Search results for: periphery stakeholder network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5169

Search results for: periphery stakeholder network

2919 A Framework for Chinese Domain-Specific Distant Supervised Named Entity Recognition

Authors: Qin Long, Li Xiaoge

Abstract:

The Knowledge Graphs have now become a new form of knowledge representation. However, there is no consensus in regard to a plausible and definition of entities and relationships in the domain-specific knowledge graph. Further, in conjunction with several limitations and deficiencies, various domain-specific entities and relationships recognition approaches are far from perfect. Specifically, named entity recognition in Chinese domain is a critical task for the natural language process applications. However, a bottleneck problem with Chinese named entity recognition in new domains is the lack of annotated data. To address this challenge, a domain distant supervised named entity recognition framework is proposed. The framework is divided into two stages: first, the distant supervised corpus is generated based on the entity linking model of graph attention neural network; secondly, the generated corpus is trained as the input of the distant supervised named entity recognition model to train to obtain named entities. The link model is verified in the ccks2019 entity link corpus, and the F1 value is 2% higher than that of the benchmark method. The re-pre-trained BERT language model is added to the benchmark method, and the results show that it is more suitable for distant supervised named entity recognition tasks. Finally, it is applied in the computer field, and the results show that this framework can obtain domain named entities.

Keywords: distant named entity recognition, entity linking, knowledge graph, graph attention neural network

Procedia PDF Downloads 95
2918 Sexual Cognitive Behavioral Therapy: Psychological Performance and Openness to Experience

Authors: Alireza Monzavi Chaleshtari, Mahnaz Aliakbari Dehkordi, Amin Asadi Hieh, Majid Kazemnezhad

Abstract:

This research was conducted with the aim of determining the effectiveness of sexual cognitive behavioral therapy on psychological performance and openness to experience in women. The type of research was experimental in the form of pre-test-post-test. The statistical population of this research was made up of all working and married women with membership in the researcher's Instagram social network who had problems in marital-sexual relationships (N=900). From the statistical community, which includes working and married women who are members of the researcher's Instagram social network who have problems in marital-sexual relationships, there are 30 people including two groups (15 people in the experimental group and 15 people in the control group) as available sampling and selected randomly. They were placed in two experimental and control groups. The anxiety, stress, and depression scale (DASS) and the Costa and McCree personality questionnaire were used to collect data, and the cognitive behavioral therapy protocol of Dr. Mehrnaz Ali Akbari was used for the treatment sessions. To analyze the data, the covariance test was used in the SPSS22 software environment. The results showed that sexual cognitive behavioral therapy has a positive and significant effect on psychological performance and openness to experience in women. Conclusion: It can be concluded that interventions such as cognitive-behavioral sex can be used to treat marital problems.

Keywords: sexual cognitive behavioral therapy, psychological function, openness to experience, women

Procedia PDF Downloads 78
2917 Preprocessing and Fusion of Multiple Representation of Finger Vein patterns using Conventional and Machine Learning techniques

Authors: Tomas Trainys, Algimantas Venckauskas

Abstract:

Application of biometric features to the cryptography for human identification and authentication is widely studied and promising area of the development of high-reliability cryptosystems. Biometric cryptosystems typically are designed for patterns recognition, which allows biometric data acquisition from an individual, extracts feature sets, compares the feature set against the set stored in the vault and gives a result of the comparison. Preprocessing and fusion of biometric data are the most important phases in generating a feature vector for key generation or authentication. Fusion of biometric features is critical for achieving a higher level of security and prevents from possible spoofing attacks. The paper focuses on the tasks of initial processing and fusion of multiple representations of finger vein modality patterns. These tasks are solved by applying conventional image preprocessing methods and machine learning techniques, Convolutional Neural Network (SVM) method for image segmentation and feature extraction. An article presents a method for generating sets of biometric features from a finger vein network using several instances of the same modality. Extracted features sets were fused at the feature level. The proposed method was tested and compared with the performance and accuracy results of other authors.

Keywords: bio-cryptography, biometrics, cryptographic key generation, data fusion, information security, SVM, pattern recognition, finger vein method.

Procedia PDF Downloads 151
2916 Emerging Cyber Threats and Cognitive Vulnerabilities: Cyberterrorism

Authors: Oludare Isaac Abiodun, Esther Omolara Abiodun

Abstract:

The purpose of this paper is to demonstrate that cyberterrorism is existing and poses a threat to computer security and national security. Nowadays, people have become excitedly dependent upon computers, phones, the Internet, and the Internet of things systems to share information, communicate, conduct a search, etc. However, these network systems are at risk from a different source that is known and unknown. These network systems risk being caused by some malicious individuals, groups, organizations, or governments, they take advantage of vulnerabilities in the computer system to hawk sensitive information from people, organizations, or governments. In doing so, they are engaging themselves in computer threats, crime, and terrorism, thereby making the use of computers insecure for others. The threat of cyberterrorism is of various forms and ranges from one country to another country. These threats include disrupting communications and information, stealing data, destroying data, leaking, and breaching data, interfering with messages and networks, and in some cases, demanding financial rewards for stolen data. Hence, this study identifies many ways that cyberterrorists utilize the Internet as a tool to advance their malicious mission, which negatively affects computer security and safety. One could identify causes for disparate anomaly behaviors and the theoretical, ideological, and current forms of the likelihood of cyberterrorism. Therefore, for a countermeasure, this paper proposes the use of previous and current computer security models as found in the literature to help in countering cyberterrorism

Keywords: cyberterrorism, computer security, information, internet, terrorism, threat, digital forensic solution

Procedia PDF Downloads 96
2915 Multi-Agent Searching Adaptation Using Levy Flight and Inferential Reasoning

Authors: Sagir M. Yusuf, Chris Baber

Abstract:

In this paper, we describe how to achieve knowledge understanding and prediction (Situation Awareness (SA)) for multiple-agents conducting searching activity using Bayesian inferential reasoning and learning. Bayesian Belief Network was used to monitor agents' knowledge about their environment, and cases are recorded for the network training using expectation-maximisation or gradient descent algorithm. The well trained network will be used for decision making and environmental situation prediction. Forest fire searching by multiple UAVs was the use case. UAVs are tasked to explore a forest and find a fire for urgent actions by the fire wardens. The paper focused on two problems: (i) effective agents’ path planning strategy and (ii) knowledge understanding and prediction (SA). The path planning problem by inspiring animal mode of foraging using Lévy distribution augmented with Bayesian reasoning was fully described in this paper. Results proof that the Lévy flight strategy performs better than the previous fixed-pattern (e.g., parallel sweeps) approaches in terms of energy and time utilisation. We also introduced a waypoint assessment strategy called k-previous waypoints assessment. It improves the performance of the ordinary levy flight by saving agent’s resources and mission time through redundant search avoidance. The agents (UAVs) are to report their mission knowledge at the central server for interpretation and prediction purposes. Bayesian reasoning and learning were used for the SA and results proof effectiveness in different environments scenario in terms of prediction and effective knowledge representation. The prediction accuracy was measured using learning error rate, logarithm loss, and Brier score and the result proves that little agents mission that can be used for prediction within the same or different environment. Finally, we described a situation-based knowledge visualization and prediction technique for heterogeneous multi-UAV mission. While this paper proves linkage of Bayesian reasoning and learning with SA and effective searching strategy, future works is focusing on simplifying the architecture.

Keywords: Levy flight, distributed constraint optimization problem, multi-agent system, multi-robot coordination, autonomous system, swarm intelligence

Procedia PDF Downloads 144
2914 Territorial Brand as a Means of Structuring the French Wood Industry

Authors: Laetitia Dari

Abstract:

The brand constitutes a source of differentiation between competitors. It highlights specific characteristics that create value for the enterprise. Today the concept of a brand is not just about the product but can concern territories. The competition between territories, due to tourism, research, jobs, etc., leads territories to develop territorial brands to bring out their identity and specificity. Some territorial brands are based on natural resources or products characteristic of a territory. In the French wood sector, we can observe the emergence of many territorial brands. Supported by the inter-professional organization, these brands have the main objective of showcasing wood as a source of solutions at the local level in terms of construction and energy. The implementation of these collective projects raises the question of the way in which relations between companies are structured and animated. The central question of our work is to understand how the territorial brand promotes the structuring of a sector and the construction of collective relations between actors. In other words, we are interested in the conditions for the emergence of the territorial brand and the way in which it will be a means of mobilizing the actors around a common project. The objectives of the research are (1) to understand in which context a territorial brand emerges, (2) to analyze the way in which the territorial brand structures the collective relations between actors, (3) to give entry keys to the actors to successfully develop this type of project. Thus, our research is based on a qualitative methodology with semi-structured interviews conducted with the main territorial brands in France. The research will answer various academic and empirical questions. From an academic point of view, it brings elements of understanding to the construction of a collective project and to the way in which governance operates. From an empirical point of view, the interest of our work is to bring out the key success factors in the development of a territorial brand and how the brand can become an element of valuation for a territory.

Keywords: brand, marketing, strategy, territory, third party stakeholder, wood

Procedia PDF Downloads 67
2913 How Autonomous Vehicles Transform Urban Policies and Cities

Authors: Adrián P. Gómez Mañas

Abstract:

Autonomous vehicles have already transformed urban policies and cities. This is the main assumption of our research, which aims to understand how the representations of the possible arrival of autonomous vehicles already transform priorities or actions in transport and more largely, urban policies. This research is done within the framework of a Ph.D. doctorate directed by Professor Xavier Desjardins at the Sorbonne University of Paris. Our hypotheses are: (i) the perspectives, representations, and imaginaries on autonomous vehicles already affect the stakeholders of urban policies; (ii) the discourses on the opportunities or threats of autonomous vehicles reflect the current strategies of the stakeholders. Each stakeholder tries to integrate a discourse on autonomous vehicles that allows them to change as little as possible their current tactics and strategies. The objective is to eventually make a comparison between three different cases: Paris, United Arab Emirates, and Bogota. We chose those territories because their contexts are very different, but they all have important interests in mobility and innovation, and they all have started to reflect on the subject of self-driving mobility. The main methodology used is to interview actors of the metropolitan area (local officials, leading urban and transport planners, influent experts, and private companies). This work is supplemented with conferences, official documents, press articles, and websites. The objective is to understand: 1) What they know about autonomous vehicles and where does their knowledge come from; 2) What they expect from autonomous vehicles; 3) How their ideas about autonomous vehicles are transforming their action and strategy in managing daily mobility, investing in transport, designing public spaces and urban planning. We are going to present the research and some preliminary results; we will show that autonomous vehicles are often viewed by public authorities as a lever to reach something else. We will also present that speeches are very influenced by local context (political, geographical, economic, etc.), creating an interesting balance between global and local influences. We will analyze the differences and similarities between the three cases and will try to understand which are the causes.

Keywords: autonomous vehicles, self-driving mobility, urban planning, urban mobility, transport, public policies

Procedia PDF Downloads 198
2912 Exploring Partnership Brokering Science in Social Entrepreneurship: A Literature Review

Authors: Lani Fraizer

Abstract:

Increasingly, individuals from diverse professional and academic backgrounds are making a conscious choice to pursue careers related to social change; a sophisticated understanding of social entrepreneur education is becoming ever more important. Social entrepreneurs are impassioned change makers who characteristically combine leadership and entrepreneurial spirits to problem solve social ills affecting our planet. Generating partnership opportunities and nurturing them is an important part of their change-making work. Faced with the complexities of these partnerships, social entrepreneurs and people who work with them need to be well prepared to tackle new and unforeseen challenges faced. As partnerships become even more critical to advance initiatives at scale, for example, understanding the partnership brokering role is even more important for educators who prepare these leaders to establish and sustain multi-stakeholder partnerships. This paper aims to provide practitioners in social entrepreneurship with enhanced knowledge of partnership brokering and identify directions for future research. A literature review search from January 1977 to May 2015 was conducted using the combined keywords ‘partnership brokering’ and ‘social entrepreneurship’ via WorldCat, one of the largest database catalogs in the world with collections of more than 10,000 worldwide. This query focused on literature written in the English language and analyzed solely the role of partnership brokering in social entrepreneurship. The synthesis of the literature review found three main themes emerging: the need for more professional awareness of partnership brokering and its value add in systems change-making work, the need for more knowledge on developing partnership brokering competencies, and the need for more applied research in the area of partnership brokering and how it is practiced by practitioners in social entrepreneurship. The results of the review serve to emphasize and reiterate the importance of partnership brokers in social entrepreneurship work, and act as a reminder of the need for further scholarly research in this area to bridge the gap between practice and research.

Keywords: partnership brokering, leadership, social entrepreneurship, systems changemaking

Procedia PDF Downloads 343
2911 Thorium Resources of Georgia – Is It Its Future Energy ?

Authors: Avtandil Okrostsvaridze, Salome Gogoladze

Abstract:

In the light of exhaustion of hydrocarbon reserves of new energy resources, its search is of vital importance problem for the modern civilization. At the time of energy resource crisis, the radioactive element thorium (232Th) is considered as the main energy resource for the future of our civilization. Modern industry uses thorium in high-temperature and high-tech tools, but the most important property of thorium is that like uranium it can be used as fuel in nuclear reactors. However, thorium has a number of advantages compared to this element: Its concentration in the earth crust is 4-5 times higher than uranium; extraction and enrichment of thorium is much cheaper than of uranium; it is less radioactive; its waste products complete destruction is possible; thorium yields much more energy than uranium. Nowadays, developed countries, among them India and China, have started intensive work for creation of thorium nuclear reactors and intensive search for thorium reserves. It is not excluded that in the next 10 years these reactors will completely replace uranium reactors. Thorium ore mineralization is genetically related to alkaline-acidic magmatism. Thorium accumulations occur as in endogen marked as in exogenous conditions. Unfortunately, little is known about the reserves of this element in Georgia, as planned prospecting-exploration works of thorium have never been carried out here. Although, 3 ore occurrences of this element are detected: 1) In the Greater Caucasus Kakheti segment, in the hydrothermally altered rocks of the Lower Jurassic clay-shales, where thorium concentrations varied between 51 - 3882g/t; 2) In the eastern periphery of the Dzirula massif, in the hydrothermally alteration rocks of the cambrian quartz-diorite gneisses, where thorium concentrations varied between 117-266 g/t; 3) In active contact zone of the Eocene volcanites and syenitic intrusive in Vakijvari ore field of the Guria region, where thorium concentrations varied between 185 – 428 g/t. In addition, geological settings of the areas, where thorium occurrences were fixed, give a theoretical basis on possible accumulation of practical importance thorium ores. Besides, the Black Sea Guria region magnetite sand which is transported from Vakijvari ore field, should contain significant reserves of thorium. As the research shows, monazite (thorium containing mineral) is involved in magnetite in the form of the thinnest inclusions. The world class thorium deposit concentrations of this element vary within the limits of 50-200 g/t. Accordingly, on the basis of these data, thorium resources found in Georgia should be considered as perspective ore deposits. Generally, we consider that complex investigation of thorium should be included into the sphere of strategic interests of the state, because future energy of Georgia, will probably be thorium.

Keywords: future energy, Georgia, ore field, thorium

Procedia PDF Downloads 493
2910 The Analysis of Internet and Social Media Behaviors of the Students in Vocational High School

Authors: Mehmet Balci, Sakir Tasdemir, Mustafa Altin, Ozlem Bozok

Abstract:

Our globalizing world has become almost a small village and everyone can access any information at any time. Everyone lets each other know who does whatever in which place. We can learn which social events occur in which place in the world. From the perspective of education, the course notes that a lecturer use in lessons in a university in any state of America can be examined by a student studying in a city of Africa or the Far East. This dizzying communication we have mentioned happened thanks to fast developments in computer technologies and in parallel with this, internet technology. While these developments in the world, has a very large young population and a rapidly evolving electronic communications infrastructure Turkey has been affected by this situation. Researches has shown that almost all young people in Turkey has an account in a social network. Especially becoming common of mobile devices causes data traffic in social networks to increase. In this study, has been surveyed on students in the different age groups and at the Selcuk University Vocational School of Technical Sciences Department of Computer Technology. Student’s opinions about the use of internet and social media has been gotten. Using the Internet and social media skills, purposes, operating frequency, access facilities and tools, social life and effects on vocational education etc. have been explored. Both internet and use of social media positive and negative effects on this department students results have been obtained by the obtained findings evaluating from various aspects. Relations and differences have been found out with statistic.

Keywords: computer technologies, internet use, social network, higher vocational school

Procedia PDF Downloads 542
2909 A Convolutional Neural Network-Based Model for Lassa fever Virus Prediction Using Patient Blood Smear Image

Authors: A. M. John-Otumu, M. M. Rahman, M. C. Onuoha, E. P. Ojonugwa

Abstract:

A Convolutional Neural Network (CNN) model for predicting Lassa fever was built using Python 3.8.0 programming language, alongside Keras 2.2.4 and TensorFlow 2.6.1 libraries as the development environment in order to reduce the current high risk of Lassa fever in West Africa, particularly in Nigeria. The study was prompted by some major flaws in existing conventional laboratory equipment for diagnosing Lassa fever (RT-PCR), as well as flaws in AI-based techniques that have been used for probing and prognosis of Lassa fever based on literature. There were 15,679 blood smear microscopic image datasets collected in total. The proposed model was trained on 70% of the dataset and tested on 30% of the microscopic images in avoid overfitting. A 3x3x3 convolution filter was also used in the proposed system to extract features from microscopic images. The proposed CNN-based model had a recall value of 96%, a precision value of 93%, an F1 score of 95%, and an accuracy of 94% in predicting and accurately classifying the images into clean or infected samples. Based on empirical evidence from the results of the literature consulted, the proposed model outperformed other existing AI-based techniques evaluated. If properly deployed, the model will assist physicians, medical laboratory scientists, and patients in making accurate diagnoses for Lassa fever cases, allowing the mortality rate due to the Lassa fever virus to be reduced through sound decision-making.

Keywords: artificial intelligence, ANN, blood smear, CNN, deep learning, Lassa fever

Procedia PDF Downloads 120
2908 Tomato-Weed Classification by RetinaNet One-Step Neural Network

Authors: Dionisio Andujar, Juan lópez-Correa, Hugo Moreno, Angela Ri

Abstract:

The increased number of weeds in tomato crops highly lower yields. Weed identification with the aim of machine learning is important to carry out site-specific control. The last advances in computer vision are a powerful tool to face the problem. The analysis of RGB (Red, Green, Blue) images through Artificial Neural Networks had been rapidly developed in the past few years, providing new methods for weed classification. The development of the algorithms for crop and weed species classification looks for a real-time classification system using Object Detection algorithms based on Convolutional Neural Networks. The site study was located in commercial corn fields. The classification system has been tested. The procedure can detect and classify weed seedlings in tomato fields. The input to the Neural Network was a set of 10,000 RGB images with a natural infestation of Cyperus rotundus l., Echinochloa crus galli L., Setaria italica L., Portulaca oeracea L., and Solanum nigrum L. The validation process was done with a random selection of RGB images containing the aforementioned species. The mean average precision (mAP) was established as the metric for object detection. The results showed agreements higher than 95 %. The system will provide the input for an online spraying system. Thus, this work plays an important role in Site Specific Weed Management by reducing herbicide use in a single step.

Keywords: deep learning, object detection, cnn, tomato, weeds

Procedia PDF Downloads 103
2907 Fake News Detection for Korean News Using Machine Learning Techniques

Authors: Tae-Uk Yun, Pullip Chung, Kee-Young Kwahk, Hyunchul Ahn

Abstract:

Fake news is defined as the news articles that are intentionally and verifiably false, and could mislead readers. Spread of fake news may provoke anxiety, chaos, fear, or irrational decisions of the public. Thus, detecting fake news and preventing its spread has become very important issue in our society. However, due to the huge amount of fake news produced every day, it is almost impossible to identify it by a human. Under this context, researchers have tried to develop automated fake news detection using machine learning techniques over the past years. But, there have been no prior studies proposed an automated fake news detection method for Korean news to our best knowledge. In this study, we aim to detect Korean fake news using text mining and machine learning techniques. Our proposed method consists of two steps. In the first step, the news contents to be analyzed is convert to quantified values using various text mining techniques (topic modeling, TF-IDF, and so on). After that, in step 2, classifiers are trained using the values produced in step 1. As the classifiers, machine learning techniques such as logistic regression, backpropagation network, support vector machine, and deep neural network can be applied. To validate the effectiveness of the proposed method, we collected about 200 short Korean news from Seoul National University’s FactCheck. which provides with detailed analysis reports from 20 media outlets and links to source documents for each case. Using this dataset, we will identify which text features are important as well as which classifiers are effective in detecting Korean fake news.

Keywords: fake news detection, Korean news, machine learning, text mining

Procedia PDF Downloads 275
2906 Participatory Planning of the III Young Sea Meeting: An Experience of the Young Albatroz Collective

Authors: Victor V. Ribeiro, Thais C. Lopes, Rafael A. A. Monteiro

Abstract:

The Albatroz, Baleia Jubarte, Coral Vivo, Golfinho Rotador and Tamar projects make up the Young Sea Network (YSN), part of the BIOMAR Network, which aims to integrate the environmental youths of the Brazilian coast. For this, three editions of the Young Sea Meeting (YSM) were performed. Seeking to stimulate belonging, self-knowledge, participation, autonomy and youth protagonism, the Albatroz Project hosted the III YSM, in Bertioga (SP), in April 2019 and aimed to collectively plan the meeting. Five pillars of Environmental Education were used: identity, community, dialogue, power to act and happiness, the OCA Method and the Young Educates Young; Young Chooses Young; and One Generation Learns from the Other principals. In December 2018, still in the II YSM, the participatory planning of the III YSM began. Two "representatives" of each group were voluntarily elected to facilitate joint decisions, propose, receive and communicate demands from their groups and coordinators. The Young Albatroz Collective (YAC) facilitated the organization process as a whole. The purpose of the meeting was collectively constructed, answering the following question: "What is the YSM for?". Only two of the five pairs of representatives responded. There was difficulty gathering the young people in each group, because it was the end of the year, with people traveling. Thus, due to the short planning time, the YAC built a pre-programming to be validated by the other groups, defining as the objective of the meeting the strengthening of youth protagonism within the YSN. In the planning process, the YAC held 20 meetings, with 60 hours of face-to-face work, in three months, and two technical visits to the headquarters of the III YSM. The participatory dynamics of consultation, when it occurred, required up to two weeks, evidencing the limits of participation. The project coordinations stated that they were not being included in the process by their young people. There is a need to work more to be able to aloud the participation, developing skills and understanding about its principles. This training must take place in an articulated way between the network, implying the important role of the five projects in jointly developing and implementing educator processes with this objective in a national dimension, but without forgetting the specificities of each young group. Finally, it is worth highlighting the great potential of the III YSM by stimulating the exercise of leading environmental youth in more than 50 young people from Brazilian coast, linked to the YSN, stimulating the learning and mobilization of young people in favor of coastal and marine conservation.

Keywords: Marine Conservation, Environmental Education, Youth, Participation, Planning

Procedia PDF Downloads 166
2905 A Practice of Zero Trust Architecture in Financial Transactions

Authors: Liwen Wang, Yuting Chen, Tong Wu, Shaolei Hu

Abstract:

In order to enhance the security of critical financial infrastructure, this study carries out a transformation of the architecture of a financial trading terminal to a zero trust architecture (ZTA), constructs an active defense system for cybersecurity, improves the security level of trading services in the Internet environment, enhances the ability to prevent network attacks and unknown risks, and reduces the industry and security risks brought about by cybersecurity risks. This study introduces the SDP technology of ZTA, adapts and applies it to a financial trading terminal to achieve security optimization and fine-grained business grading control. The upgraded architecture of the trading terminal moves security protection forward to the user access layer, replaces VPN to optimize remote access, and significantly improves the security protection capability of Internet transactions. The study achieves 1. deep integration with the access control architecture of the transaction system; 2. no impact on the performance of terminals and gateways, and no perception of application system upgrades; 3. customized checklist and policy configuration; 4. introduction of industry-leading security technology such as single-packet authorization (SPA) and secondary authentication. This study carries out a successful application of ZTA in the field of financial trading and provides transformation ideas for other similar systems while improving the security level of financial transaction services in the Internet environment.

Keywords: zero trust, trading terminal, architecture, network security, cybersecurity

Procedia PDF Downloads 167
2904 A Thematic Analysis on the Drivers of Community Participation for River Restoration Projects, the Case of Kerala, India

Authors: Alvin Manuel Vazhayil, Chaozhong Tan, Karl M. Wantzen

Abstract:

As local community participation in river restoration projects is increasingly recognized to be crucial for sustainable outcomes, researchers are exploring factors that motivate community participation globally. In India, while there is consensus in literature on the importance of community engagement in river restoration projects, research on what drives local communities to participate is limited, especially given the societal and economic challenges common in the Global South. This study addresses this gap by exploring the drivers of community participation in the local river restoration initiatives of the "Now Let Me Flow" campaign in Kerala, India. The project aimed to restore 87,000 kilometers of streams through the middle-ground governance approach that integrated bottom-up community efforts with top-down governmental support. The fieldwork involved interviews with 26 key agents, including local leaders, policy practitioners, politicians, and environmental activists associated with the project, and the collection of secondary data from 12 documents including project reports and news articles. The data was analyzed in NVivo (NVivo 11 Plus for Windows, version 11.3.0.773) using thematic analysis which included two cycles of systematic coding. The findings reveal two main drivers influencing community participation: top-down actions from local governments, and bottom-up drivers within the community. The study highlights the importance of local stakeholder collaboration, support of local governments, and local community engagement in successful river restoration projects. These findings are consistent with other empirical studies on participatory environmental problem-solving globally. The results offer crucial insights for policymakers and governments to better design and implement effective and sustainable participatory river restoration projects.

Keywords: community initiatives, drivers of participation, environmental governance, river restoration

Procedia PDF Downloads 28
2903 A Fuzzy Multi-Criteria Model for Sustainable Development of Community-Based Tourism through the Homestay Program in Malaysia

Authors: Azizah Ismail, Zainab Khalifah, Abbas Mardani

Abstract:

Sustainable community-based tourism through homestay programme is a growing niche market that has impacted destinations in many countries including Malaysia. With demand predicted to continue increasing, the importance of the homestay product will grow in the tourism industry. This research examines the sustainability criteria for homestay programme in Malaysia covering economic, socio-cultural and environmental dimensions. This research applied a two-stage methodology for data analysis. Specifically, the researcher implements a hybrid method which combines two multi-criteria decision making approaches. In the first stage of the methodology, the Decision Making Trial and Evaluation Laboratory (DEMATEL) technique is applied. Then, Analytical Network Process (ANP) is employed for the achievement of the objective of the current research. After factors identification and problem formulation, DEMATEL is used to detect complex relationships and to build a Network Relation Map (NRM). Then ANP is used to prioritize and find the weights of the criteria and sub-criteria of the decision model. The research verifies the framework of multi-criteria for sustainable community-based tourism from the perspective of stakeholders. The result also provides a different perspective on the importance of sustainable criteria from the view of multi-stakeholders. Practically, this research gives the framework model and helps stakeholders to improve and innovate the homestay programme and also promote community-based tourism.

Keywords: community-based tourism, homestay programme, sustainable tourism criteria, sustainable tourism development

Procedia PDF Downloads 130
2902 Geographic Information Systems and a Breath of Opportunities for Supply Chain Management: Results from a Systematic Literature Review

Authors: Anastasia Tsakiridi

Abstract:

Geographic information systems (GIS) have been utilized in numerous spatial problems, such as site research, land suitability, and demographic analysis. Besides, GIS has been applied in scientific fields like geography, health, and economics. In business studies, GIS has been used to provide insights and spatial perspectives in demographic trends, spending indicators, and network analysis. To date, the information regarding the available usages of GIS in supply chain management (SCM) and how these analyses can benefit businesses is limited. A systematic literature review (SLR) of the last 5-year peer-reviewed academic literature was conducted, aiming to explore the existing usages of GIS in SCM. The searches were performed in 3 databases (Web of Science, ProQuest, and Business Source Premier) and reported using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology. The analysis resulted in 79 papers. The results indicate that the existing GIS applications used in SCM were in the following domains: a) network/ transportation analysis (in 53 of the papers), b) location – allocation site search/ selection (multiple-criteria decision analysis) (in 45 papers), c) spatial analysis (demographic or physical) (in 34 papers), d) combination of GIS and supply chain/network optimization tools (in 32 papers), and e) visualization/ monitoring or building information modeling applications (in 8 papers). An additional categorization of the literature was conducted by examining the usage of GIS in the supply chain (SC) by the business sectors, as indicated by the volume of the papers. The results showed that GIS is mainly being applied in the SC of the biomass biofuel/wood industry (33 papers). Other industries that are currently utilizing GIS in their SC were the logistics industry (22 papers), the humanitarian/emergency/health care sector (10 papers), the food/agro-industry sector (5 papers), the petroleum/ coal/ shale gas sector (3 papers), the faecal sludge sector (2 papers), the recycle and product footprint industry (2 papers), and the construction sector (2 papers). The results were also presented by the geography of the included studies and the GIS software used to provide critical business insights and suggestions for future research. The results showed that research case studies of GIS in SCM were conducted in 26 countries (mainly in the USA) and that the most prominent GIS software provider was the Environmental Systems Research Institute’s ArcGIS (in 51 of the papers). This study is a systematic literature review of the usage of GIS in SCM. The results showed that the GIS capabilities could offer substantial benefits in SCM decision-making by providing key insights to cost minimization, supplier selection, facility location, SC network configuration, and asset management. However, as presented in the results, only eight industries/sectors are currently using GIS in their SCM activities. These findings may offer essential tools to SC managers who seek to optimize the SC activities and/or minimize logistic costs and to consultants and business owners that want to make strategic SC decisions. Furthermore, the findings may be of interest to researchers aiming to investigate unexplored research areas where GIS may improve SCM.

Keywords: supply chain management, logistics, systematic literature review, GIS

Procedia PDF Downloads 142
2901 Synthesis and Characterisation of Starch-PVP as Encapsulation Material for Drug Delivery System

Authors: Nungki Rositaningsih, Emil Budianto

Abstract:

Starch has been widely used as an encapsulation material for drug delivery system. However, starch hydrogel is very easily degraded during metabolism in human stomach. Modification of this material is needed to improve the encapsulation process in drug delivery system, especially for gastrointestinal drug. In this research, three modified starch-based hydrogels are synthesized i.e. Crosslinked starch hydrogel, Semi- and Full- Interpenetrating Polymer Network (IPN) starch hydrogel using Poly(N-Vinyl-Pyrrolidone). Non-modified starch hydrogel was also synthesized as a control. All of those samples were compared as biomaterials, floating drug delivery, and their ability in loading drug test. Biomaterial characterizations were swelling test, stereomicroscopy observation, Differential Scanning Calorimetry (DSC), and Fourier Transform Infrared Spectroscopy (FTIR). Buoyancy test and stereomicroscopy scanning were done for floating drug delivery characterizations. Lastly, amoxicillin was used as test drug, and characterized with UV-Vis spectroscopy for loading drug observation. Preliminary observation showed that Full-IPN has the most dense and elastic texture, followed by Semi-IPN, Crosslinked, and Non-modified in the last position. Semi-IPN and Crosslinked starch hydrogel have the most ideal properties and will not be degraded easily during metabolism. Therefore, both hydrogels could be considered as promising candidates for encapsulation material. Further analysis and issues will be discussed in the paper.

Keywords: biomaterial, drug delivery system, interpenetrating polymer network, poly(N-vinyl-pyrrolidone), starch hydrogel

Procedia PDF Downloads 251
2900 Ecotourism Development in Ikogosi Warmspring, Nigeria: Implications on Its Floristic Composition and Structure

Authors: Oluwatobi Emmanuel Olaniyi, Babafemi George Ogunjemite

Abstract:

The high rate of infrastructural development in Ikogosi warm spring towards harnessing her great ecotourism potentials calls for a serious concern, as more forest areas are been opened up for public access and the landscape is modified. On this note, we investigated the implication of ecotourism development on the floristic composition and forest structure in Ikogosi. The study aimed at identifying the past and present status of infrastructural development, assessing and comparing the floristic composition and structure of the built- up/ recreational areas and undisturbed forested areas, to infer on the impact of ecotourism development on the study site. We conducted stakeholder interview and field observation to identify the past and present status of infrastructural development respectively. A total of ten quadrants were employed in the vegetation assessment to characterize the woody tree species composition, diameter at breast height and height, to obtain mean indices characterizing each part of the site. These indices were compared using T – test analysis. A total of 49 different woody tree species distributed in 21 families were identified in the built-in/ recreational areas while 67 different woody tree species belonging to 25 families were recorded in the undeveloped forested areas. Although, the latter has a higher mean diameter at breast height of woody trees, it was not significantly different from the former (T-test = -0.74, p = 0.46). On the contrary, the built-up area had a higher mean trees height than the undeveloped areas, but the difference was not statistically significant (T-test= 1.04, p = 0.30). Despite these, the slight reduction in richness and diversity of the woody tree species in the built- up/ recreational areas implies mitigating the negative effects of infrastructural development on the warm spring's vegetation.

Keywords: ecosystem services, forest structure, vegetation assessment, warm-spring

Procedia PDF Downloads 510
2899 Incentive-Based Motivation to Network with Coworkers: Strengthening Professional Networks via Online Social Networks

Authors: Jung Lee

Abstract:

The last decade has witnessed more people than ever before using social media and broadening their social circles. Social media users connect not only with their friends but also with professional acquaintances, primarily coworkers, and clients; personal and professional social circles are mixed within the same social media platform. Considering the positive aspect of social media in facilitating communication and mutual understanding between individuals, we infer that social media interactions with co-workers could indeed benefit one’s professional life. However, given privacy issues, sharing all personal details with one’s co-workers is not necessarily the best practice. Should one connect with coworkers via social media? Will social media connections with coworkers eventually benefit one’s long-term career? Will the benefit differ across cultures? To answer, this study examines how social media can contribute to organizational communication by tracing the foundation of user motivation based on social capital theory, leader-member exchange (LMX) theory and expectancy theory of motivation. Although social media was originally designed for personal communication, users have shown intentions to extend social media use for professional communication, especially when the proper incentive is expected. To articulate the user motivation and the mechanism of the incentive expectation scheme, this study applies those three theories and identify six antecedents and three moderators of social media use motivation including social network flaunt, shared interest, perceived social inclusion. It also hypothesizes that the moderating effects of those constructs would significantly differ based on the relationship hierarchy among the workers. To validate, this study conducted a survey of 329 active social media users with acceptable levels of job experiences. The analysis result confirms the specific roles of the three moderators in social media adoption for organizational communication. The present study contributes to the literature by developing a theoretical modeling of ambivalent employee perceptions about establishing social media connections with co-workers. This framework shows not only how both positive and negative expectations of social media connections with co-workers are formed based on expectancy theory of motivation, but also how such expectations lead to behavioral intentions using career success model. It also enhances understanding of how various relationships among employees can be influenced through social media use and such usage can potentially affect both performance and careers. Finally, it shows how cultural factors induced by social media use can influence relations among the coworkers.

Keywords: the social network, workplace, social capital, motivation

Procedia PDF Downloads 123
2898 Deep Learning Framework for Predicting Bus Travel Times with Multiple Bus Routes: A Single-Step Multi-Station Forecasting Approach

Authors: Muhammad Ahnaf Zahin, Yaw Adu-Gyamfi

Abstract:

Bus transit is a crucial component of transportation networks, especially in urban areas. Any intelligent transportation system must have accurate real-time information on bus travel times since it minimizes waiting times for passengers at different stations along a route, improves service reliability, and significantly optimizes travel patterns. Bus agencies must enhance the quality of their information service to serve their passengers better and draw in more travelers since people waiting at bus stops are frequently anxious about when the bus will arrive at their starting point and when it will reach their destination. For solving this issue, different models have been developed for predicting bus travel times recently, but most of them are focused on smaller road networks due to their relatively subpar performance in high-density urban areas on a vast network. This paper develops a deep learning-based architecture using a single-step multi-station forecasting approach to predict average bus travel times for numerous routes, stops, and trips on a large-scale network using heterogeneous bus transit data collected from the GTFS database. Over one week, data was gathered from multiple bus routes in Saint Louis, Missouri. In this study, Gated Recurrent Unit (GRU) neural network was followed to predict the mean vehicle travel times for different hours of the day for multiple stations along multiple routes. Historical time steps and prediction horizon were set up to 5 and 1, respectively, which means that five hours of historical average travel time data were used to predict average travel time for the following hour. The spatial and temporal information and the historical average travel times were captured from the dataset for model input parameters. As adjacency matrices for the spatial input parameters, the station distances and sequence numbers were used, and the time of day (hour) was considered for the temporal inputs. Other inputs, including volatility information such as standard deviation and variance of journey durations, were also included in the model to make it more robust. The model's performance was evaluated based on a metric called mean absolute percentage error (MAPE). The observed prediction errors for various routes, trips, and stations remained consistent throughout the day. The results showed that the developed model could predict travel times more accurately during peak traffic hours, having a MAPE of around 14%, and performed less accurately during the latter part of the day. In the context of a complicated transportation network in high-density urban areas, the model showed its applicability for real-time travel time prediction of public transportation and ensured the high quality of the predictions generated by the model.

Keywords: gated recurrent unit, mean absolute percentage error, single-step forecasting, travel time prediction.

Procedia PDF Downloads 72
2897 A Study of the Planning and Designing of the Built Environment under the Green Transit-Oriented Development

Authors: Wann-Ming Wey

Abstract:

In recent years, the problems of global climate change and natural disasters have induced the concerns and attentions of environmental sustainability issues for the public. Aside from the environmental planning efforts done for human environment, Transit-Oriented Development (TOD) has been widely used as one of the future solutions for the sustainable city development. In order to be more consistent with the urban sustainable development, the development of the built environment planning based on the concept of Green TOD which combines both TOD and Green Urbanism is adapted here. The connotation of the urban development under the green TOD including the design toward environment protect, the maximum enhancement resources and the efficiency of energy use, use technology to construct green buildings and protected areas, natural ecosystems and communities linked, etc. Green TOD is not only to provide the solution to urban traffic problems, but to direct more sustainable and greener consideration for future urban development planning and design. In this study, we use both the TOD and Green Urbanism concepts to proceed to the study of the built environment planning and design. Fuzzy Delphi Technique (FDT) is utilized to screen suitable criteria of the green TOD. Furthermore, Fuzzy Analytic Network Process (FANP) and Quality Function Deployment (QFD) were then developed to evaluate the criteria and prioritize the alternatives. The study results can be regarded as the future guidelines of the built environment planning and designing under green TOD development in Taiwan.

Keywords: green TOD, built environment, fuzzy delphi technique, quality function deployment, fuzzy analytic network process

Procedia PDF Downloads 384
2896 Optimal Wind Based DG Placement Considering Monthly Changes Modeling in Wind Speed

Authors: Belal Mohamadi Kalesar, Raouf Hasanpour

Abstract:

Proper placement of Distributed Generation (DG) units such as wind turbine generators in distribution system are still very challenging issue for obtaining their maximum potential benefits because inappropriate placement may increase the system losses. This paper proposes Particle Swarm Optimization (PSO) technique for optimal placement of wind based DG (WDG) in the primary distribution system to reduce energy losses and voltage profile improvement with four different wind levels modeling in year duration. Also, wind turbine is modeled as a DFIG that will be operated at unity power factor and only one wind turbine tower will be considered to install at each bus of network. Finally, proposed method will be implemented on widely used 69 bus power distribution system in MATLAB software environment under four scenario (without, one, two and three WDG units) and for capability test of implemented program it is supposed that all buses of standard system can be candidate for WDG installing (large search space), though this program can consider predetermined number of candidate location in WDG placement to model financial limitation of project. Obtained results illustrate that wind speed increasing in some months will increase output power generated but this can increase / decrease power loss in some wind level, also results show that it is required about 3MW WDG capacity to install in different buses but when this is distributed in overall network (more number of WDG) it can cause better solution from point of view of power loss and voltage profile.

Keywords: wind turbine, DG placement, wind levels effect, PSO algorithm

Procedia PDF Downloads 448
2895 Riverine Urban Heritage: A Basis for Green Infrastructure

Authors: Ioanna H. Lioliou, Despoina D. Zavraka

Abstract:

The radical reformation that Greek urban space, has undergone over the last century, due to the socio-historical developments, technological development and political–geographic factors, has left its imprint on the urban landscape. While the big cities struggle to regain urban landscape balance, small towns are considered to offer high quality lifescapes, ensuring sustainable development potential. However, their unplanned urbanization process led to the loss of significant areas of nature, lack of essential infrastructure, chaotic built environment, incompatible land uses and urban cohesiveness. Natural environment reference points, such as springs, streams, rivers, forests, suburban greenbelts, and etc.; seems to be detached from urban space, while the public, open and green spaces, unequally distributed in the built environment, they are no longer able to offer a complete experience of nature in the city. This study focuses on Greek mainland, a small town Elassona, and aims to restore spatial coherence between the city’s homonymous river and its urban space surroundings. The existence of a linear aquatic ecosystem, is considered a precious greenway, also referred as blueway, able to initiate natural penetrations and ecosystems empowering. The integration of disconnected natural ecosystems forms the basis of a strategic intervention scheme, where the river becomes the urban integration tool / feature, constituting the main urban corridor and an indispensible part of a wider green network that connects open and green spaces, ensuring the function of all the established networks (transportation, commercial, social) of the town. The proposed intervention, introduces a green network highlighting the old stone bridge at the ‘entrance’ of the river in the town and expanding throughout the town with strategic uses and activities, providing accessibility for all the users. The methodology used, is based on the collection of design tools used in related urban river-design interventions around the world. The reinstallation/reactivation of the balance between natural and urban landscape, besides the environmental benefits, contributes decisively to the illustration/projection of urban green identity and re-enhancement of the quality of lifescape qualities and social interaction.

Keywords: green network, rehabilitation scheme, urban landscape, urban streams

Procedia PDF Downloads 280
2894 Exploring Time-Series Phosphoproteomic Datasets in the Context of Network Models

Authors: Sandeep Kaur, Jenny Vuong, Marcel Julliard, Sean O'Donoghue

Abstract:

Time-series data are useful for modelling as they can enable model-evaluation. However, when reconstructing models from phosphoproteomic data, often non-exact methods are utilised, as the knowledge regarding the network structure, such as, which kinases and phosphatases lead to the observed phosphorylation state, is incomplete. Thus, such reactions are often hypothesised, which gives rise to uncertainty. Here, we propose a framework, implemented via a web-based tool (as an extension to Minardo), which given time-series phosphoproteomic datasets, can generate κ models. The incompleteness and uncertainty in the generated model and reactions are clearly presented to the user via the visual method. Furthermore, we demonstrate, via a toy EGF signalling model, the use of algorithmic verification to verify κ models. Manually formulated requirements were evaluated with regards to the model, leading to the highlighting of the nodes causing unsatisfiability (i.e. error causing nodes). We aim to integrate such methods into our web-based tool and demonstrate how the identified erroneous nodes can be presented to the user via the visual method. Thus, in this research we present a framework, to enable a user to explore phosphorylation proteomic time-series data in the context of models. The observer can visualise which reactions in the model are highly uncertain, and which nodes cause incorrect simulation outputs. A tool such as this enables an end-user to determine the empirical analysis to perform, to reduce uncertainty in the presented model - thus enabling a better understanding of the underlying system.

Keywords: κ-models, model verification, time-series phosphoproteomic datasets, uncertainty and error visualisation

Procedia PDF Downloads 257
2893 Assessing the Environmental Efficiency of China’s Power System: A Spatial Network Data Envelopment Analysis Approach

Authors: Jianli Jiang, Bai-Chen Xie

Abstract:

The climate issue has aroused global concern. Achieving sustainable development is a good path for countries to mitigate environmental and climatic pressures, although there are many difficulties. The first step towards sustainable development is to evaluate the environmental efficiency of the energy industry with proper methods. The power sector is a major source of CO2, SO2, and NOx emissions. Evaluating the environmental efficiency (EE) of power systems is the premise to alleviate the terrible situation of energy and the environment. Data Envelopment Analysis (DEA) has been widely used in efficiency studies. However, measuring the efficiency of a system (be it a nation, region, sector, or business) is a challenging task. The classic DEA takes the decision-making units (DMUs) as independent, which neglects the interaction between DMUs. While ignoring these inter-regional links may result in a systematic bias in the efficiency analysis; for instance, the renewable power generated in a certain region may benefit the adjacent regions while the SO2 and CO2 emissions act oppositely. This study proposes a spatial network DEA (SNDEA) with a slack measure that can capture the spatial spillover effects of inputs/outputs among DMUs to measure efficiency. This approach is used to study the EE of China's power system, which consists of generation, transmission, and distribution departments, using a panel dataset from 2014 to 2020. In the empirical example, the energy and patent inputs, the undesirable CO2 output, and the renewable energy (RE) power variables are tested for a significant spatial spillover effect. Compared with the classic network DEA, the SNDEA result shows an obvious difference tested by the global Moran' I index. From a dynamic perspective, the EE of the power system experiences a visible surge from 2015, then a sharp downtrend from 2019, which keeps the same trend with the power transmission department. This phenomenon benefits from the market-oriented reform in the Chinese power grid enacted in 2015. The rapid decline in the environmental efficiency of the transmission department in 2020 was mainly due to the Covid-19 epidemic, which hinders economic development seriously. While the EE of the power generation department witnesses a declining trend overall, this is reasonable, taking the RE power into consideration. The installed capacity of RE power in 2020 is 4.40 times that in 2014, while the power generation is 3.97 times; in other words, the power generation per installed capacity shrank. In addition, the consumption cost of renewable power increases rapidly with the increase of RE power generation. These two aspects make the EE of the power generation department show a declining trend. Incorporation of the interactions among inputs/outputs into the DEA model, this paper proposes an efficiency evaluation method on the basis of the DEA framework, which sheds some light on efficiency evaluation in regional studies. Furthermore, the SNDEA model and the spatial DEA concept can be extended to other fields, such as industry, country, and so on.

Keywords: spatial network DEA, environmental efficiency, sustainable development, power system

Procedia PDF Downloads 110
2892 Convolutional Neural Networks versus Radiomic Analysis for Classification of Breast Mammogram

Authors: Mehwish Asghar

Abstract:

Breast Cancer (BC) is a common type of cancer among women. Its screening is usually performed using different imaging modalities such as magnetic resonance imaging, mammogram, X-ray, CT, etc. Among these modalities’ mammogram is considered a powerful tool for diagnosis and screening of breast cancer. Sophisticated machine learning approaches have shown promising results in complementing human diagnosis. Generally, machine learning methods can be divided into two major classes: one is Radiomics analysis (RA), where image features are extracted manually; and the other one is the concept of convolutional neural networks (CNN), in which the computer learns to recognize image features on its own. This research aims to improve the incidence of early detection, thus reducing the mortality rate caused by breast cancer through the latest advancements in computer science, in general, and machine learning, in particular. It has also been aimed to ease the burden of doctors by improving and automating the process of breast cancer detection. This research is related to a relative analysis of different techniques for the implementation of different models for detecting and classifying breast cancer. The main goal of this research is to provide a detailed view of results and performances between different techniques. The purpose of this paper is to explore the potential of a convolutional neural network (CNN) w.r.t feature extractor and as a classifier. Also, in this research, it has been aimed to add the module of Radiomics for comparison of its results with deep learning techniques.

Keywords: breast cancer (BC), machine learning (ML), convolutional neural network (CNN), radionics, magnetic resonance imaging, artificial intelligence

Procedia PDF Downloads 225
2891 Impact of Gold Mining on Crop Production, Livelihood and Environmental Sustainability in West Africa in the Context of Water-Energy-Food Nexus

Authors: Yusif Habib

Abstract:

The Volta River Basin (VRB) is a transboundary resource shared by Six (6) the West African States. It’s utilization spans across irrigation, hydropower generation, domestic/household water use, transportation, industrial processing, among others. Simultaneously, mineral resources such as gold are mined within the VRB catchment. Typically, the extraction/mining operation is earth-surface excavation; known as Artisanal and Small-scale mining. We developed a conceptual framework in the context of Water-Energy-Food (WEF) Nexus to delineate the trade-offs and synergies between the mineral extractive operation’s impact on Agricultural systems, specifically, cereal crops (e.g. Maize, Millet, and Rice) and the environment (water and soil quality, deforestation, etc.) on the VRB. Thus, the study examined the trade-offs and synergies through the WEF nexus lens to explore the extent of an eventual overarching mining preference for gold exploration with high economic returns as opposed to the presumably low yearly harvest and household income from food crops production to inform intervention prioritization. Field survey (household, expert, and stakeholder consultation), bibliometric analysis/literature review, scenario, and simulation models, including land-use land cover (LULC) analyses, were conducted. The selected study area(s) in Ghana was the location where the mineral extractive operation’s presence and impact are widespread co-exist with the Agricultural systems. Overall, the study proposes mechanisms of the virtuous cycle through FEW Nexus instead of the presumably existing vicious cycle to inform decision making and policy implementation.

Keywords: agriculture, environmental sustainability, gold Mining, synergies, trade-off, water-energy-food nexus

Procedia PDF Downloads 163
2890 Depressive-Like Behavior in a Murine Model of Colorectal Cancer Associated with Altered Cytokine Levels in Stress-Related Brain Regions

Authors: D. O. Miranda, L. R. Azevedo, J. F. C. Cordeiro, A. H. Dos Santos, S. F. Lisboa, F. S. Guimarães, G. S. Bisson

Abstract:

Background: The Colorectal cancer (CRC) is one of the most common cancers and the fourth leading cause of cancer death in the world. The prevalence of psychiatric-disorders among CRC patients, mainly depression, is high, resulting in impaired quality of life and side effects of primary treatment. High levels of proinflammatory cytokines at tumor microenvironment is a feature of CRC and the literature suggests that those mediators could contribute to the development of psychiatric disorders. Nevertheless, the ability of tumor-associated biological processes to affect the central nervous system (CNS) has only recently been explored in the context of symptoms of depression and is still not well understood. Therefore, the aim of the present study was to test the hypothesis that depressive-like behavior in an experimental model of CCR induced by N-methyl-N-nitro-N-nitrosoguanidine (MNNG) was correlated to proinflammatory profile in the periphery and in the brain. Methods: Colorectal carcinogenesis was induced in adult C57BL/6 mice (n=12) by administration of MNNG (5mg/kg, 0.1ml/intrarectal instillation) 2 times a week, for 2 week. Control group (n=12) received saline (0.1ml/intrarectal instillation). Eight weeks after beginning of MNNG administration animals were submitted to the forced swim test (FST) and the sucrose preference test for evaluation, respectively, of depressive- and anhedonia-like behaviors. After behavioral evaluation, the colon was collected and brain regions dissected (cortex-C, striatum-ST and hippocampus-HIP) for posterior evaluation of cytokine levels (IL-1β, IL-10, IL-17, and CX3CL1) by ELISA. Results: MNNG induced depressive-like behavior, represented by increased immobility time in the FST (Student t test, p < 0.05) and lower sucrose preference (Student t test, p < 0.05). Moreover, there were increased levels of IL-1β, IL-17 and CX3CL1 in the colonic tissue (Student t test, p < 0.05) and in the brain (IL-1 β in the ST and HIP, Student t test, p < 0.05; IL-17 and CX3CL1 in the C and HIP, p < 0.05). IL-10 levels, in contrast, were decreased in both the colon (p < 0.05) and the brain (C and HIP, p < 0.05). Conclusions: The results obtained in the present work support the notion that tumor growth induces neuroinflammation in stress-related brain regions and depressive-like behavior, which could be related to the high incidence of depression in colorectal carcinogenesis. This work have important clinical and research implications, taken into account that cytokine levels may be a marker promissory for the developing depression in CRC patients. New therapeutic strategies to assist in alleviating mental suffering in cancer patients might result from a better understanding of the role of cytokines in the pathophysiology of depression in these subjects.

Keywords: cytokines, brain, depression, colorectal cancer

Procedia PDF Downloads 270