation. A multilayer perceptron neural network trained with an error back-propagation algorithm was incorporated for developing a predictive model and its topology was obtained as 5-3-1 after applying Levenberg Marquardt (LM) training algorithm. The predicted activity of L-glutaminase was obtained as 633.7349 U/l by considering optimum assay parameters, viz., pH of reaction mixture (7.5), reaction time (20 minutes), incubation temperature (35˚C), substrate concentration (40mM), and enzyme volume (0.5ml). The predicted data was verified by running experiment at simulated optimum assay condition and activity was obtained as 634.00 U/l. The application of ANN model for optimization of assay conditions improved the activity of L-glutaminase by 1.499 fold.Keywords: Bacillus cereus, L-glutaminase, assay parameters, artificial neural network
Procedia PDF Downloads 432