Search results for: Emotional intelligence
769 A Hybrid Model of Structural Equation Modelling-Artificial Neural Networks: Prediction of Influential Factors on Eating Behaviors
Authors: Maryam Kheirollahpour, Mahmoud Danaee, Amir Faisal Merican, Asma Ahmad Shariff
Abstract:
Background: The presence of nonlinearity among the risk factors of eating behavior causes a bias in the prediction models. The accuracy of estimation of eating behaviors risk factors in the primary prevention of obesity has been established. Objective: The aim of this study was to explore the potential of a hybrid model of structural equation modeling (SEM) and Artificial Neural Networks (ANN) to predict eating behaviors. Methods: The Partial Least Square-SEM (PLS-SEM) and a hybrid model (SEM-Artificial Neural Networks (SEM-ANN)) were applied to evaluate the factors affecting eating behavior patterns among university students. 340 university students participated in this study. The PLS-SEM analysis was used to check the effect of emotional eating scale (EES), body shape concern (BSC), and body appreciation scale (BAS) on different categories of eating behavior patterns (EBP). Then, the hybrid model was conducted using multilayer perceptron (MLP) with feedforward network topology. Moreover, Levenberg-Marquardt, which is a supervised learning model, was applied as a learning method for MLP training. The Tangent/sigmoid function was used for the input layer while the linear function applied for the output layer. The coefficient of determination (R²) and mean square error (MSE) was calculated. Results: It was proved that the hybrid model was superior to PLS-SEM methods. Using hybrid model, the optimal network happened at MPLP 3-17-8, while the R² of the model was increased by 27%, while, the MSE was decreased by 9.6%. Moreover, it was found that which one of these factors have significantly affected on healthy and unhealthy eating behavior patterns. The p-value was reported to be less than 0.01 for most of the paths. Conclusion/Importance: Thus, a hybrid approach could be suggested as a significant methodological contribution from a statistical standpoint, and it can be implemented as software to be able to predict models with the highest accuracy.Keywords: hybrid model, structural equation modeling, artificial neural networks, eating behavior patterns
Procedia PDF Downloads 153768 An Application of Path Planning Algorithms for Autonomous Inspection of Buried Pipes with Swarm Robots
Authors: Richard Molyneux, Christopher Parrott, Kirill Horoshenkov
Abstract:
This paper aims to demonstrate how various algorithms can be implemented within swarms of autonomous robots to provide continuous inspection within underground pipeline networks. Current methods of fault detection within pipes are costly, time consuming and inefficient. As such, solutions tend toward a more reactive approach, repairing faults, as opposed to proactively seeking leaks and blockages. The paper presents an efficient inspection method, showing that autonomous swarm robotics is a viable way of monitoring underground infrastructure. Tailored adaptations of various Vehicle Routing Problems (VRP) and path-planning algorithms provide a customised inspection procedure for complicated networks of underground pipes. The performance of multiple algorithms is compared to determine their effectiveness and feasibility. Notable inspirations come from ant colonies and stigmergy, graph theory, the k-Chinese Postman Problem ( -CPP) and traffic theory. Unlike most swarm behaviours which rely on fast communication between agents, underground pipe networks are a highly challenging communication environment with extremely limited communication ranges. This is due to the extreme variability in the pipe conditions and relatively high attenuation of acoustic and radio waves with which robots would usually communicate. This paper illustrates how to optimise the inspection process and how to increase the frequency with which the robots pass each other, without compromising the routes they are able to take to cover the whole network.Keywords: autonomous inspection, buried pipes, stigmergy, swarm intelligence, vehicle routing problem
Procedia PDF Downloads 166767 Examining the Impact of Intelligence Quotients on Balance and Coordination in Adolescents with Intellectual Disability
Authors: Bilge B. Calik, Ummuhan B. Aslan, Suat Erel, Sehmus Aslan
Abstract:
Objective: Intellectual disability (ID) is characterized by limitations in both intellectual functioning and adaptive behavior, which covers many everyday social and practical skills. The aim of this study was to evaluate the balance and coordination performance determined between mild and moderate ID adolescents who regularly play sport. Methods: The study comprised a total of 179 participants, of which 135 were male adolescents with mild and moderate-level ID who regularly play sports (16.52 ± 2.17 years) and 44 age-matched male adolescents with typical development without ID who do not do any sports (16.52 ± 0.99 years). The participants with ID were students of Special Education Schools for the mentally disabled and had been diagnosed with ID at a Ministry of Health Hospital. The adolescents with mild and moderate ID had been playing football in their school teams at least 2 days a week, for at least one year. Balance and coordination of adolescents were assessed by Bilateral coordination and balance subtests of Short Form Bruininks-Oseretsky Test of Motor Proficiency (BOT-2 SF). Results: As a result of the evaluations comparing coordination and balance scores significant differences were determined between all three groups in favor of the peers without ID (p<0.05). Conclusions: It was observed that balance and coordination levels of adolescents with mild ID were better than those of adolescents with moderate-level ID but lower than those of peers without ID. These results indicate a relationship between IQ level and motor performance. Further comparative studies are needed on individuals with ID who play and do not play sports in order to examine the impact of participation in sports on the motor skills of individuals with ID.Keywords: balance, coordination, intellectual disability, motor skills, sport
Procedia PDF Downloads 330766 A Literature Review on Emotion Recognition Using Wireless Body Area Network
Authors: Christodoulou Christos, Politis Anastasios
Abstract:
The utilization of Wireless Body Area Network (WBAN) is experiencing a notable surge in popularity as a result of its widespread implementation in the field of smart health. WBANs utilize small sensors implanted within the human body to monitor and record physiological indicators. These sensors transmit the collected data to hospitals and healthcare facilities through designated access points. Bio-sensors exhibit a diverse array of shapes and sizes, and their deployment can be tailored to the condition of the individual. Multiple sensors may be strategically placed within, on, or around the human body to effectively observe, record, and transmit essential physiological indicators. These measurements serve as a basis for subsequent analysis, evaluation, and therapeutic interventions. In conjunction with physical health concerns, numerous smartwatches are engineered to employ artificial intelligence techniques for the purpose of detecting mental health conditions such as depression and anxiety. The utilization of smartwatches serves as a secure and cost-effective solution for monitoring mental health. Physiological signals are widely regarded as a highly dependable method for the recognition of emotions due to the inherent inability of individuals to deliberately influence them over extended periods of time. The techniques that WBANs employ to recognize emotions are thoroughly examined in this article.Keywords: emotion recognition, wireless body area network, WBAN, ERC, wearable devices, psychological signals, emotion, smart-watch, prediction
Procedia PDF Downloads 49765 Increasing Employee Productivity and Work Well-Being by Employing Affective Decision Support and a Knowledge-Based System
Authors: Loreta Kaklauskiene, Arturas Kaklauskas
Abstract:
This employee productivity and work well-being effective system aims to maximise the work performance of personnel and boost well-being in offices. Affective computing, decision support, and knowledge-based systems were used in our research. The basis of this effective system is our European Patent application (No: EP 4 020 134 A1) and two Lithuanian patents (LT 6841, LT 6866). Our study examines ways to support efficient employee productivity and well-being by employing mass-customised, personalised office environment. Efficient employee performance and well-being are managed by changing mass-customised office environment factors such as air pollution levels, humidity, temperature, data, information, knowledge, activities, lighting colours and intensity, scents, media, games, videos, music, and vibrations. These aspects of management generate a customised, adaptive environment for users taking into account their emotional, affective, and physiological (MAP) states measured and fed into the system. This research aims to develop an innovative method and system which would analyse, customise and manage a personalised office environment according to a specific user’s MAP states in a cohesive manner. Various values of work spaces (e.g., employee utilitarian, hedonic, perceived values) are also established throughout this process, based on the measurements that describe MAP states and other aspects related to the office environment. The main contribution of our research is the development of a real-time mass-customised office environment to boost employee performance and well-being. Acknowledgment: This work was supported by Project No. 2020-1-LT01-KA203-078100 “Minimizing the influence of coronavirus in a built environment” (MICROBE) from the European Union’s Erasmus + program.Keywords: effective decision support and a knowledge-based system, human resource management, employee productivity and work well-being, affective computing
Procedia PDF Downloads 106764 Investigation of the Effect of Eye Exercises and Convergence Exercise on Visual Acuity in School-Age Children with Hypermetropia
Authors: Gulay Aras, Isil Kutluturk Karagoz, Z. Candan Algun
Abstract:
Background: Hypermetropia in school-age is a pathology that responds to treatment. In the literature, there has been no study of exercise practice in hypermetropia treatment. Objective: The purpose of this study was to investigate the effects of eye exercises and convergence exercise on visual acuity in school-age children with hypermetropia. Methods: Forty volunteer school-age children with hypermetropia (30 girls, 30 boys, between 7-17 years of age) were included in the study. Sociodemographic information and clinical characteristics were evaluated. 40 participants were randomly divided into two groups: eye exercises and convergence exercises. Home exercise protocols were given to all groups for six weeks, and regular phone calls were made once a week. Individuals performed eye exercises 10 times, convergence exercises 5 min. for two sessions per day for six weeks. The right and left eyes of all the subjects participating in the study were assessed separately by the eye doctor with a Snellen chart. The participants' quality of life was assessed using Pediatric Quality of Life Inventory Version 4.0. Physical health total score (PHTS) and scale total score (STS), which were obtained by evaluating Psychosocial health total score (PSHTS) school, emotional and social functioning, were calculated separately in the scores. At the end of the exercise program, the assessment tests applied at the beginning of the study were reapplied to all individuals. Results: There was no statistically significant difference between the pre- and post-Snellen chart measurements and quality of life in the eye exercises group (p > 0,05). There was a statistically significant difference in visual acuity of right and left eyes (p=0,004, p=0,014) and quality of life in PHTS, PSHTS and STS in the convergence exercise group (p=0,001, p=0,017, p=0,001). Conclusions: In school-age children, convergence exercises were found to be effective on visual acuity and health-related quality of life. Convergence exercises are recommended for the treatment of school-aged children with hypermetropia.Keywords: convergence exercise, eye exercises, hypermetropia, school-age children
Procedia PDF Downloads 247763 Endeavor in Management Process by Executive Dashboards: The Case of the Financial Directorship in Brazilian Navy
Authors: R. S. Quintal, J. L. Tesch Santos, M. D. Davis, E. C. de Santana, M. de F. Bandeira dos Santos
Abstract:
The objective is to identify the contributions from the introduction of the computerized system deal within the Accounting Department of Brazilian Navy Financial Directorship and its possible effects on the budgetary and financial harvest of Brazilian Navy. The relevance lies in the fact that the management process is responsible for the continuous improvement of organizational performance through higher levels of quality in their activities. Improvements in organizational processes have direct effects on crops cost, quality, reliability, flexibility and speed. The method of study of this research is the case study. The choice of case study attended, among other demands, a need for greater flexibility to study processes related to a computerized system. The sources of evidence were used literature, documentary and direct observation. Direct observation was made by monitoring the implementation of the computerized system in the Division of Management Analysis. The main findings of the study point to the fact that the computerized system may contribute significantly to the standardization of information. There was improvement of internal processes in the division of management analysis, made possible the consolidation of a standard management and performance analysis that contribute to global homogeneity in the treatment of information essential to the process of decision making. This study has limitations related to the fact the search result be subject exclusively to the case studied, and it is impossible to generalize to other organs of government.Keywords: process management, management control, business intelligence, Brazilian Navy
Procedia PDF Downloads 236762 A Scoping Review of Psychosocial Interventions for the Survivors and/or Victims of Intimate Partner Violence in Low- and Middle-Income Countries
Authors: Mukondi Nethavhakone
Abstract:
The high prevalence of violence against women is a global public health problem. Our societies have become dangerous places for women. Women during their child-bearing ages are at a higher risk of experiencing emotional, physical, and sexual violence. What makes it more concerning is that these violent acts are perpetrated by family members or partners, or ex-partners. Intimate Partner Violence (IPV) is associated with long-lasting physical, reproductive, sexual, mental, and maternal health implications. Expectedly women’s mental health would dimmish as a result of experiencing IPV. The burden of violence against women is seen to be heavier in low- and middle-income countries (LMICs) compared to the rest of the world. Countries have committed to eliminating all forms of violence against women through the sustainable development goal, aiming to see changes by the year 2030. As such, various countries have implemented psychosocial interventions of different levels of impact. However, little is known, especially in low- and middle-income countries, with regard to the potential of psychosocial interventions for IPV to improve the mental health outcomes for the survivors and/or victims of IPV. Analysing the risk for IPV through a social-ecological theoretical approach, low- and middle-income countries still readdressing gender inequality which is the cause of intimate partner violence. That is why it is taking time for these countries to shift psychosocial interventions to focus more on the improvement of the mental health of the survivors. It is, therefore, against this backdrop that the researcher intends to undertake a scoping review to understand the nature and characteristics of psychosocial interventions that have been implemented in low- and middle-income countries. With the findings from the scoping review, the researcher aims to develop a conceptual framework that may be a useful resource for healthcare practitioners and researchers in low- and middle-income countries. As this area of research has not been thoroughly reviewed, the results from this scoping will determine whether a systematic review will be justifiable. Additionally, the researcher will identify gaps and opportunities for future research in this area.Keywords: mental health improvement, psychosocial interventions, intimate partner violence, LMICs
Procedia PDF Downloads 129761 A Computationally Intelligent Framework to Support Youth Mental Health in Australia
Authors: Nathaniel Carpenter
Abstract:
Web-enabled systems for supporting youth mental health management in Australia are pioneering in their field; however, with their success, these systems are experiencing exponential growth in demand which is straining an already stretched service. Supporting youth mental is critical as the lack of support is associated with significant and lasting negative consequences. To meet this growing demand, and provide critical support, investigations are needed on evaluating and improving existing online support services. Improvements should focus on developing frameworks capable of augmenting and scaling service provisions. There are few investigations informing best-practice frameworks when implementing e-mental health support systems for youth mental health; there are fewer which implement machine learning or artificially intelligent systems to facilitate the delivering of services. This investigation will use a case study methodology to highlight the design features which are important for systems to enable young people to self-manage their mental health. The investigation will also highlight the current information system challenges, to include challenges associated with service quality, provisioning, and scaling. This work will propose methods of meeting these challenges through improved design, service augmentation and automation, service quality, and through artificially intelligent inspired solutions. The results of this study will inform a framework for supporting youth mental health with intelligent and scalable web-enabled technologies to support an ever-growing user base.Keywords: artificial intelligence, information systems, machine learning, youth mental health
Procedia PDF Downloads 109760 Psychopathic Disorders and Judges Sentencing: Can Neurosciences Change this Aggravating Factor in a Mitigating Factor?
Authors: Kevin Moustapha
Abstract:
Psychopathy is perceived today as being «the most important concept in the criminal justice system» and as «the most important legal notion of the early 21 th century». The explosion of research related to psychopathy seems to perfectly illustrate this trend. Traditionally, many studies tend to focus on links between insanity defense and psychopathy. That is why our purpose in this article is to analyze psychopathic disorders in the scope of judges sentencing in Canada. Indeed, in every Canadian case related to dangerous offenders, judges must balance between fairness and protection of the individuals rights of the accused and protection of society from dangerous predators who may commit future acts of physical or sexual violence. Increasingly, psychopathic disorders are taking an important part in judge sentencing, especially in Canada. This phenomenon can be illustrated by the high proportion of psychopath offenders incarcerated in North American prisons. Many decisions in Canadians courtrooms seem to point out that psychopathy is often used as a strong argument by the judges to preserve public safety. The fact that psychopathy is often associated with violence, recklessness and recidivism, it could explain why many judges consider psychopathic disorders as an aggravating factor. Generally, the judge reasoning is based on article 753 of Canadian Criminal Code related to dangerous offenders, which is used for individuals who show a pattern of repetitive and persistent aggressive behaviour. However, with cognitive neurosciences, the psychopath’s situation in courtrooms would probably change. Cerebral imaging and news data provided by the neurosciences show that emotional and volitional functions in psychopath’s brains are impaired. Understanding these new issues could enable some judges to recognize psychopathic disorders as a mitigating factor. Two important questions ought to be raised in this article: can exploring psychopaths ‘brains really change the judge sentencing in Canadian courtrooms? If yes, can judges consider psychopathy more as a mitigating factor than an aggravating factor?Keywords: criminal law, judges sentencing, neurosciences, psychopathy
Procedia PDF Downloads 925759 The Planning and Development of Green Public Places in Urban South Africa: A Child-Friendly Approach
Authors: E. J. Cilliers, Z. Goosen
Abstract:
The impact that urban green spaces have on sustainability and quality of life is phenomenal. This is also true for the local South African environment. However, in reality green spaces in urban environments are decreasing due to growing populations, increasing urbanization and development pressure. This further impacts on the provision of child-friendly spaces, a concept that is already limited in local context. Child-friendly spaces are described as environments in which people (children) feel intimately connected to, influencing the physical, social, emotional, and ecological health of individuals and communities. The benefits of providing such spaces for the youth are well documented in literature. This research therefore aimed to investigate the concept of child-friendly spaces and its applicability to the South African planning context, in order to guide the planning of such spaces for future communities and use. Child-friendly spaces in the urban environment of the city of Durban, was used as local case study, along with two international case studies namely Mullerpier public playground in Rotterdam, the Netherlands, and Kadidjiny Park in Melville, Australia. The aim was to determine how these spaces were planned and developed and to identify tools that were used to accomplish the goal of providing successful child-friendly green spaces within urban areas. The need and significance of planning for such spaces was portrayed within the international case studies. It is confirmed that minimal provision is made for green space planning within the South African context, when there is reflected on the international examples. As a result international examples and disciples of providing child-friendly green spaces should direct planning guidelines within local context. The research concluded that child-friendly green spaces have a positive impact on the urban environment and assist in a child’s development and interaction with the natural environment. Regrettably, the planning of these child-friendly spaces is not given priority within current spatial plans, despite the proven benefits of such.Keywords: built environment, child-friendly spaces, green spaces, public places, urban area
Procedia PDF Downloads 443758 IoT-Based Early Identification of Guava (Psidium guajava) Leaves and Fruits Diseases
Authors: Daudi S. Simbeye, Mbazingwa E. Mkiramweni
Abstract:
Plant diseases have the potential to drastically diminish the quantity and quality of agricultural products. Guava (Psidium guajava), sometimes known as the apple of the tropics, is one of the most widely cultivated fruits in tropical regions. Monitoring plant health and diagnosing illnesses is an essential matter for sustainable agriculture, requiring the inspection of visually evident patterns on plant leaves and fruits. Due to minor variations in the symptoms of various guava illnesses, a professional opinion is required for disease diagnosis. Due to improper pesticide application by farmers, erroneous diagnoses may result in economic losses. This study proposes a method that uses artificial intelligence (AI) to detect and classify the most widespread guava plant by comparing images of its leaves and fruits to datasets. ESP32 CAM is responsible for data collection, which includes images of guava leaves and fruits. By comparing the datasets, these image formats are used as datasets to help in the diagnosis of plant diseases through the leaves and fruits, which is vital for the development of an effective automated agricultural system. The system test yielded the most accurate identification findings (99 percent accuracy in differentiating four guava fruit diseases (Canker, Mummification, Dot, and Rust) from healthy fruit). The proposed model has been interfaced with a mobile application to be used by smartphones to make a quick and responsible judgment, which can help the farmers instantly detect and prevent future production losses by enabling them to take precautions beforehand.Keywords: early identification, guava plants, fruit diseases, deep learning
Procedia PDF Downloads 74757 Memristor-A Promising Candidate for Neural Circuits in Neuromorphic Computing Systems
Authors: Juhi Faridi, Mohd. Ajmal Kafeel
Abstract:
The advancements in the field of Artificial Intelligence (AI) and technology has led to an evolution of an intelligent era. Neural networks, having the computational power and learning ability similar to the brain is one of the key AI technologies. Neuromorphic computing system (NCS) consists of the synaptic device, neuronal circuit, and neuromorphic architecture. Memristor are a promising candidate for neuromorphic computing systems, but when it comes to neuromorphic computing, the conductance behavior of the synaptic memristor or neuronal memristor needs to be studied thoroughly in order to fathom the neuroscience or computer science. Furthermore, there is a need of more simulation work for utilizing the existing device properties and providing guidance to the development of future devices for different performance requirements. Hence, development of NCS needs more simulation work to make use of existing device properties. This work aims to provide an insight to build neuronal circuits using memristors to achieve a Memristor based NCS. Here we throw a light on the research conducted in the field of memristors for building analog and digital circuits in order to motivate the research in the field of NCS by building memristor based neural circuits for advanced AI applications. This literature is a step in the direction where we describe the various Key findings about memristors and its analog and digital circuits implemented over the years which can be further utilized in implementing the neuronal circuits in the NCS. This work aims to help the electronic circuit designers to understand how the research progressed in memristors and how these findings can be used in implementing the neuronal circuits meant for the recent progress in the NCS.Keywords: analog circuits, digital circuits, memristors, neuromorphic computing systems
Procedia PDF Downloads 173756 Automated Weight Painting: Using Deep Neural Networks to Adjust 3D Mesh Skeletal Weights
Authors: John Gibbs, Benjamin Flanders, Dylan Pozorski, Weixuan Liu
Abstract:
Weight Painting–adjusting the influence a skeletal joint has on a given vertex in a character mesh–is an arduous and time con- suming part of the 3D animation pipeline. This process generally requires a trained technical animator and many hours of work to complete. Our skiNNer plug-in, which works within Autodesk’s Maya 3D animation software, uses Machine Learning and data pro- cessing techniques to create a deep neural network model that can accomplish the weight painting task in seconds rather than hours for bipedal quasi-humanoid character meshes. In order to create a properly trained network, a number of challenges were overcome, including curating an appropriately large data library, managing an arbitrary 3D mesh size, handling arbitrary skeletal architectures, accounting for extreme numeric values (most data points are near 0 or 1 for weight maps), and constructing an appropriate neural network model that can properly capture the high frequency alter- ation between high weight values (near 1.0) and low weight values (near 0.0). The arrived at neural network model is a cross between a traditional CNN, deep residual network, and fully dense network. The resultant network captures the unusually hard-edged features of a weight map matrix, and produces excellent results on many bipedal models.Keywords: 3d animation, animation, character, rigging, skinning, weight painting, machine learning, artificial intelligence, neural network, deep neural network
Procedia PDF Downloads 270755 Interpretation and Prediction of Geotechnical Soil Parameters Using Ensemble Machine Learning
Authors: Goudjil kamel, Boukhatem Ghania, Jlailia Djihene
Abstract:
This paper delves into the development of a sophisticated desktop application designed to calculate soil bearing capacity and predict limit pressure. Drawing from an extensive review of existing methodologies, the study meticulously examines various approaches employed in soil bearing capacity calculations, elucidating their theoretical foundations and practical applications. Furthermore, the study explores the burgeoning intersection of artificial intelligence (AI) and geotechnical engineering, underscoring the transformative potential of AI- driven solutions in enhancing predictive accuracy and efficiency.Central to the research is the utilization of cutting-edge machine learning techniques, including Artificial Neural Networks (ANN), XGBoost, and Random Forest, for predictive modeling. Through comprehensive experimentation and rigorous analysis, the efficacy and performance of each method are rigorously evaluated, with XGBoost emerging as the preeminent algorithm, showcasing superior predictive capabilities compared to its counterparts. The study culminates in a nuanced understanding of the intricate dynamics at play in geotechnical analysis, offering valuable insights into optimizing soil bearing capacity calculations and limit pressure predictions. By harnessing the power of advanced computational techniques and AI-driven algorithms, the paper presents a paradigm shift in the realm of geotechnical engineering, promising enhanced precision and reliability in civil engineering projects.Keywords: limit pressure of soil, xgboost, random forest, bearing capacity
Procedia PDF Downloads 19754 Experimental Pain Study Investigating the Distinction between Pain and Relief Reports
Authors: Abeer F. Almarzouki, Christopher A. Brown, Richard J. Brown, Anthony K. P. Jones
Abstract:
Although relief is commonly assumed to be a direct reflection of pain reduction, it seems to be driven by complex emotional interactions in which pain reduction is only one component. For example, termination of a painful/aversive event may be relieving and rewarding. Accordingly, in this study, whether terminating an aversive negative prediction of pain would be reflected in a greater relief experience was investigated, with a view to separating apart the effects of the manipulation on pain and relief. We use aversive conditioning paradigm to investigate the perception of relief in an aversive (threat) vs. positive context. Participants received positive predictors of a non-painful outcome which were presented within either a congruent positive (non-painful) context or an incongruent threat (painful) context that had been previously conditioned; trials followed by identical laser stimuli on both conditions. Participants were asked to rate the perceived intensity of pain as well as their perception of relief in response to the cue predicting the outcome. Results demonstrated that participants reported more pain in the aversive context compared to the positive context. Conversely, participants reported more relief in the aversive context compares to the neutral context. The rating of relief in the threat context was not correlated with pain reports. The results suggest that relief is not dependant on pain intensity. Consistent with this, relief in the threat context was greater than that in the positive expectancy condition, while the opposite pattern was obtained for the pain ratings. The value of relief in this study is better appreciated in the context of an impending negative threat, which is apparent in the higher pain ratings in the prior negative expectancy compared to the positive expectancy condition. Moreover, the more threatening the context (as manifested by higher unpleasantness/higher state anxiety scores), the more the relief is appreciated. The importance of the study highlights the importance of exploring relief and pain intensity in monitoring separately or evaluating pain-related suffering. The results also illustrate that the perception of painful input may largely be shaped by the context and not necessarily stimulus-related.Keywords: aversive context, pain, predictions, relief
Procedia PDF Downloads 138753 Korean Smart Cities: Strategic Foci, Characteristics and Effects
Authors: Sang Ho Lee, Yountaik Leem
Abstract:
This paper reviews Korean cases of smart cities through the analysis framework of strategic foci, characteristics and effects. Firstly, national strategies including c(cyber), e(electronic), u(ubiquitous) and s(smart) Korea strategies were considered from strategic angles. Secondly, the characteristics of smart cities in Korea were looked through the smart cities examples such as Seoul, Busan, Songdo and Sejong cities etc. from the views on the by STIM (Service, Technology, Infrastructure and Management) analysis. Finally, the effects of smart cities on socio-economies were investigated from industrial perspective using the input-output model and structural path analysis. Korean smart city strategies revealed that there were different kinds of strategic foci. c-Korea strategy focused on information and communications network building and user IT literacy. e-Korea strategy encouraged e-government and e-business through utilizing high-speed information and communications network. u-Korea strategy made ubiquitous service as well as integrated information and communication operations center. s-Korea strategy is propelling 4th industrial platform. Smart cities in Korea showed their own features and trends such as eco-intelligence, high efficiency and low cost oriented IoT, citizen sensored city, big data city. Smart city progress made new production chains fostering ICTs (Information Communication Technologies) and knowledge intermediate inputs to industries.Keywords: Korean smart cities, Korean smart city strategies, STIM, smart service, infrastructure, technologies, management, effect of smart city
Procedia PDF Downloads 365752 Defining Death and Dying in Relation to Information Technology and Advances in Biomedicine
Authors: Evangelos Koumparoudis
Abstract:
The definition of death is a deep philosophical question, and no single meaning can be ascribed to it. This essay focuses on the ontological, epistemological, and ethical aspects of death and dying in view of technological progress in information technology and biomedicine. It starts with the ad hoc 1968 Harvard committee that proposed that the criterion for the definition of death be irreversible coma and then refers to the debate over the whole brain death formula, emphasizing the integrated function of the organism and higher brain formula, taking consciousness and personality as essential human characteristics. It follows with the contribution of information technology in personalized and precision medicine and anti-aging measures aimed at life prolongation. It also touches on the possibility of the creation of human-machine hybrids and how this raises ontological and ethical issues that concern the “cyborgization” of human beings and the conception of the organism and personhood based on a post/transhumanist essence, and, furthermore, if sentient AI capable of autonomous decision-making that might even surpass human intelligence (singularity, superintelligence) deserves moral or legal personhood. Finally, there is the question as to whether death and dying should be redefined at a transcendent level, which is reinforced by already-existing technologies of “virtual after-” life and the possibility of uploading human minds. In the last section, I refer to the current (and future) applications of nanomedicine in diagnostics, therapeutics, implants, and tissue engineering as well as the aspiration to “immortality” by cryonics. The definition of death is reformulated since age and disease elimination may be realized, and the criterion of irreversibility may be challenged.Keywords: death, posthumanism, infomedicine, nanomedicine, cryonics
Procedia PDF Downloads 69751 Re-Conceptualizing the Indigenous Learning Space for Children in Bangladesh Placing Built Environment as Third Teacher
Authors: Md. Mahamud Hassan, Shantanu Biswas Linkon, Nur Mohammad Khan
Abstract:
Over the last three decades, the primary education system in Bangladesh has experienced significant improvement, but it has failed to cope with different social and cultural aspects, which present many challenges for children, families, and the public school system. Neglecting our own contextual learning environment, it is a matter of sorrow that much attention has been paid to the more physical outcome-focused model, which is nothing but mere infrastructural development, and less subtle to the environment that suits the child's psychology and improves their social, emotional, physical, and moral competency. In South Asia, the symbol of education was never the little red house of colonial architecture but “A Guru sitting under a tree", whereas a responsive and inclusive design approach could help to create more innovative learning environments. Such an approach incorporates how the built, natural, and cultural environment shapes the learner; in turn, learners shape the learning. This research will be conducted to, i) identify the major issues and drawbacks of government policy for primary education development programs; ii) explore and evaluate the morphology of the conventional model of school, and iii) propose an alternative model in a collaborative design process with the stakeholders for maximizing the relationship between the physical learning environments and learners by treating “the built environment” as “the third teacher.” Based on observation, this research will try to find out to what extent built, and natural environments can be utilized as a teaching tool for a more optimal learning environment. It should also be evident that there is a significant gap in the state policy, predetermined educational specifications, and implementation process in response to stakeholders’ involvement. The outcome of this research will contribute to a people-place sensitive design approach through a more thoughtful and responsive architectural process.Keywords: built environment, conventional planning, indigenous learning space, responsive design
Procedia PDF Downloads 106750 A Proposal to Tackle Security Challenges of Distributed Systems in the Healthcare Sector
Authors: Ang Chia Hong, Julian Khoo Xubin, Burra Venkata Durga Kumar
Abstract:
Distributed systems offer many benefits to the healthcare industry. From big data analysis to business intelligence, the increased computational power and efficiency from distributed systems serve as an invaluable resource in the healthcare sector to utilize. However, as the usage of these distributed systems increases, many issues arise. The main focus of this paper will be on security issues. Many security issues stem from distributed systems in the healthcare industry, particularly information security. The data of people is especially sensitive in the healthcare industry. If important information gets leaked (Eg. IC, credit card number, address, etc.), a person’s identity, financial status, and safety might get compromised. This results in the responsible organization losing a lot of money in compensating these people and even more resources expended trying to fix the fault. Therefore, a framework for a blockchain-based healthcare data management system for healthcare was proposed. In this framework, the usage of a blockchain network is explored to store the encryption key of the patient’s data. As for the actual data, it is encrypted and its encrypted data, called ciphertext, is stored in a cloud storage platform. Furthermore, there are some issues that have to be emphasized and tackled for future improvements, such as a multi-user scheme that could be proposed, authentication issues that have to be tackled or migrating the backend processes into the blockchain network. Due to the nature of blockchain technology, the data will be tamper-proof, and its read-only function can only be accessed by authorized users such as doctors and nurses. This guarantees the confidentiality and immutability of the patient’s data.Keywords: distributed, healthcare, efficiency, security, blockchain, confidentiality and immutability
Procedia PDF Downloads 183749 Otherness of Roma in Inclusive Education of Roma Pupils in Slovakia
Authors: Bibiana Hlebova
Abstract:
The Slovak Republic is a democratic and plural society consisting of people differing in language and culture, and its citizens should already be well prepared for the coexistence of multiple nations, nationalities or ethnic groups. Reflection on culture, art and literature of the Roma minority has taken on a new dimension in Slovakia in the past two decades when it comes to social, cultural and arts integration of this ethnic group with the plural society. Non-Roma view Roma as a specific ethnic group with their own culture, language, customs and traditions, social norms and coexistence that has retained archetypal qualities of Roma identity (romipen) in their real lives as well as in the literary world. Roma characters in works of art are specific and distinguishable from other literary characters simply by being Roma, that is, of a different origin and social status, they represent a different way of life, a distinctive hierarchy of values. The portrayal of Roma and the life of Roma ethnic group in the most dominant genre of Roma literature for children and youth, a Roma fairy tale (paramisi), can work as a suitable means to learn about, accept and tolerate the otherness of Roma in the conditions of school inclusion of students coming from the Roma ethnic group, and to support their identification with their own ethnic group and its cultural traditions. The paper aims to point out not only the specific nature of Roma identity (romipen) through the selected Roma fairy tale (paramisa) – Children of the Sun, but also the diversity of its uses in the educational process within primary education of pupils at elementary schools, advocating the philosophy of inclusive education. Through the suggestions of multi-cultural, emotional, and language and communication education of pupils through the work with the selected Roma fairy tale (paramisa), the author is exploring ways to overcome the issues stemming from the coexistence of Roma and Non-Roma pupils, which are burdened with prejudice, intolerance, aggression and racism on both sides, in the education process.Keywords: inclusive education, otherness, Roma, Roma fairy tale, Roma identity
Procedia PDF Downloads 300748 Autistic Traits and Multisensory Integration–Using a Size-Weight Illusion Paradigm
Authors: Man Wai Lei, Charles Mark Zaroff
Abstract:
Objective: A majority of studies suggest that people with Autism Spectrum Disorder (ASD) have multisensory integration deficits. However, normal and even supranormal multisensory integration abilities have also been reported. Additionally, little of this work has been undertaken utilizing a dimensional conceptualization of ASD; i.e., a broader autism phenotype. Utilizing methodology that controls for common potential confounds, the current study aimed to examine if deficits in multisensory integration are associated with ASD traits in a non-clinical population. The contribution of affective versus non-affective components of sensory hypersensitivity to multisensory integration was also examined. Methods: Participants were 147 undergraduate university students in Macau, a Special Administrative Region of China, of Chinese ethnicity, aged 16 to 21 (Mean age = 19.13; SD = 1.07). Participants completed the Autism-Spectrum Quotient, the Sensory Perception Quotient, and the Adolescent/Adult Sensory Profile, in order to measure ASD traits, non-affective, and affective aspects of sensory/perceptual hypersensitivity, respectively. In order to explore multisensory integration across visual and haptic domains, participants were asked to judge which one of two equally weighted, but different sized cylinders was heavier, as a means of detecting the presence of the size-weight illusion (SWI). Results: ASD trait level was significantly and negatively correlated with susceptibility to the SWI (p < 0.05); this correlation was not associated with either accuracy in weight discrimination or gender. Examining the top decile of the non-normally distributed SWI scores revealed a significant negative association with sensation avoiding, but not other aspects of effective or non-effective sensory hypersensitivity. Conclusion and Implications: Within the normal population, a greater degree of ASD traits is associated with a lower likelihood of multisensory integration; echoing was often found in individuals with a clinical diagnosis of ASD, and providing further evidence for the dimensional nature of this disorder. This tendency appears to be associated with dysphoric emotional reactions to sensory input.Keywords: Autism Spectrum Disorder, dimensional, multisensory integration, size-weight illusion
Procedia PDF Downloads 482747 Thailand and Sino-Japanese Relations in the Early Twentieth Century
Authors: Mizuno Norihito
Abstract:
This study attempts to examine Japanese views of Thailand primarily in the 1920s and 1930s through the analysis of documents published by the Office of Governor-General of Taiwan (Taiwan Sotokufu) and its affiliated organizations. Japan regarded Taiwan, under its control since 1895, as a foothold to making inroads into the South, and The governor-general office was active in investigations and intelligence gathering in Southeast Asia, as well as the southern part of the Chinese continent. Documents published by the governor-general office and its related organizations, especially those in a couple of decades following the First World War, reveal that the Japanese paid attention to the presence of the-Thai-Chinese during the time period. It would not be surprising that the desiring to penetrating into the Thai market, as well as the markets of the rest of Southeast Asia, the Japanese could not ignore the presence of the Thai-Chinese because of their local economic influences. The increased Japanese concern about the Thai-Chinese toward the end of the 1920s and throughout the 1930s was, moreover, intertwined with the increased tension between China and Japan. In other words, Thailand, as well as the rest of Southeast Asia, became another arena of Sino-Japanese confrontation. The rise of nationalism against Japan in China infected the Thai-Chinese communities and threatened Japanese economic activities in the country. However, the Japanese simultaneously found out that Thai-Chinese concert with anti-Japanese in China did not necessarily match their business interests and that the Thai government’s efforts to assimilate the Thai-Chinese into the Thais society and strategic approach to Japan in the late 1930s hampered their anti-Japanese actions.Keywords: Japanese-Thai Relations, Sino-Japanese relations, Thai Chinese, Overseas Japanese
Procedia PDF Downloads 333746 Transformer Fault Diagnostic Predicting Model Using Support Vector Machine with Gradient Decent Optimization
Authors: R. O. Osaseri, A. R. Usiobaifo
Abstract:
The power transformer which is responsible for the voltage transformation is of great relevance in the power system and oil-immerse transformer is widely used all over the world. A prompt and proper maintenance of the transformer is of utmost importance. The dissolved gasses content in power transformer, oil is of enormous importance in detecting incipient fault of the transformer. There is a need for accurate prediction of the incipient fault in transformer oil in order to facilitate the prompt maintenance and reducing the cost and error minimization. Study on fault prediction and diagnostic has been the center of many researchers and many previous works have been reported on the use of artificial intelligence to predict incipient failure of transformer faults. In this study machine learning technique was employed by using gradient decent algorithms and Support Vector Machine (SVM) in predicting incipient fault diagnosis of transformer. The method focuses on creating a system that improves its performance on previous result and historical data. The system design approach is basically in two phases; training and testing phase. The gradient decent algorithm is trained with a training dataset while the learned algorithm is applied to a set of new data. This two dataset is used to prove the accuracy of the proposed model. In this study a transformer fault diagnostic model based on Support Vector Machine (SVM) and gradient decent algorithms has been presented with a satisfactory diagnostic capability with high percentage in predicting incipient failure of transformer faults than existing diagnostic methods.Keywords: diagnostic model, gradient decent, machine learning, support vector machine (SVM), transformer fault
Procedia PDF Downloads 320745 Methods and Algorithms of Ensuring Data Privacy in AI-Based Healthcare Systems and Technologies
Authors: Omar Farshad Jeelani, Makaire Njie, Viktoriia M. Korzhuk
Abstract:
Recently, the application of AI-powered algorithms in healthcare continues to flourish. Particularly, access to healthcare information, including patient health history, diagnostic data, and PII (Personally Identifiable Information) is paramount in the delivery of efficient patient outcomes. However, as the exchange of healthcare information between patients and healthcare providers through AI-powered solutions increases, protecting a person’s information and their privacy has become even more important. Arguably, the increased adoption of healthcare AI has resulted in a significant concentration on the security risks and protection measures to the security and privacy of healthcare data, leading to escalated analyses and enforcement. Since these challenges are brought by the use of AI-based healthcare solutions to manage healthcare data, AI-based data protection measures are used to resolve the underlying problems. Consequently, this project proposes AI-powered safeguards and policies/laws to protect the privacy of healthcare data. The project presents the best-in-school techniques used to preserve the data privacy of AI-powered healthcare applications. Popular privacy-protecting methods like Federated learning, cryptographic techniques, differential privacy methods, and hybrid methods are discussed together with potential cyber threats, data security concerns, and prospects. Also, the project discusses some of the relevant data security acts/laws that govern the collection, storage, and processing of healthcare data to guarantee owners’ privacy is preserved. This inquiry discusses various gaps and uncertainties associated with healthcare AI data collection procedures and identifies potential correction/mitigation measures.Keywords: data privacy, artificial intelligence (AI), healthcare AI, data sharing, healthcare organizations (HCOs)
Procedia PDF Downloads 92744 Data Augmentation for Early-Stage Lung Nodules Using Deep Image Prior and Pix2pix
Authors: Qasim Munye, Juned Islam, Haseeb Qureshi, Syed Jung
Abstract:
Lung nodules are commonly identified in computed tomography (CT) scans by experienced radiologists at a relatively late stage. Early diagnosis can greatly increase survival. We propose using a pix2pix conditional generative adversarial network to generate realistic images simulating early-stage lung nodule growth. We have applied deep images prior to 2341 slices from 895 computed tomography (CT) scans from the Lung Image Database Consortium (LIDC) dataset to generate pseudo-healthy medical images. From these images, 819 were chosen to train a pix2pix network. We observed that for most of the images, the pix2pix network was able to generate images where the nodule increased in size and intensity across epochs. To evaluate the images, 400 generated images were chosen at random and shown to a medical student beside their corresponding original image. Of these 400 generated images, 384 were defined as satisfactory - meaning they resembled a nodule and were visually similar to the corresponding image. We believe that this generated dataset could be used as training data for neural networks to detect lung nodules at an early stage or to improve the accuracy of such networks. This is particularly significant as datasets containing the growth of early-stage nodules are scarce. This project shows that the combination of deep image prior and generative models could potentially open the door to creating larger datasets than currently possible and has the potential to increase the accuracy of medical classification tasks.Keywords: medical technology, artificial intelligence, radiology, lung cancer
Procedia PDF Downloads 66743 Correlates of Work-Family Role Conflict and Well-Being: A Comparative Analysis by Gender
Authors: Liat Kulik
Abstract:
The main goal of the present study was to examine gender differences in the variables that explain the experience of role conflict and well-being among Jewish working fathers and mothers in the Israel. The experience of work-family conflict arises from simultaneous pressures from the work and family domains that are mutually incompatible. In light of the expansion of women's role set following the addition of paid employment outside of the home, most of the studies dealing with the impact of multiple roles on well-being have been conducted among women. However, changes in gender roles in recent years have also affected men's role set, as reflected in the terms ‘new men’ and ‘new fathers’. Based on structural equation modeling, the study examined gender differences in variables that explain the experience of two types of role conflict – family interferes with work (FIW) and work interferes with family (WIF), as well as with the sense of well-being (positive and negative affect) among 611 employed Jewish mothers and fathers in Israel. The findings revealed that for women, both FIW and WIF conflict correlated negatively with well-being, whereas for men, a negative correlation with well-being was found only in the case of FIW conflict. For both men and women, egalitarian gender role ideology correlated with the dimension of positive effect, but the correlation was stronger for men. The findings highlight the contribution of egalitarian gender role ideology to alleviating the experience of role conflict and improving the emotional well-being of both men and women. Contrary to expectations, social support contributed more to mitigating negative effect among men than women. On the whole, the findings highlight the changes that men have experienced in the work-family system. In sum, the research findings shed new light on the masculine image in terms of the experience of FIW conflict. In contrast to the prevailing assumption that FIW role conflict is predominant among women, the findings of this study indicate that today, this type of role conflict is experienced equally by men and women whereas WIF conflict is predominant among men. Furthermore, contrary to expectations, levels of perceived social support were found to be similar for men and women, and men benefited from it even more than women did.Keywords: FIW conflict, WIF conflict, social support, egalitarian gender role ideology, overload
Procedia PDF Downloads 288742 DLtrace: Toward Understanding and Testing Deep Learning Information Flow in Deep Learning-Based Android Apps
Authors: Jie Zhang, Qianyu Guo, Tieyi Zhang, Zhiyong Feng, Xiaohong Li
Abstract:
With the widespread popularity of mobile devices and the development of artificial intelligence (AI), deep learning (DL) has been extensively applied in Android apps. Compared with traditional Android apps (traditional apps), deep learning based Android apps (DL-based apps) need to use more third-party application programming interfaces (APIs) to complete complex DL inference tasks. However, existing methods (e.g., FlowDroid) for detecting sensitive information leakage in Android apps cannot be directly used to detect DL-based apps as they are difficult to detect third-party APIs. To solve this problem, we design DLtrace; a new static information flow analysis tool that can effectively recognize third-party APIs. With our proposed trace and detection algorithms, DLtrace can also efficiently detect privacy leaks caused by sensitive APIs in DL-based apps. Moreover, using DLtrace, we summarize the non-sequential characteristics of DL inference tasks in DL-based apps and the specific functionalities provided by DL models for such apps. We propose two formal definitions to deal with the common polymorphism and anonymous inner-class problems in the Android static analyzer. We conducted an empirical assessment with DLtrace on 208 popular DL-based apps in the wild and found that 26.0% of the apps suffered from sensitive information leakage. Furthermore, DLtrace has a more robust performance than FlowDroid in detecting and identifying third-party APIs. The experimental results demonstrate that DLtrace expands FlowDroid in understanding DL-based apps and detecting security issues therein.Keywords: mobile computing, deep learning apps, sensitive information, static analysis
Procedia PDF Downloads 175741 Arabic Lexicon Learning to Analyze Sentiment in Microblogs
Authors: Mahmoud B. Rokaya
Abstract:
The study of opinion mining and sentiment analysis includes analysis of opinions, sentiments, evaluations, attitudes, and emotions. The rapid growth of social media, social networks, reviews, forum discussions, microblogs, and Twitter, leads to a parallel growth in the field of sentiment analysis. The field of sentiment analysis tries to develop effective tools to make it possible to capture the trends of people. There are two approaches in the field, lexicon-based and corpus-based methods. A lexicon-based method uses a sentiment lexicon which includes sentiment words and phrases with assigned numeric scores. These scores reveal if sentiment phrases are positive or negative, their intensity, and/or their emotional orientations. Creation of manual lexicons is hard. This brings the need for adaptive automated methods for generating a lexicon. The proposed method generates dynamic lexicons based on the corpus and then classifies text using these lexicons. In the proposed method, different approaches are combined to generate lexicons from text. The proposed method classifies the tweets into 5 classes instead of +ve or –ve classes. The sentiment classification problem is written as an optimization problem, finding optimum sentiment lexicons are the goal of the optimization process. The solution was produced based on mathematical programming approaches to find the best lexicon to classify texts. A genetic algorithm was written to find the optimal lexicon. Then, extraction of a meta-level feature was done based on the optimal lexicon. The experiments were conducted on several datasets. Results, in terms of accuracy, recall and F measure, outperformed the state-of-the-art methods proposed in the literature in some of the datasets. A better understanding of the Arabic language and culture of Arab Twitter users and sentiment orientation of words in different contexts can be achieved based on the sentiment lexicons proposed by the algorithm.Keywords: social media, Twitter sentiment, sentiment analysis, lexicon, genetic algorithm, evolutionary computation
Procedia PDF Downloads 188740 A Theoretical Study on Pain Assessment through Human Facial Expresion
Authors: Mrinal Kanti Bhowmik, Debanjana Debnath Jr., Debotosh Bhattacharjee
Abstract:
A facial expression is undeniably the human manners. It is a significant channel for human communication and can be applied to extract emotional features accurately. People in pain often show variations in facial expressions that are readily observable to others. A core of actions is likely to occur or to increase in intensity when people are in pain. To illustrate the changes in the facial appearance, a system known as Facial Action Coding System (FACS) is pioneered by Ekman and Friesen for human observers. According to Prkachin and Solomon, a set of such actions carries the bulk of information about pain. Thus, the Prkachin and Solomon pain intensity (PSPI) metric is defined. So, it is very important to notice that facial expressions, being a behavioral source in communication media, provide an important opening into the issues of non-verbal communication in pain. People express their pain in many ways, and this pain behavior is the basis on which most inferences about pain are drawn in clinical and research settings. Hence, to understand the roles of different pain behaviors, it is essential to study the properties. For the past several years, the studies are concentrated on the properties of one specific form of pain behavior i.e. facial expression. This paper represents a comprehensive study on pain assessment that can model and estimate the intensity of pain that the patient is suffering. It also reviews the historical background of different pain assessment techniques in the context of painful expressions. Different approaches incorporate FACS from psychological views and a pain intensity score using the PSPI metric in pain estimation. This paper investigates in depth analysis of different approaches used in pain estimation and presents different observations found from each technique. It also offers a brief study on different distinguishing features of real and fake pain. Therefore, the necessity of the study lies in the emerging fields of painful face assessment in clinical settings.Keywords: facial action coding system (FACS), pain, pain behavior, Prkachin and Solomon pain intensity (PSPI)
Procedia PDF Downloads 345