Search results for: sampling algorithms
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4991

Search results for: sampling algorithms

2741 Design of a Low Cost Programmable LED Lighting System

Authors: S. Abeysekera, M. Bazghaleh, M. P. L. Ooi, Y. C. Kuang, V. Kalavally

Abstract:

Smart LED-based lighting systems have significant advantages over traditional lighting systems due to their capability of producing tunable light spectrums on demand. The main challenge in the design of smart lighting systems is to produce sufficient luminous flux and uniformly accurate output spectrum for sufficiently broad area. This paper outlines the programmable LED lighting system design principles of design to achieve the two aims. In this paper, a seven-channel design using low-cost discrete LEDs is presented. Optimization algorithms are used to calculate the number of required LEDs, LEDs arrangements and optimum LED separation distance. The results show the illumination uniformity for each channel. The results also show that the maximum color error is below 0.0808 on the CIE1976 chromaticity scale. In conclusion, this paper considered the simulation and design of a seven-channel programmable lighting system using low-cost discrete LEDs to produce sufficient luminous flux and uniformly accurate output spectrum for sufficiently broad area.

Keywords: light spectrum control, LEDs, smart lighting, programmable LED lighting system

Procedia PDF Downloads 188
2740 African Horse Sickness a Possible Threat to Horses in Al-Baha

Authors: Ghanem Al-Ghamdi

Abstract:

African Horse Sickness causes significant challenges to horse practitioners and owners in Africa and possibly in certain locations in the Arab Pensila. The aim of this work was to observe a hot spot of epidemic in Al-Baha, Southwestern of Saudi Arabia that could be AHS. A five year-old horse farm that had eight horses with no history of clinical problems was visited in late October 2014. In August 2014, horses showed clinical signs of severe pain, congestion of mucus membranes, foam oozing of the nose, recumbency, difficult breath and ultimately death. The course of the disease averaged 2 days. The farm had no previous history of this episode. Other animals including camel, sheep reside the same farm sharing feeding and water sources however no obvious similar clinical problems were noticed among the two species. Five horses showed the clinical disease and all horses were lost. Veterinary help was not available for diagnosis or treatment. A follow up visit to the farm after one year indicated that the three remaining horses were healthy but were relocated to a different facility out the Al-Baha Region. The most likely cause of such clinical problem is African Horse Sickness, however clinical exam and sampling of other horses in the region is absolute must as well as examining arthropods.

Keywords: African horse sickness, horses, Al-Baha, Saudi Arabia

Procedia PDF Downloads 352
2739 Teachers' Gender-Counts a Lot: Impact of Teachers’ Gender on Students’ Score Achievement at Primary Level

Authors: Aqleem Fatimah

Abstract:

The purpose of study was to find out the impact of teachers’ gender on students’ score achievement. Focusing on primary level’s teachers & students, a survey research was conducted by using convenient sampling technique. All the students of grade four (1500) and fifty-six teachers (equally divided by gender) from the 50 randomly selected coeducational schools from Lahore were taken as sample. The academic performance was operationalized using a t-test on standardized achievement tests of the students in language, science mathematics and social studies. In addition, all those gender based characteristics of teachers that count a lot in classroom interactions (taking Multi-grade classes, classroom strategies, feedback strategies and evaluation method) that influence students’ achievement were also analyzed by using a questionnaire and an observation schedule. The results of the study showed better academic achievement of students (girl &boy) of female teachers comparatively to the students of male teachers. Therefore, as the female teachers’ number lacks in Pakistan, the study suggests policy makers to seek guidelines to induct more specialized and professionally competent female teachers because their induction will prove highly beneficial for the betterment of students’ score achievement.

Keywords: gender, teacher, competency, score achievement

Procedia PDF Downloads 320
2738 Porul: Option Generation and Selection and Scoring Algorithms for a Tamil Flash Card Game

Authors: Anitha Narasimhan, Aarthy Anandan, Madhan Karky, C. N. Subalalitha

Abstract:

Games can be the excellent tools for teaching a language. There are few e-learning games in Indian languages like word scrabble, cross word, quiz games etc., which were developed mainly for educational purposes. This paper proposes a Tamil word game called, “Porul”, which focuses on education as well as on players’ thinking and decision-making skills. Porul is a multiple choice based quiz game, in which the players attempt to answer questions correctly from the given multiple options that are generated using a unique algorithm called the Option Selection algorithm which explores the semantics of the question in various dimensions namely, synonym, rhyme and Universal Networking Language semantic category. This kind of semantic exploration of the question not only increases the complexity of the game but also makes it more interesting. The paper also proposes a Scoring Algorithm which allots a score based on the popularity score of the question word. The proposed game has been tested using 20,000 Tamil words.

Keywords: Porul game, Tamil word game, option selection, flash card, scoring, algorithm

Procedia PDF Downloads 407
2737 Development of Distance Training Packages on the Teaching Principles of Foundation English for Secondary School English Teachers in Bangkok and Its Vicinity

Authors: Sita Yiemkuntitavorn

Abstract:

The purposes of this research were to: (1) Develop a distance training package on the teaching principles foundation english language in order to gain the teaching ability for secondary school english teachers in Bangkok and its vicinity (2) study the satisfaction of English teachers towards the quality of a distance training package. The samples for the efficiency testing consisted of 30 english teachers in Bangkok and its vicinity, obtained by purposive sampling. Research tools comprised (1) a distance learning package on the foundation of English writing for teachers. (2) The questionnaires asking the teachers on the quality of the distance training package, and (3) two parallel forms of an achievement test for pre-testing and post-testing. Statistics used were the E1/E2 index, mean and standard deviation. Research findings showed that, (1) the distance training package were efficient at 80.2/80.6 according to the set efficiency criterion of 80/80; (2) and the satisfaction of the teachers on the distance training package of the teaching principles of foundation english for secondary school english teachers in Bangkok and its vicinity was at “Satisfied” level.

Keywords: a distance training package, teaching principles of foundation english, secondary school, Bangkok and its vicinity

Procedia PDF Downloads 447
2736 The Results of Research Based-Learning for Developing the Learning and Innovation Skills of Undergraduate Students

Authors: Jatuphum Ketchatturat

Abstract:

The objective of this research was to study the learning and innovation skills of undergraduate students after Research-Based Learning had been applied. Eighty research participants were selected from undergraduate students enrolled in Educational Research Program using the Purposive Sampling Method. Research Methodology was Descriptive Research, the research took one semester to complete. The research instruments consisted of (1) Research Skill Assessment Form, (2) Research Quality Assessment Form, (3) Scale of learning and innovation skills 25 items. The quantitative data were analysed using descriptive statistics including, frequency, percentage, average and standard deviation. The qualitative data were analyzed using content analysis. The research results were (1) The students were able to conduct research that focused on educational research, which has a fair to the excellent level of standards of a research learning outcome, research skills, and research quality. The student’s learning and innovation skills have relating to research skills and research quality. (2) The findings found that the students have been developed to be learning and innovation skills such as systematic thinking, analytical thinking, critical thinking, creative problem solving, collaborative, research-creation, communication, and knowledge and experience sharing to friends, community and society.

Keywords: learning and innovation skills, research based learning, research skills, undergraduate students

Procedia PDF Downloads 180
2735 Optimizing Water Consumption of a Washer-Dryer Which Contains Water Condensation Technology under a Constraint of Energy Consumption and Drying Performance

Authors: Aysegul Sarac

Abstract:

Washer-dryers are the machines which can either wash the laundries or can dry them. In other words, we can define a washer-dryer as a washing machine and a dryer in one machine. Washing machines are characterized by the loading capacity, cabinet depth and spin speed. Dryers are characterized by the drying technology. On the other hand, energy efficiency, water consumption, and noise levels are main characteristics that influence customer decisions to buy washers. Water condensation technology is the most common drying technology existing in the washer-dryer market. Water condensation technology uses water to dry the laundry inside the machine. Thus, in this type of the drying technology water consumption is at high levels comparing other technologies. Water condensation technology sprays cold water in the drum to condense the humidity of hot weather in order to dry the laundry inside. Thus, water consumption influences the drying performance. The scope of this study is to optimize water consumption during drying process under a constraint of energy consumption and drying performance. We are using 6-Sigma methodology to find the optimum water consumption by comparing drying performances of different drying algorithms.

Keywords: optimization, 6-Sigma methodology, washer-dryers, water condensation technology

Procedia PDF Downloads 363
2734 Tracking Filtering Algorithm Based on ConvLSTM

Authors: Ailing Yang, Penghan Song, Aihua Cai

Abstract:

The nonlinear maneuvering target tracking problem is mainly a state estimation problem when the target motion model is uncertain. Traditional solutions include Kalman filtering based on Bayesian filtering framework and extended Kalman filtering. However, these methods need prior knowledge such as kinematics model and state system distribution, and their performance is poor in state estimation of nonprior complex dynamic systems. Therefore, in view of the problems existing in traditional algorithms, a convolution LSTM target state estimation (SAConvLSTM-SE) algorithm based on Self-Attention memory (SAM) is proposed to learn the historical motion state of the target and the error distribution information measured at the current time. The measured track point data of airborne radar are processed into data sets. After supervised training, the data-driven deep neural network based on SAConvLSTM can directly obtain the target state at the next moment. Through experiments on two different maneuvering targets, we find that the network has stronger robustness and better tracking accuracy than the existing tracking methods.

Keywords: maneuvering target, state estimation, Kalman filter, LSTM, self-attention

Procedia PDF Downloads 181
2733 Channel Estimation for Orthogonal Frequency Division Multiplexing Systems over Doubly Selective Channels Base on DCS-DCSOMP Algorithm

Authors: Linyu Wang, Furui Huo, Jianhong Xiang

Abstract:

The Doppler shift generated by high-speed movement and multipath effects in the channel are the main reasons for the generation of a time-frequency doubly-selective (DS) channel. There is severe inter-carrier interference (ICI) in the DS channel. Channel estimation for an orthogonal frequency division multiplexing (OFDM) system over a DS channel is very difficult. The simultaneous orthogonal matching pursuit algorithm under distributed compressive sensing theory (DCS-SOMP) has been used in channel estimation for OFDM systems over DS channels. However, the reconstruction accuracy of the DCS-SOMP algorithm is not high enough in the low SNR stage. To solve this problem, in this paper, we propose an improved DCS-SOMP algorithm based on the inner product difference comparison operation (DCS-DCSOMP). The reconstruction accuracy is improved by increasing the number of candidate indexes and designing the comparison conditions of inner product difference. We combine the DCS-DCSOMP algorithm with the basis expansion model (BEM) to reduce the complexity of channel estimation. Simulation results show the effectiveness of the proposed algorithm and its advantages over other algorithms.

Keywords: OFDM, doubly selective, channel estimation, compressed sensing

Procedia PDF Downloads 98
2732 Factors Affecting Students' Performance in the Examination

Authors: Amylyn F. Labasano

Abstract:

A significant number of empirical studies are carried out to investigate factors affecting college students’ performance in the academic examination. With a wide-array of literature-and studies-supported findings, this study is limited only on the students’ probability of passing periodical exams which is associated with students’ gender, absences in the class, use of reference book, and hours of study. Binary logistic regression was the technique used in the analysis. The research is based on the students’ record and data collected through survey. The result reveals that gender, use of reference book and hours of study are significant predictors of passing an examination while students’ absenteeism is an insignificant predictor. Females have 45% likelihood of passing the exam than their male classmates. Students who use and read their reference book are 38 times more likely pass the exam than those who do not use and read their reference book. Those who spent more than 3 hours in studying are four (4) times more likely pass the exam than those who spent only 3 hours or less in studying.

Keywords: absences, binary logistic regression, gender, hours of study prediction-causation method, periodical exams, random sampling, reference book

Procedia PDF Downloads 315
2731 Constructing a Bayesian Network for Solar Energy in Egypt Using Life Cycle Analysis and Machine Learning Algorithms

Authors: Rawaa H. El-Bidweihy, Hisham M. Abdelsalam, Ihab A. El-Khodary

Abstract:

In an era where machines run and shape our world, the need for a stable, non-ending source of energy emerges. In this study, the focus was on the solar energy in Egypt as a renewable source, the most important factors that could affect the solar energy’s market share throughout its life cycle production were analyzed and filtered, the relationships between them were derived before structuring a Bayesian network. Also, forecasted models were built for multiple factors to predict the states in Egypt by 2035, based on historical data and patterns, to be used as the nodes’ states in the network. 37 factors were found to might have an impact on the use of solar energy and then were deducted to 12 factors that were chosen to be the most effective to the solar energy’s life cycle in Egypt, based on surveying experts and data analysis, some of the factors were found to be recurring in multiple stages. The presented Bayesian network could be used later for scenario and decision analysis of using solar energy in Egypt, as a stable renewable source for generating any type of energy needed.

Keywords: ARIMA, auto correlation, Bayesian network, forecasting models, life cycle, partial correlation, renewable energy, SARIMA, solar energy

Procedia PDF Downloads 158
2730 A Case Study of Deep Learning for Disease Detection in Crops

Authors: Felipe A. Guth, Shane Ward, Kevin McDonnell

Abstract:

In the precision agriculture area, one of the main tasks is the automated detection of diseases in crops. Machine Learning algorithms have been studied in recent decades for such tasks in view of their potential for improving economic outcomes that automated disease detection may attain over crop fields. The latest generation of deep learning convolution neural networks has presented significant results in the area of image classification. In this way, this work has tested the implementation of an architecture of deep learning convolution neural network for the detection of diseases in different types of crops. A data augmentation strategy was used to meet the requirements of the algorithm implemented with a deep learning framework. Two test scenarios were deployed. The first scenario implemented a neural network under images extracted from a controlled environment while the second one took images both from the field and the controlled environment. The results evaluated the generalisation capacity of the neural networks in relation to the two types of images presented. Results yielded a general classification accuracy of 59% in scenario 1 and 96% in scenario 2.

Keywords: convolutional neural networks, deep learning, disease detection, precision agriculture

Procedia PDF Downloads 260
2729 The Influence of Design Complexity of a Building Structure on the Expected Performance

Authors: Ormal Lishi

Abstract:

This research presents a computationally efficient probabilistic method to assess the performance of compartmentation walls with similar Fire Resistance Levels (FRL) but varying complexity. Specifically, a masonry brick wall and a light-steel framed (LSF) wall with comparable insulation performance are analyzed. A Monte Carlo technique, employing Latin Hypercube Sampling (LHS), is utilized to quantify uncertainties and determine the probability of failure for both walls exposed to standard and parametric fires, following ISO 834 and Eurocodes guidelines. Results show that the probability of failure for the brick masonry wall under standard fire exposure is estimated at 4.8%, while the LSF wall is 7.6%. These probabilities decrease to 0.4% and 4.8%, respectively, when subjected to parametric fires. Notably, the complex LSF wall exhibits higher variability in predicting time to failure for specific criteria compared to the less complex brick wall, especially at higher temperatures. The proposed approach highlights the need for Probabilistic Risk Assessment (PRA) to accurately evaluate the reliability and safety levels of complex designs.

Keywords: design complexity, probability of failure, monte carlo analysis, compartmentation walls, insulation

Procedia PDF Downloads 66
2728 Truck Scheduling Problem in a Cross-Dock Centre with Fixed Due Dates

Authors: Mohsen S. Sajadieha, Danyar Molavia

Abstract:

In this paper, a truck scheduling problem is investigated at a two-touch cross-docking center with due dates for outbound trucks as a hard constraint. The objective is to minimize the total cost comprising penalty and delivery cost of delayed shipments. The sequence of unloading shipments is considered and is assumed that shipments are sent to shipping dock doors immediately after unloading and a First-In-First-Out (FIFO) policy is considered for loading the shipments. A mixed integer programming model is developed for the proposed model. Two meta-heuristic algorithms including genetic algorithm (GA) and variable neighborhood search (VNS) are developed to solve the problem in medium and large sized scales. The numerical results show that increase in due dates for outbound trucks has a crucial impact on the reduction of penalty costs of delayed shipments. In addition, by increase the due dates, the improvement in the objective function arises on average in comparison with the situation that the cross-dock is multi-touch and shipments are sent to shipping dock doors only after unloading the whole inbound truck.

Keywords: cross-docking, truck scheduling, fixed due date, door assignment

Procedia PDF Downloads 406
2727 System Identification in Presence of Outliers

Authors: Chao Yu, Qing-Guo Wang, Dan Zhang

Abstract:

The outlier detection problem for dynamic systems is formulated as a matrix decomposition problem with low-rank, sparse matrices and further recast as a semidefinite programming (SDP) problem. A fast algorithm is presented to solve the resulting problem while keeping the solution matrix structure and it can greatly reduce the computational cost over the standard interior-point method. The computational burden is further reduced by proper construction of subsets of the raw data without violating low rank property of the involved matrix. The proposed method can make exact detection of outliers in case of no or little noise in output observations. In case of significant noise, a novel approach based on under-sampling with averaging is developed to denoise while retaining the saliency of outliers and so-filtered data enables successful outlier detection with the proposed method while the existing filtering methods fail. Use of recovered “clean” data from the proposed method can give much better parameter estimation compared with that based on the raw data.

Keywords: outlier detection, system identification, matrix decomposition, low-rank matrix, sparsity, semidefinite programming, interior-point methods, denoising

Procedia PDF Downloads 308
2726 Model Development of Health Tourism at Ban Nam Chieo Community, Laem Ngop, Trat Province

Authors: Pradapet Krutchangthong, Jirawat Sudsawart

Abstract:

This research aims to study the health tourism administration and factors related to health tourism promotion at Ban Nam Chieo Community, Laem Ngop, Trat Province. The sample in this research is 361 tourists who use the service and Ban Nam Chieo Community residents who provide the service. Sampling was done from a population size of 3,780 using Taro Yamane’s formula. The tools used in the study were questionnaires and interviews. The statistics used in this research are percentage, mean and standard deviation. The result of Model Development of Health Tourism at Ban Nam Chieo Community, Laem Ngop , Trat Province shows that most of them are female with bachelor degree. They are government officers with an average income between 16,001-20,000 Baht. Suggested health system activities for health tourism development are: 1) health massage, 2) herbal compress, 3) exercise in the water by walking on shell. Meanwhile, factors related to health tourism promotion at Ban Nam Chieo Community, Laem Ngop, Trat Province are: 1) understanding the context of the community and service providers, 2) cooperation from related government and private sectors.

Keywords: health tourism, health system activities, promotion, administration

Procedia PDF Downloads 391
2725 Behavioural Intention to Use Learning Management System (LMS) among Postgraduate Students: An Application of Utaut Model

Authors: Kamaludeen Samaila, Khashyaullah Abdulfattah, Fahimi Ahmad Bin Amir

Abstract:

The study was conducted to examine the relationship between selected factors (performance expectancy, effort expectancy, social influence and facilitating condition) and students’ intention to use the learning management system (LMS), as well as investigating the factors predicting students’ intention to use the LMS. The study was specifically conducted at the Faculty of Educational Study of University Putra Malaysia. Questionnaires were distributed to 277 respondents using a random sampling technique. SPSS Version 22 was employed in analyzing the data; the findings of this study indicated that performance expectancy (r = .69, p < .01), effort expectancy (r=.60, p < .01), social influence (r = .61, p < .01), and facilitating condition (r=.42, p < .01), were significantly related to students’ intention to use the LMS. In addition, the result also revealed that performance expectancy (β = .436, p < .05), social influence (β=.232, p < .05), and effort expectancy (β = .193, p < .05) were strong predictors of students’ intention to use the LMS. The analysis further indicated that (R2) is 0.054 which means that 54% of variation in the dependent variable is explained by the entire predictor variables entered into the regression model. Understanding the factors that affect students’ intention to use the LMS could help the lecturers, LMS managers and university management to develop the policies that may attract students to use the LMS.

Keywords: LMS, postgraduate students, PutraBlas, students’ intention, UPM, UTAUT model

Procedia PDF Downloads 512
2724 An Estimating Parameter of the Mean in Normal Distribution by Maximum Likelihood, Bayes, and Markov Chain Monte Carlo Methods

Authors: Autcha Araveeporn

Abstract:

This paper is to compare the parameter estimation of the mean in normal distribution by Maximum Likelihood (ML), Bayes, and Markov Chain Monte Carlo (MCMC) methods. The ML estimator is estimated by the average of data, the Bayes method is considered from the prior distribution to estimate Bayes estimator, and MCMC estimator is approximated by Gibbs sampling from posterior distribution. These methods are also to estimate a parameter then the hypothesis testing is used to check a robustness of the estimators. Data are simulated from normal distribution with the true parameter of mean 2, and variance 4, 9, and 16 when the sample sizes is set as 10, 20, 30, and 50. From the results, it can be seen that the estimation of MLE, and MCMC are perceivably different from the true parameter when the sample size is 10 and 20 with variance 16. Furthermore, the Bayes estimator is estimated from the prior distribution when mean is 1, and variance is 12 which showed the significant difference in mean with variance 9 at the sample size 10 and 20.

Keywords: Bayes method, Markov chain Monte Carlo method, maximum likelihood method, normal distribution

Procedia PDF Downloads 358
2723 Determinants of the Welfare of Itinerant Palm Oil Marketers in Akwa Ibom State, Nigeria

Authors: Obasi Igwe Oscar, Udokure Ubong James, Echebiri Raphael Ndubuisi

Abstract:

The study examined the determinants of the welfare of itinerant palm oil marketers in Akwa Ibom State, Nigeria. Multistage sampling techniques were adopted to select 120 itinerant palm oil marketers for the study. Primary data were obtained using a structured questionnaire. Data were analyzed using the cost and returns formula and multiple regression model. Results showed that itinerant palm oil marketing was profitable and 57.39% efficient. The respondents' monthly expenditure of N111,787.90 on food and non-food items indicated that they live above the extreme poverty threshold of $2.15 per person per day, with a daily spending of over $2. Net income (P<0.05), age (P<0.01), educational level (P<0.01), household size (P<0.01), credit amount (P<0.01), market information (P<0.05), amount of tax paid (P<0.01) and the level of market participation (P<0.05) were the significant determinants of the welfare of itinerant traders in the study area. The study recommended that government and non-governmental organizations should make available marketing facilities and enhance transportation networks to reduce inefficiencies and lower transaction costs for itinerant palm oil traders in Akwa Ibom state.

Keywords: determinants, welfare, itinerant, palm oil, marketers

Procedia PDF Downloads 34
2722 Hydroinformatics of Smart Cities: Real-Time Water Quality Prediction Model Using a Hybrid Approach

Authors: Elisa Coraggio, Dawei Han, Weiru Liu, Theo Tryfonas

Abstract:

Water is one of the most important resources for human society. The world is currently undergoing a wave of urban growth, and pollution problems are of a great impact. Monitoring water quality is a key task for the future of the environment and human species. In recent times, researchers, using Smart Cities technologies are trying to mitigate the problems generated by the population growth in urban areas. The availability of huge amounts of data collected by a pervasive urban IoT can increase the transparency of decision making. Several services have already been implemented in Smart Cities, but more and more services will be involved in the future. Water quality monitoring can successfully be implemented in the urban IoT. The combination of water quality sensors, cloud computing, smart city infrastructure, and IoT technology can lead to a bright future for environmental monitoring. In the past decades, lots of effort has been put on monitoring and predicting water quality using traditional approaches based on manual collection and laboratory-based analysis, which are slow and laborious. The present study proposes a methodology for implementing a water quality prediction model using artificial intelligence techniques and comparing the results obtained with different algorithms. Furthermore, a 3D numerical model will be created using the software D-Water Quality, and simulation results will be used as a training dataset for the artificial intelligence algorithm. This study derives the methodology and demonstrates its implementation based on information and data collected at the floating harbour in the city of Bristol (UK). The city of Bristol is blessed with the Bristol-Is-Open infrastructure that includes Wi-Fi network and virtual machines. It was also named the UK ’s smartest city in 2017.In recent times, researchers, using Smart Cities technologies are trying to mitigate the problems generated by the population growth in urban areas. The availability of huge amounts of data collected by a pervasive urban IoT can increase the transparency of decision making. Several services have already been implemented in Smart Cities, but more and more services will be involved in the future. Water quality monitoring can successfully be implemented in the urban IoT. The combination of water quality sensors, cloud computing, smart city infrastructure, and IoT technology can lead to a bright future for the environment monitoring. In the past decades, lots of effort has been put on monitoring and predicting water quality using traditional approaches based on manual collection and laboratory-based analysis, which are slow and laborious. The present study proposes a new methodology for implementing a water quality prediction model using artificial intelligence techniques and comparing the results obtained with different algorithms. Furthermore, a 3D numerical model will be created using the software D-Water Quality, and simulation results will be used as a training dataset for the Artificial Intelligence algorithm. This study derives the methodology and demonstrate its implementation based on information and data collected at the floating harbour in the city of Bristol (UK). The city of Bristol is blessed with the Bristol-Is-Open infrastructure that includes Wi-Fi network and virtual machines. It was also named the UK ’s smartest city in 2017.

Keywords: artificial intelligence, hydroinformatics, numerical modelling, smart cities, water quality

Procedia PDF Downloads 190
2721 Self-Efficacy and Self-Worth of Elderly in Geriatric Institutions

Authors: Melasurej C. Francisco, Sophia D. Rusit

Abstract:

Old age is a record of one’s own life; this is the crucial phase for most. However, there are individuals who believe that old people retain self-efficacy and self-worth throughout their existence. Geriatric institutions focus on the health of elderly, in which they have been supported with medicines and therapies by clinician thus, indicating that these may suffice physical, emotional, and mental health of the elderly. This study focuses on (1) Describing the level or degree of self-efficacy; (2) Recognizing the extent of self-worth; (3) Determining the significant relationship between self-efficacy and self-worth. It is a mixed method design. A combination of correlational research and in-depth interview. Purposive sampling technique was used to select participants, considering that this assay focused on elderly in geriatric institutions, it follows that respondents and participants are at least sixty years of age and must be living inside the institution. 121 senior citizens took part in this study. Scores from both General Self-Efficacy Scale (GSE) and Rosenberg Self-Esteem Scale (RSES) showed varying levels of self-efficacy and self-worth. SE had μ=28.099, σ=6.6262, σ²=43.9067 while; SW had μ=14.9669, σ=5.3789, σ²28.9322 which denotes that rₒbₜ (121)=0.3164 is higher than rcᵢₜ which is 0.150. Although this exhibits the positive moderate correlation between SE and SW, the relationship between variables is weak. Likewise, the pᵥₐₗᵤₑ (pᵥₐₗᵤₑ=0.000406) is lower than the significance level alpha=0.01, thus, rejecting the null hypothesis, and accepting the alternative hypothesis.

Keywords: elderly, geriatric, self-efficacy, self-worth

Procedia PDF Downloads 300
2720 Comparing the Detection of Autism Spectrum Disorder within Males and Females Using Machine Learning Techniques

Authors: Joseph Wolff, Jeffrey Eilbott

Abstract:

Autism Spectrum Disorders (ASD) are a spectrum of social disorders characterized by deficits in social communication, verbal ability, and interaction that can vary in severity. In recent years, researchers have used magnetic resonance imaging (MRI) to help detect how neural patterns in individuals with ASD differ from those of neurotypical (NT) controls for classification purposes. This study analyzed the classification of ASD within males and females using functional MRI data. Functional connectivity (FC) correlations among brain regions were used as feature inputs for machine learning algorithms. Analysis was performed on 558 cases from the Autism Brain Imaging Data Exchange (ABIDE) I dataset. When trained specifically on females, the algorithm underperformed in classifying the ASD subset of our testing population. Although the subject size was relatively smaller in the female group, the manual matching of both male and female training groups helps explain the algorithm’s bias, indicating the altered sex abnormalities in functional brain networks compared to typically developing peers. These results highlight the importance of taking sex into account when considering how generalizations of findings on males with ASD apply to females.

Keywords: autism spectrum disorder, machine learning, neuroimaging, sex differences

Procedia PDF Downloads 211
2719 Bayesian Using Markov Chain Monte Carlo and Lindley's Approximation Based on Type-I Censored Data

Authors: Al Omari Moahmmed Ahmed

Abstract:

These papers describe the Bayesian Estimator using Markov Chain Monte Carlo and Lindley’s approximation and the maximum likelihood estimation of the Weibull distribution with Type-I censored data. The maximum likelihood method can’t estimate the shape parameter in closed forms, although it can be solved by numerical methods. Moreover, the Bayesian estimates of the parameters, the survival and hazard functions cannot be solved analytically. Hence Markov Chain Monte Carlo method and Lindley’s approximation are used, where the full conditional distribution for the parameters of Weibull distribution are obtained via Gibbs sampling and Metropolis-Hastings algorithm (HM) followed by estimate the survival and hazard functions. The methods are compared to Maximum Likelihood counterparts and the comparisons are made with respect to the Mean Square Error (MSE) and absolute bias to determine the better method in scale and shape parameters, the survival and hazard functions.

Keywords: weibull distribution, bayesian method, markov chain mote carlo, survival and hazard functions

Procedia PDF Downloads 480
2718 Antecedent Factors Affecting Evaluation of Quality of Students at Graduate School

Authors: Terada Pinyo

Abstract:

This study is a survey research designed to evaluate the quality of graduate students and factors influencing their quality. The sample group consists of 240 students. The data are collected from stratified sampling and are analyzed and calculated by instant computer program. Statistics used are percentage, mean, standard deviation, Pearson correlation coefficient, Cramer’s V and logistic regression analysis. It is found that the graduate students’ opinions regarding their characteristics according to the Thai Qualifications Framework for Higher Education (TQF) are at high score range both overall and specific category. The top categories that received the top score are interpersonal skills and responsibility, ethics and morals, knowledge, cognitive skills, numerical analysis with communication and information technology skills, respectively. On the other hand, factors affecting the quality of graduate students are cognitive skills, numerical analysis with communication and information technology, knowledge, interpersonal skills and responsibility, ethics and morals, and career regarding sales/business, respectively.

Keywords: student quality evaluation, Thai qualifications framework for higher education, graduate school, cognitive skills

Procedia PDF Downloads 396
2717 Implementation of Human Resource Management in Greek Law Enforcement Agencies

Authors: Konstantinos G. Papaioannou, Panagiotis K. Serdaris

Abstract:

This study, examines the level of implementation of Human Resource Management (HRM) activities in law enforcement agencies in Greece. Recognizing that HRM is crucial for maximizing organizational performance, the study aims to evaluate its application within Greek law enforcement. A quantitative-descriptive survey was conducted, involving 996 executives from Greek Law Enforcement Agencies (477 from the Hellenic Police and 519 from the Hellenic Coast Guard), through random sampling. The survey, revealed significant concerns regarding the minimal implementation of HRM practices, in both agencies. The findings indicate that HRM practices, such as HR planning, recruitment, job position, selection, training and development, personnel management, compensation, labor relations and health and safety, are minimally applied. Neither the Hellenic Police nor the Hellenic Coast Guard appears to follow a comprehensive HRM plan. The study, contributes both theoretically and practically by highlighting the lack of HRM implementation in these agencies. The data suggest that by adopting strategic HRM practices, these organizations can enhance personnel performance and better fulfill their societal roles. Future research should extend to law enforcement agencies in other countries to draw more representative conclusion.

Keywords: coastguard, human resources management, law enforcement agencies, performance management, police

Procedia PDF Downloads 46
2716 Data Modeling and Calibration of In-Line Pultrusion and Laser Ablation Machine Processes

Authors: David F. Nettleton, Christian Wasiak, Jonas Dorissen, David Gillen, Alexandr Tretyak, Elodie Bugnicourt, Alejandro Rosales

Abstract:

In this work, preliminary results are given for the modeling and calibration of two inline processes, pultrusion, and laser ablation, using machine learning techniques. The end product of the processes is the core of a medical guidewire, manufactured to comply with a user specification of diameter and flexibility. An ensemble approach is followed which requires training several models. Two state of the art machine learning algorithms are benchmarked: Kernel Recursive Least Squares (KRLS) and Support Vector Regression (SVR). The final objective is to build a precise digital model of the pultrusion and laser ablation process in order to calibrate the resulting diameter and flexibility of a medical guidewire, which is the end product while taking into account the friction on the forming die. The result is an ensemble of models, whose output is within a strict required tolerance and which covers the required range of diameter and flexibility of the guidewire end product. The modeling and automatic calibration of complex in-line industrial processes is a key aspect of the Industry 4.0 movement for cyber-physical systems.

Keywords: calibration, data modeling, industrial processes, machine learning

Procedia PDF Downloads 301
2715 Enabling Exporting in Cameroon Using Export Promotion Programs

Authors: Morfaw Bernice Njinju

Abstract:

The contribution of exporting and small businesses to an economy cannot be overemphasized. However, small firms in developing economies are characterized by resource deficiencies, which hinders their exporting abilities. As a result, export promotion programs are designed by the government as external resources that small firms can access to overcome export barriers and improve their exporting. Nevertheless, doubts still exist as to whether firms are aware of these programs and the extent to which they are utilizing it. To analyse the level of awareness and usage of these programs, the questionnaire was developed from the review of the literature. A pilot study was conducted to determine the ease of completing the questionnaire by respondent before incorporating feedback to produce the final questionnaire. Data were collected from 200 small businesses in Cameroon in the manufacturing and agricultural sector through random sampling and analysed using regression analysis. The results indicated that different programs had different levels of awareness than others. Programs to provide training to improve product quality was found to have the highest level of awareness while those providing findings had low levels of awareness. Despite these different levels of awareness, usage was very low, as firms do not want to open up to government scrutiny of their business. Implications to policy, practice, and direction for further research are also discussed.

Keywords: export promotion programs, exporting, small businesses, Cameroon

Procedia PDF Downloads 113
2714 The Effect of Whole Word Method on Mean Length of Utterance (MLU) of 3 to 6 Years Old Children with Cochlear Implant Having Normal IQ

Authors: Elnaz Dabiri, Somayeh Hamidnezhad

Abstract:

Background and Objective: This study aims at investigating the effect of whole word method on Mean Length of Utterance (MLU) of 3 to 6 years old children with cochlear implants having normal IQ. Materials and Methods: In this quasi-experimental and interventional study, 20 children with cochlear implants, aged between 3and 6 years, and normal IQ were selected from Tabriz cochlear implants center using convenience sampling. Afterward, they were randomly bifurcated. The first group was educated by whole-word reading method along with traditional methods and the second group by traditional methods. Both groups had three sessions of 45-minutes each, every week continuously for a period of 3 months. Pre-test and post-test language abilities of both groups were assessed using the TOLD test. Results: Both groups before training have the same age, IQ, and MLU, but after training the first group shows a considerable improvement in MLU in comparison with the second group. Conclusions: Reading training by the whole word method have more effect on MLU of children with cochlear implants in comparison of the traditional method.

Keywords: cochlear implants, reading training, traditional methods, language therapy, whole word method, Mean Length of Utterance (MLU)

Procedia PDF Downloads 333
2713 Genetic Algorithm Optimization of the Economical, Ecological and Self-Consumption Impact of the Energy Production of a Single Building

Authors: Ludovic Favre, Thibaut M. Schafer, Jean-Luc Robyr, Elena-Lavinia Niederhäuser

Abstract:

This paper presents an optimization method based on genetic algorithm for the energy management inside buildings developed in the frame of the project Smart Living Lab (SLL) in Fribourg (Switzerland). This algorithm optimizes the interaction between renewable energy production, storage systems and energy consumers. In comparison with standard algorithms, the innovative aspect of this project is the extension of the smart regulation over three simultaneous criteria: the energy self-consumption, the decrease of greenhouse gas emissions and operating costs. The genetic algorithm approach was chosen due to the large quantity of optimization variables and the non-linearity of the optimization function. The optimization process includes also real time data of the building as well as weather forecast and users habits. This information is used by a physical model of the building energy resources to predict the future energy production and needs, to select the best energetic strategy, to combine production or storage of energy in order to guarantee the demand of electrical and thermal energy. The principle of operation of the algorithm as well as typical output example of the algorithm is presented.

Keywords: building's energy, control system, energy management, energy storage, genetic optimization algorithm, greenhouse gases, modelling, renewable energy

Procedia PDF Downloads 258
2712 Accelerated Evaluation of Structural Reliability under Tsunami Loading

Authors: Sai Hung Cheung, Zhe Shao

Abstract:

It is of our great interest to quantify the risk to structural dynamic systems due to earthquake-induced tsunamis in view of recent earthquake-induced tsunamis in Padang, 2004 and Tohoku, 2011 which brought huge losses of lives and properties. Despite continuous advancement in computational simulation of the tsunami and wave-structure interaction modeling, it still remains computationally challenging to evaluate the reliability of a structural dynamic system when uncertainties related to the system and its modeling are taken into account. The failure of the structure in a tsunami-wave-structural system is defined as any response quantities of the system exceeding specified thresholds during the time when the structure is subjected to dynamic wave impact due to earthquake-induced tsunamis. In this paper, an approach based on a novel integration of a recently proposed moving least squares response surface approach for stochastic sampling and the Subset Simulation algorithm is proposed. The effectiveness of the proposed approach is discussed by comparing its results with those obtained from the Subset Simulation algorithm without using the response surface approach.

Keywords: response surface, stochastic simulation, structural reliability tsunami, risk

Procedia PDF Downloads 678