Search results for: neural interface
948 The Role of Named Entity Recognition for Information Extraction
Authors: Girma Yohannis Bade, Olga Kolesnikova, Grigori Sidorov
Abstract:
Named entity recognition (NER) is a building block for information extraction. Though the information extraction process has been automated using a variety of techniques to find and extract a piece of relevant information from unstructured documents, the discovery of targeted knowledge still poses a number of research difficulties because of the variability and lack of structure in Web data. NER, a subtask of information extraction (IE), came to exist to smooth such difficulty. It deals with finding the proper names (named entities), such as the name of the person, country, location, organization, dates, and event in a document, and categorizing them as predetermined labels, which is an initial step in IE tasks. This survey paper presents the roles and importance of NER to IE from the perspective of different algorithms and application area domains. Thus, this paper well summarizes how researchers implemented NER in particular application areas like finance, medicine, defense, business, food science, archeology, and so on. It also outlines the three types of sequence labeling algorithms for NER such as feature-based, neural network-based, and rule-based. Finally, the state-of-the-art and evaluation metrics of NER were presented.Keywords: the role of NER, named entity recognition, information extraction, sequence labeling algorithms, named entity application area
Procedia PDF Downloads 84947 Magnetic Investigation and 2½D Gravity Profile Modelling across the Beattie Magnetic Anomaly in the Southeastern Karoo Basin, South Africa
Authors: Christopher Baiyegunhi, Oswald Gwavava
Abstract:
The location/source of the Beattie magnetic anomaly (BMA) and interconnectivity of geologic structures at depth have been a topic of investigation for over 30 years. Up to now, no relationship between geological structures (interconnectivity of dolerite intrusions) at depth has been established. Therefore, the environmental impact of fracking the Karoo for shale gas could not be assessed despite the fact that dolerite dykes are groundwater localizers in the Karoo. In this paper, we shed more light to the unanswered questions concerning the possible location of the source of the BMA, the connectivity of geologic structures like dolerite dykes and sills at depth and this relationship needs to be established before the tectonic evolution of the Karoo basin can be fully understood and related to fracking of the Karoo for shale gas. The result of the magnetic investigation and modelling of four gravity profiles that crosses the BMA in the study area reveals that the anomaly, which is part of the Beattie magnetic anomaly tends to divide into two anomalies and continue to trend in an NE-SW direction, the dominant gravity signatures is of long wavelength that is due to a deep source/interface inland and shallows towards the coast, the average depth to the top of the shallow and deep magnetic sources was estimated to be approximately 0.6 km and 15 km, respectively. The BMA become stronger with depth which could be an indication that the source(s) is deep possibly a buried body in the basement. The bean-shaped anomaly also behaves in a similar manner like the BMA thus it could possibly share the same source(s) with the BMA.Keywords: Beattie magnetic anomaly, magnetic sources, modelling, Karoo Basin
Procedia PDF Downloads 560946 Design and Implementation of Agricultural Machinery Equipment Scheduling Platform Based On Case-Based Reasoning
Authors: Wen Li, Zhengyu Bai, Qi Zhang
Abstract:
The demand for smart scheduling platform in agriculture, particularly in the scheduling process of machinery equipment, is high. With the continuous development of agricultural machinery equipment technology, a large number of agricultural machinery equipment and agricultural machinery cooperative service organizations continue to appear in China. The large area of cultivated land and a large number of agricultural activities in the central and western regions of China have made the demand for smart and efficient agricultural machinery equipment scheduling platforms more intense. In this study, we design and implement a platform for agricultural machinery equipment scheduling to allocate agricultural machinery equipment resources reasonably. With agricultural machinery equipment scheduling platform taken as the research object, we discuss its research significance and value, use the service blueprint technology to analyze and characterize the agricultural machinery equipment schedule workflow, the network analytic method to obtain the demand platform function requirements, and divide the platform functions through the platform function division diagram. Simultaneously, based on the case-based reasoning (CBR) algorithm, the equipment scheduling module of the agricultural machinery equipment scheduling platform is realized; finally, a design scheme of the agricultural machinery equipment scheduling platform architecture is provided, and the visualization interface of the platform is established via VB programming language. It provides design ideas and theoretical support for the construction of a modern agricultural equipment information scheduling platform.Keywords: case-based reasoning, service blueprint, system design, ANP, VB programming language
Procedia PDF Downloads 181945 Deepnic, A Method to Transform Each Variable into Image for Deep Learning
Authors: Nguyen J. M., Lucas G., Brunner M., Ruan S., Antonioli D.
Abstract:
Deep learning based on convolutional neural networks (CNN) is a very powerful technique for classifying information from an image. We propose a new method, DeepNic, to transform each variable of a tabular dataset into an image where each pixel represents a set of conditions that allow the variable to make an error-free prediction. The contrast of each pixel is proportional to its prediction performance and the color of each pixel corresponds to a sub-family of NICs. NICs are probabilities that depend on the number of inputs to each neuron and the range of coefficients of the inputs. Each variable can therefore be expressed as a function of a matrix of 2 vectors corresponding to an image whose pixels express predictive capabilities. Our objective is to transform each variable of tabular data into images into an image that can be analysed by CNNs, unlike other methods which use all the variables to construct an image. We analyse the NIC information of each variable and express it as a function of the number of neurons and the range of coefficients used. The predictive value and the category of the NIC are expressed by the contrast and the color of the pixel. We have developed a pipeline to implement this technology and have successfully applied it to genomic expressions on an Affymetrix chip.Keywords: tabular data, deep learning, perfect trees, NICS
Procedia PDF Downloads 95944 Computer-Aided Diagnosis of Polycystic Kidney Disease Using ANN
Authors: G. Anjan Babu, G. Sumana, M. Rajasekhar
Abstract:
Many inherited diseases and non-hereditary disorders are common in the development of renal cystic diseases. Polycystic kidney disease (PKD) is a disorder developed within the kidneys in which grouping of cysts filled with water like fluid. PKD is responsible for 5-10% of end-stage renal failure treated by dialysis or transplantation. New experimental models, application of molecular biology techniques have provided new insights into the pathogenesis of PKD. Researchers are showing keen interest for developing an automated system by applying computer aided techniques for the diagnosis of diseases. In this paper a multi-layered feed forward neural network with one hidden layer is constructed, trained and tested by applying back propagation learning rule for the diagnosis of PKD based on physical symptoms and test results of urinanalysis collected from the individual patients. The data collected from 50 patients are used to train and test the network. Among these samples, 75% of the data used for training and remaining 25% of the data are used for testing purpose. Furthermore, this trained network is used to implement for new samples. The output results in normality and abnormality of the patient.Keywords: dialysis, hereditary, transplantation, polycystic, pathogenesis
Procedia PDF Downloads 386943 Online Yoga Asana Trainer Using Deep Learning
Authors: Venkata Narayana Chejarla, Nafisa Parvez Shaik, Gopi Vara Prasad Marabathula, Deva Kumar Bejjam
Abstract:
Yoga is an advanced, well-recognized method with roots in Indian philosophy. Yoga benefits both the body and the psyche. Yoga is a regular exercise that helps people relax and sleep better while also enhancing their balance, endurance, and concentration. Yoga can be learned in a variety of settings, including at home with the aid of books and the internet as well as in yoga studios with the guidance of an instructor. Self-learning does not teach the proper yoga poses, and doing them without the right instruction could result in significant injuries. We developed "Online Yoga Asana Trainer using Deep Learning" so that people could practice yoga without a teacher. Our project is developed using Tensorflow, Movenet, and Keras models. The system makes use of data from Kaggle that includes 25 different yoga poses. The first part of the process involves applying the movement model for extracting the 17 key points of the body from the dataset, and the next part involves preprocessing, which includes building a pose classification model using neural networks. The system scores a 98.3% accuracy rate. The system is developed to work with live videos.Keywords: yoga, deep learning, movenet, tensorflow, keras, CNN
Procedia PDF Downloads 247942 Suspended Nickel Oxide Nano-Beam and Its Heterostructure Device for Gas Sensing
Authors: Kusuma Urs M. B., Navakant Bhat, Vinayak B. Kamble
Abstract:
Metal oxide semiconductors (MOS) are known to be excellent candidates for solid-state gas sensor devices. However, in spite of high sensitivities, their high operating temperatures and lack of selectivity is a big concern limiting their practical applications. A lot of research has been devoted so far to enhance their sensitivity and selectivity, often empirically. Some of the promising routes to achieve the same are reducing dimensionality and formation of heterostructures. These heterostructures offer improved sensitivity, selectivity even at relatively low operating temperatures compared to bare metal oxides. Thus, a combination of n-type and p-type metal oxides leads to the formation of p-n junction at the interface resulting in the diffusion of the carriers across the barrier along with the surface adsorption. In order to achieve this and to study their sensing mechanism, we have designed and lithographically fabricated a suspended nanobeam of NiO, which is a p-type semiconductor. The response of the same has been studied for various gases and is found to exhibit selective response towards hydrogen gas at room temperature. Further, the same has been radially coated with TiO₂ shell of varying thicknesses, in order to study the effect of radial p-n junction thus formed. Subsequently, efforts have been made to study the effect of shell thickness on the space charge region and to shed some light on the basic mechanism involved in gas sensing of MOS sensors.Keywords: gas sensing, heterostructure, metal oxide semiconductor, space charge region
Procedia PDF Downloads 136941 The Use of Robots for Children and Young People on the Autism Spectrum: A Systematic Review
Authors: Athanasia Kouroupa
Abstract:
Existing research highlights the effect of employing robots in sessions with children and young people on the autism spectrum to develop and practice skills important to independent and functional living. The systematic review aimed to explore the way robots has been used with children and young people on the autism spectrum and the effect of using robots as a therapeutic interface. An electronic bibliographic database search using a combination of expressions was conducted. Data were extracted in relation to robot types, session characteristics, and outcomes and analysed using narrative synthesis. Forty studies were selected in the review. Humanoid robots were predominantly used to practice a range of social and communication skills. On average, children and young people on the autism spectrum had five sessions, twice a week, for approximately half an hour. Having sessions with a robot was commonly equal to or more effective than 'traditional' interventions delivered by a human therapist or having no therapy. The review reported encouraging outcomes to practice and develop a range of skills with children and young people on the autism spectrum. These findings suggest that some form of intervention is favourable over no intervention. However, there is little evidence for the relative effectiveness of the robot-based intervention as an innovative alternative option. Many of the studies had methodological weaknesses that make them vulnerable to bias. There is a need for further research that adheres to strict scientific methods making direct comparisons between different treatment options.Keywords: autism, children, robots, outcomes
Procedia PDF Downloads 144940 Effect of Surface Preparation of Concrete Substrate on Bond Tensile Strength of Thin Bonded Cement Based Overlays
Authors: S. Asad Ali Gillani, Ahmed Toumi, Anaclet Turatsinze
Abstract:
After a certain period of time, the degradation of concrete structures is unavoidable. For large concrete areas, thin bonded cement-based overlay is a suitable rehabilitation technique. Previous research demonstrated that durability of bonded cement-based repairs is always a problem and one of its main reasons is deboning at interface. Since durability and efficiency of any repair system mainly depend upon the bond between concrete substrate and repair material, the bond between concrete substrate and repair material can be improved by increasing the surface roughness. The surface roughness can be improved by performing surface treatment of the concrete substrate to enhance mechanical interlocking which is one of the basic mechanisms of adhesion between two surfaces. In this research, bond tensile strength of cement-based overlays having substrate surface prepared using different techniques has been characterized. In first step cement based substrate was prepared and then cured for three months. After curing two different types of the surface treatments were performed on this substrate; cutting and sandblasting. In second step overlay was cast on these prepared surfaces, which were cut and sandblasted surfaces. The overlay was also cast on the surface without any treatment. Finally, bond tensile strength of cement-based overlays was evaluated in direct tension test and the results are discussed in this paper.Keywords: concrete substrate, surface preparation, overlays, bond tensile strength
Procedia PDF Downloads 461939 Humans Trust Building in Robots with the Help of Explanations
Authors: Misbah Javaid, Vladimir Estivill-Castro, Rene Hexel
Abstract:
The field of robotics is advancing rapidly to the point where robots have become an integral part of the modern society. These robots collaborate and contribute productively with humans and compensate some shortcomings from human abilities and complement them with their skills. Effective teamwork of humans and robots demands to investigate the critical issue of trust. The field of human-computer interaction (HCI) has already examined trust humans place in technical systems mostly on issues like reliability and accuracy of performance. Early work in the area of expert systems suggested that automatic generation of explanations improved trust and acceptability of these systems. In this work, we augmented a robot with the user-invoked explanation generation proficiency. To measure explanations effect on human’s level of trust, we collected subjective survey measures and behavioral data in a human-robot team task into an interactive, adversarial and partial information environment. The results showed that with the explanation capability humans not only understand and recognize robot as an expert team partner. But, it was also observed that human's learning and human-robot team performance also significantly improved because of the meaningful interaction with the robot in the human-robot team. Moreover, by observing distinctive outcomes, we expect our research outcomes will also provide insights into further improvement of human-robot trustworthy relationships.Keywords: explanation interface, adversaries, partial observability, trust building
Procedia PDF Downloads 204938 Influence Analysis of Macroeconomic Parameters on Real Estate Price Variation in Taipei, Taiwan
Authors: Li Li, Kai-Hsuan Chu
Abstract:
It is well known that the real estate price depends on a lot of factors. Each house current value is dependent on the location, room number, transportation, living convenience, year and surrounding environments. Although, there are different experienced models for housing agent to estimate the price, it is a case by case study without overall dynamic variation investigation. However, many economic parameters may more or less influence the real estate price variation. Here, the influences of most macroeconomic parameters on real estate price are investigated individually based on least-square scheme and grey correlation strategy. Then those parameters are classified into leading indices, simultaneous indices and laggard indices. In addition, the leading time period is evaluated based on least square method. The important leading and simultaneous indices can be used to establish an artificial intelligent neural network model for real estate price variation prediction. The real estate price variation of Taipei, Taiwan during 2005 ~ 2017 are chosen for this research data analysis and validation. The results show that the proposed method has reasonable prediction function for real estate business reference.Keywords: real estate price, least-square, grey correlation, macroeconomics
Procedia PDF Downloads 203937 Human Action Recognition Using Wavelets of Derived Beta Distributions
Authors: Neziha Jaouedi, Noureddine Boujnah, Mohamed Salim Bouhlel
Abstract:
In the framework of human machine interaction systems enhancement, we focus throw this paper on human behavior analysis and action recognition. Human behavior is characterized by actions and reactions duality (movements, psychological modification, verbal and emotional expression). It’s worth noting that many information is hidden behind gesture, sudden motion points trajectories and speeds, many research works reconstructed an information retrieval issues. In our work we will focus on motion extraction, tracking and action recognition using wavelet network approaches. Our contribution uses an analysis of human subtraction by Gaussian Mixture Model (GMM) and body movement through trajectory models of motion constructed from kalman filter. These models allow to remove the noise using the extraction of the main motion features and constitute a stable base to identify the evolutions of human activity. Each modality is used to recognize a human action using wavelets of derived beta distributions approach. The proposed approach has been validated successfully on a subset of KTH and UCF sports database.Keywords: feautures extraction, human action classifier, wavelet neural network, beta wavelet
Procedia PDF Downloads 414936 Mathematical Description of Functional Motion and Application as a Feeding Mode for General Purpose Assistive Robots
Authors: Martin Leroux, Sylvain Brisebois
Abstract:
Eating a meal is among the Activities of Daily Living, but it takes a lot of time and effort for people with physical or functional limitations. Dedicated technologies are cumbersome and not portable, while general-purpose assistive robots such as wheelchair-based manipulators are too hard to control for elaborate continuous motion like eating. Eating with such devices has not previously been automated, since there existed no description of a feeding motion for uncontrolled environments. In this paper, we introduce a feeding mode for assistive manipulators, including a mathematical description of trajectories for motions that are difficult to perform manually such as gathering and scooping food at a defined/desired pace. We implement these trajectories in a sequence of movements for a semi-automated feeding mode which can be controlled with a very simple 3-button interface, allowing the user to have control over the feeding pace. Finally, we demonstrate the feeding mode with a JACO robotic arm and compare the eating speed, measured in bites per minute of three eating methods: a healthy person eating unaided, a person with upper limb limitations or disability using JACO with manual control, and a person with limitations using JACO with the feeding mode. We found that the feeding mode allows eating about 5 bites per minute, which should be sufficient to eat a meal under 30min.Keywords: assistive robotics, automated feeding, elderly care, trajectory design, human-robot interaction
Procedia PDF Downloads 165935 Subjective Time as a Marker of the Present Consciousness
Authors: Anastasiya Paltarzhitskaya
Abstract:
Subjective time plays an important role in consciousness processes and self-awareness at the moment. The concept of intrinsic neural timescales (INT) explains the difference in perceiving various time intervals. The capacity to experience the present builds on the fundamental properties of temporal cognition. The challenge that both philosophy and neuroscience try to answer is how the brain differentiates the present from the past and future. In our work, we analyze papers which describe mechanisms involved in the perception of ‘present’ and ‘non-present’, i.e., future and past moments. Taking into account that we perceive time intervals even during rest or relaxation, we suppose that the default-mode network activity can code time features, including the present moment. We can compare some results of time perceptual studies, where brain activity was shown in states with different flows of time, including resting states and during “mental time travel”. According to the concept of mental traveling, we employ a range of scenarios which demand episodic memory. However, some papers show that the hippocampal region does not activate during time traveling. It is a controversial result that is further complicated by the phenomenological aspect that includes a holistic set of information about the individual’s past and future.Keywords: temporal consciousness, time perception, memory, present
Procedia PDF Downloads 79934 Screening Deformed Red Blood Cells Irradiated by Ionizing Radiations Using Windowed Fourier Transform
Authors: Dahi Ghareab Abdelsalam Ibrahim, R. H. Bakr
Abstract:
Ionizing radiation, such as gamma radiation and X-rays, has many applications in medical diagnoses and cancer treatment. In this paper, we used the windowed Fourier transform to extract the complex image of the deformed red blood cells. The real values of the complex image are used to extract the best fitting of the deformed cell boundary. Male albino rats are irradiated by γ-rays from ⁶⁰Co. The male albino rats are anesthetized with ether, and then blood samples are collected from the eye vein by heparinized capillary tubes for studying the radiation-damaging effect in-vivo by the proposed windowed Fourier transform. The peripheral blood films are prepared according to the Brown method. The peripheral blood film is photographed by using an Automatic Image Contour Analysis system (SAMICA) from ELBEK-Bildanalyse GmbH, Siegen, Germany. The SAMICA system is provided with an electronic camera connected to a computer through a built-in interface card, and the image can be magnified up to 1200 times and displayed by the computer. The images of the peripheral blood films are then analyzed by the windowed Fourier transform method to extract the precise deformation from the best fitting. Based on accurate deformation evaluation of the red blood cells, diseases can be diagnosed in their primary stages.Keywords: windowed Fourier transform, red blood cells, phase wrapping, Image processing
Procedia PDF Downloads 90933 Prediction of Boundary Shear Stress with Gradually Tapering Flood Plains
Authors: Spandan Sahu, Amiya Kumar Pati, Kishanjit Kumar Khatua
Abstract:
River is the main source of water. It is a form of natural open channel which gives rise to many complex phenomenon of sciences that needs to be tackled such as the critical flow conditions, boundary shear stress and depth averaged velocity. The development of society more or less solely depends upon the flow of rivers. The rivers are major sources of many sediments and specific ingredients which are much essential for human beings. During floods, part of a river is carried by the simple main channel and rest is carried by flood plains. For such compound asymmetric channels, the flow structure becomes complicated due to momentum exchange between main channel and adjoining flood plains. Distribution of boundary shear in subsections provides us with the concept of momentum transfer between the interface of main channel and the flood plains. Experimentally, to get better data with accurate results are very complex because of the complexity of the problem. Hence, Conveyance Estimation System (CES) software has been used to tackle the complex processes to determine the shear stresses at different sections of an open channel having asymmetric flood plains on both sides of the main channel and the results are compared with the symmetric flood plains for various geometrical shapes and flow conditions. Error analysis is also performed to know the degree of accuracy of the model implemented.Keywords: depth average velocity, non prismatic compound channel, relative flow depth , velocity distribution
Procedia PDF Downloads 127932 Design of a Computer Vision Based Exercise Video Game for Senior Citizens
Abstract:
There are numerous changes, both mental and physical, taking place when people age. We need to understand the different aspects required for healthy living, including meeting nutritional needs, regular physical activities to keep agility, sufficient rest and sleep to have physical and mental well-being, social engagement to avoid the risk of social isolation and depression, and access to healthcare to detect and manage chronic conditions. Promoting physical activities for an ageing population is necessary as many may have enjoyed sedentary lifestyles for some time. In our study, we evaluate the considerations when designing a computer vision video game for the elderly. We need to design some low-impact activities, such as stretching and gentle movements, because some elderly individuals may have joint pains or mobility issues. The exercise game should consist of simple movements that are easy to follow and remember. It should be fun and enjoyable so that they can be motivated to do some exercise. Social engagement can keep the elderly motivated and competitive, and they are more willing to engage in game exercises. Elderly citizens can compare their game scores and try to improve them. We propose a computer vision-based video game for the elderly that will capture and track the movement of the elderly hand pushing a ball on the screen into a circle. It can be easily set up using a PC laptop with a webcam. Our video game adhered to the design framework we employed, and it encompassed ease of use, a simple graphical interface, easy-to-play game exercise, and fun gameplay.Keywords: about computer vision, video games, gerontology technology, caregiving
Procedia PDF Downloads 87931 Optimizing Machine Learning Algorithms for Defect Characterization and Elimination in Liquids Manufacturing
Authors: Tolulope Aremu
Abstract:
The key process steps to produce liquid detergent products will introduce potential defects, such as formulation, mixing, filling, and packaging, which might compromise product quality, consumer safety, and operational efficiency. Real-time identification and characterization of such defects are of prime importance for maintaining high standards and reducing waste and costs. Usually, defect detection is performed by human inspection or rule-based systems, which is very time-consuming, inconsistent, and error-prone. The present study overcomes these limitations in dealing with optimization in defect characterization within the process for making liquid detergents using Machine Learning algorithms. Performance testing of various machine learning models was carried out: Support Vector Machine, Decision Trees, Random Forest, and Convolutional Neural Network on defect detection and classification of those defects like wrong viscosity, color deviations, improper filling of a bottle, packaging anomalies. These algorithms have significantly benefited from a variety of optimization techniques, including hyperparameter tuning and ensemble learning, in order to greatly improve detection accuracy while minimizing false positives. Equipped with a rich dataset of defect types and production parameters consisting of more than 100,000 samples, our study further includes information from real-time sensor data, imaging technologies, and historic production records. The results are that optimized machine learning models significantly improve defect detection compared to traditional methods. Take, for instance, the CNNs, which run at 98% and 96% accuracy in detecting packaging anomaly detection and bottle filling inconsistency, respectively, by fine-tuning the model with real-time imaging data, through which there was a reduction in false positives of about 30%. The optimized SVM model on detecting formulation defects gave 94% in viscosity variation detection and color variation. These values of performance metrics correspond to a giant leap in defect detection accuracy compared to the usual 80% level achieved up to now by rule-based systems. Moreover, this optimization with models can hasten defect characterization, allowing for detection time to be below 15 seconds from an average of 3 minutes using manual inspections with real-time processing of data. With this, the reduction in time will be combined with a 25% reduction in production downtime because of proactive defect identification, which can save millions annually in recall and rework costs. Integrating real-time machine learning-driven monitoring drives predictive maintenance and corrective measures for a 20% improvement in overall production efficiency. Therefore, the optimization of machine learning algorithms in defect characterization optimum scalability and efficiency for liquid detergent companies gives improved operational performance to higher levels of product quality. In general, this method could be conducted in several industries within the Fast moving consumer Goods industry, which would lead to an improved quality control process.Keywords: liquid detergent manufacturing, defect detection, machine learning, support vector machines, convolutional neural networks, defect characterization, predictive maintenance, quality control, fast-moving consumer goods
Procedia PDF Downloads 24930 Satellite Imagery Classification Based on Deep Convolution Network
Authors: Zhong Ma, Zhuping Wang, Congxin Liu, Xiangzeng Liu
Abstract:
Satellite imagery classification is a challenging problem with many practical applications. In this paper, we designed a deep convolution neural network (DCNN) to classify the satellite imagery. The contributions of this paper are twofold — First, to cope with the large-scale variance in the satellite image, we introduced the inception module, which has multiple filters with different size at the same level, as the building block to build our DCNN model. Second, we proposed a genetic algorithm based method to efficiently search the best hyper-parameters of the DCNN in a large search space. The proposed method is evaluated on the benchmark database. The results of the proposed hyper-parameters search method show it will guide the search towards better regions of the parameter space. Based on the found hyper-parameters, we built our DCNN models, and evaluated its performance on satellite imagery classification, the results show the classification accuracy of proposed models outperform the state of the art method.Keywords: satellite imagery classification, deep convolution network, genetic algorithm, hyper-parameter optimization
Procedia PDF Downloads 303929 A Conversational Chatbot for Cricket Analytics
Authors: Kishan Bharadwaj Shridhar
Abstract:
Cricket is a data-rich sport, generating vast amounts of information, much of which is captured as textual commentary. Leading cricket data providers, such as ESPN Cricinfo include valuable Decision Review System (DRS) statistics within these commentaries, often as footnotes. Despite the significance of this data, accessing and analyzing it efficiently remains a challenge. This paper presents the development of a sophisticated chatbot designed to answer queries specifically about DRS in cricket. It supports up to seven distinct query types, including individual player statistics, umpire performance, player vs umpire dynamics, comparisons between batter and bowler, a player’s record at specific venues and more. Additionally, it enables stateful conversations, allowing a user to seamlessly build upon previous queries for a fluid and interactive experience. Leveraging advanced text-to-SQL methodologies and open-source frameworks such as Langgraph, it ensures low latency and robust performance. A distinct prompt engineering module enables the system to accurately interpret query intent, dynamically transitioning to an assisted text-to-SQL approach or a rule-based engine, as needed. This solution is the one of its kind in cricket analytics, offering unparalleled insights in cricket through an intuitive interface. It can be extended to other facets of cricket data and beyond, to other sports that generate textual data.Keywords: conversational AI, cricket data analytics, text to SQL, large language models, stateful conversations.
Procedia PDF Downloads 17928 Experimental Study and Evaluation of Farm Environmental Monitoring System Based on the Internet of Things, Sudan
Authors: Farid Eltom A. E., Mustafa Abdul-Halim, Abdalla Markaz, Sami Atta, Mohamed Azhari, Ahmed Rashed
Abstract:
Smart environment sensors integrated with ‘Internet of Things’ (IoT) technology can provide a new concept in tracking, sensing, and monitoring objects in the environment. The aim of the study is to evaluate the farm environmental monitoring system based on (IoT) and to realize the automated management of agriculture and the implementation of precision production. Until now, irrigation monitoring operations in Sudan have been carried out using traditional methods, which is a very costly and unreliable mechanism. However, by utilizing soil moisture sensors, irrigation can be conducted only when needed without fear of plant water stress. The result showed that software application allows farmers to display current and historical data on soil moisture and nutrients in the form of line charts. Design measurements of the soil factors: moisture, electrical, humidity, conductivity, temperature, pH, phosphorus, and potassium; these factors, together with a timestamp, are sent to the data server using the Lora WAN interface. It is considered scientifically agreed upon in the modern era that artificial intelligence works to arrange the necessary procedures to take care of the terrain, predict the quality and quantity of production through deep analysis of the various operations in agricultural fields, and also support monitoring of weather conditions.Keywords: smart environment, monitoring systems, IoT, LoRa Gateway, center pivot
Procedia PDF Downloads 50927 The Neurofunctional Dissociation between Animal and Tool Concepts: A Network-Based Model
Authors: Skiker Kaoutar, Mounir Maouene
Abstract:
Neuroimaging studies have shown that animal and tool concepts rely on distinct networks of brain areas. Animal concepts depend predominantly on temporal areas while tool concepts rely on fronto-temporo-parietal areas. However, the origin of this neurofunctional distinction for processing animal and tool concepts remains still unclear. Here, we address this question from a network perspective suggesting that the neural distinction between animals and tools might reflect the differences in their structural semantic networks. We build semantic networks for animal and tool concepts derived from McRae and colleagues’s behavioral study conducted on a large number of participants. These two networks are thus analyzed through a large number of graph theoretical measures for small-worldness: centrality, clustering coefficient, average shortest path length, as well as resistance to random and targeted attacks. The results indicate that both animal and tool networks have small-world properties. More importantly, the animal network is more vulnerable to targeted attacks compared to the tool network a result that correlates with brain lesions studies.Keywords: animals, tools, network, semantics, small-worls, resilience to damage
Procedia PDF Downloads 547926 Distributed Real-time Framework for Experimental Multi Aerial Robotic Systems
Authors: Samuel Knox, Verdon Crann, Peyman Amiri, William Crowther
Abstract:
There exists a shortage of open-source firmware for allowing researchers to focus on implementing high-level planning and control strategies for multi aerial robotic systems in simulation and experiment. Within this body of work, practical firmware is presented, which performs all supplementary tasks, including communications, pre and post-experiment procedures, and emergency safety measures. This allows researchers to implement high-level planning and control algorithms for path planning, traffic management, flight formation and swarming of aerial robots. The framework is built in Python using the MAVSDK library, which is compatible with flight controllers running PX4 firmware and onboard computers based on Linux. Communication is performed using Wi-Fi and the MQTT protocol, currently implemented using a centralized broker. Finally, a graphical user interface (GUI) has been developed to send general commands and monitor the agents. This framework enables researchers to prepare customized planning and control algorithms in a modular manner. Studies can be performed experimentally and in simulation using PX4 software in the loop (SITL) and the Gazebo simulator. An example experimental use case of the framework is presented using novel distributed planning and control strategies. The demonstration is performed using off-the-shelf components and minimal setup.Keywords: aerial robotics, distributed framework, experimental, planning and control
Procedia PDF Downloads 119925 Using Machine-Learning Methods for Allergen Amino Acid Sequence's Permutations
Authors: Kuei-Ling Sun, Emily Chia-Yu Su
Abstract:
Allergy is a hypersensitive overreaction of the immune system to environmental stimuli, and a major health problem. These overreactions include rashes, sneezing, fever, food allergies, anaphylaxis, asthmatic, shock, or other abnormal conditions. Allergies can be caused by food, insect stings, pollen, animal wool, and other allergens. Their development of allergies is due to both genetic and environmental factors. Allergies involve immunoglobulin E antibodies, a part of the body’s immune system. Immunoglobulin E antibodies will bind to an allergen and then transfer to a receptor on mast cells or basophils triggering the release of inflammatory chemicals such as histamine. Based on the increasingly serious problem of environmental change, changes in lifestyle, air pollution problem, and other factors, in this study, we both collect allergens and non-allergens from several databases and use several machine learning methods for classification, including logistic regression (LR), stepwise regression, decision tree (DT) and neural networks (NN) to do the model comparison and determine the permutations of allergen amino acid’s sequence.Keywords: allergy, classification, decision tree, logistic regression, machine learning
Procedia PDF Downloads 310924 Ensemble of Deep CNN Architecture for Classifying the Source and Quality of Teff Cereal
Authors: Belayneh Matebie, Michael Melese
Abstract:
The study focuses on addressing the challenges in classifying and ensuring the quality of Eragrostis Teff, a small and round grain that is the smallest cereal grain. Employing a traditional classification method is challenging because of its small size and the similarity of its environmental characteristics. To overcome this, this study employs a machine learning approach to develop a source and quality classification system for Teff cereal. Data is collected from various production areas in the Amhara regions, considering two types of cereal (high and low quality) across eight classes. A total of 5,920 images are collected, with 740 images for each class. Image enhancement techniques, including scaling, data augmentation, histogram equalization, and noise removal, are applied to preprocess the data. Convolutional Neural Network (CNN) is then used to extract relevant features and reduce dimensionality. The dataset is split into 80% for training and 20% for testing. Different classifiers, including FVGG16, FINCV3, QSCTC, EMQSCTC, SVM, and RF, are employed for classification, achieving accuracy rates ranging from 86.91% to 97.72%. The ensemble of FVGG16, FINCV3, and QSCTC using the Max-Voting approach outperforms individual algorithms.Keywords: Teff, ensemble learning, max-voting, CNN, SVM, RF
Procedia PDF Downloads 59923 Application of Data Mining Techniques for Tourism Knowledge Discovery
Authors: Teklu Urgessa, Wookjae Maeng, Joong Seek Lee
Abstract:
Application of five implementations of three data mining classification techniques was experimented for extracting important insights from tourism data. The aim was to find out the best performing algorithm among the compared ones for tourism knowledge discovery. Knowledge discovery process from data was used as a process model. 10-fold cross validation method is used for testing purpose. Various data preprocessing activities were performed to get the final dataset for model building. Classification models of the selected algorithms were built with different scenarios on the preprocessed dataset. The outperformed algorithm tourism dataset was Random Forest (76%) before applying information gain based attribute selection and J48 (C4.5) (75%) after selection of top relevant attributes to the class (target) attribute. In terms of time for model building, attribute selection improves the efficiency of all algorithms. Artificial Neural Network (multilayer perceptron) showed the highest improvement (90%). The rules extracted from the decision tree model are presented, which showed intricate, non-trivial knowledge/insight that would otherwise not be discovered by simple statistical analysis with mediocre accuracy of the machine using classification algorithms.Keywords: classification algorithms, data mining, knowledge discovery, tourism
Procedia PDF Downloads 300922 Use of Computer and Machine Learning in Facial Recognition
Authors: Neha Singh, Ananya Arora
Abstract:
Facial expression measurement plays a crucial role in the identification of emotion. Facial expression plays a key role in psychophysiology, neural bases, and emotional disorder, to name a few. The Facial Action Coding System (FACS) has proven to be the most efficient and widely used of the various systems used to describe facial expressions. Coders can manually code facial expressions with FACS and, by viewing video-recorded facial behaviour at a specified frame rate and slow motion, can decompose into action units (AUs). Action units are the most minor visually discriminable facial movements. FACS explicitly differentiates between facial actions and inferences about what the actions mean. Action units are the fundamental unit of FACS methodology. It is regarded as the standard measure for facial behaviour and finds its application in various fields of study beyond emotion science. These include facial neuromuscular disorders, neuroscience, computer vision, computer graphics and animation, and face encoding for digital processing. This paper discusses the conceptual basis for FACS, a numerical listing of discrete facial movements identified by the system, the system's psychometric evaluation, and the software's recommended training requirements.Keywords: facial action, action units, coding, machine learning
Procedia PDF Downloads 110921 Modelling and Investigation of Phase Change Phenomena of Multiple Water Droplets
Authors: K. R. Sultana, K. Pope, Y. S. Muzychka
Abstract:
In recent years, the research of heat transfer or phase change phenomena of liquid water droplets experiences a growing interest in aircraft icing, power transmission line icing, marine icing and wind turbine icing applications. This growing interest speeding up the research from single to multiple droplet phenomena. Impingements of multiple droplets and the resulting solidification phenomena after impact on a very cold surface is computationally studied in this paper. The model used in the current study solves the flow equation, composed of energy balance and the volume fraction equations. The main aim of the study is to investigate the effects of several thermo-physical properties (density, thermal conductivity and specific heat) on droplets freezing. The outcome is examined by various important factors, for instance, liquid fraction, total freezing time, droplet temperature and total heat transfer rate in the interface region. The liquid fraction helps to understand the complete phase change phenomena during solidification. Temperature distribution and heat transfer rate help to demonstrate the overall thermal exchange behaviors between the droplets and substrate surface. Findings of this research provide an important technical achievement for ice modeling and prediction studies.Keywords: droplets, CFD, thermos-physical properties, solidification
Procedia PDF Downloads 246920 Aspect-Level Sentiment Analysis with Multi-Channel and Graph Convolutional Networks
Authors: Jiajun Wang, Xiaoge Li
Abstract:
The purpose of the aspect-level sentiment analysis task is to identify the sentiment polarity of aspects in a sentence. Currently, most methods mainly focus on using neural networks and attention mechanisms to model the relationship between aspects and context, but they ignore the dependence of words in different ranges in the sentence, resulting in deviation when assigning relationship weight to other words other than aspect words. To solve these problems, we propose a new aspect-level sentiment analysis model that combines a multi-channel convolutional network and graph convolutional network (GCN). Firstly, the context and the degree of association between words are characterized by Long Short-Term Memory (LSTM) and self-attention mechanism. Besides, a multi-channel convolutional network is used to extract the features of words in different ranges. Finally, a convolutional graph network is used to associate the node information of the dependency tree structure. We conduct experiments on four benchmark datasets. The experimental results are compared with those of other models, which shows that our model is better and more effective.Keywords: aspect-level sentiment analysis, attention, multi-channel convolution network, graph convolution network, dependency tree
Procedia PDF Downloads 226919 Operator Optimization Based on Hardware Architecture Alignment Requirements
Authors: Qingqing Gai, Junxing Shen, Yu Luo
Abstract:
Due to the hardware architecture characteristics, some operators tend to acquire better performance if the input/output tensor dimensions are aligned to a certain minimum granularity, such as convolution and deconvolution commonly used in deep learning. Furthermore, if the requirements are not met, the general strategy is to pad with 0 to satisfy the requirements, potentially leading to the under-utilization of the hardware resources. Therefore, for the convolution and deconvolution whose input and output channels do not meet the minimum granularity alignment, we propose to transfer the W-dimensional data to the C-dimension for computation (W2C) to enable the C-dimension to meet the hardware requirements. This scheme also reduces the number of computations in the W-dimension. Although this scheme substantially increases computation, the operator’s speed can improve significantly. It achieves remarkable speedups on multiple hardware accelerators, including Nvidia Tensor cores, Qualcomm digital signal processors (DSPs), and Huawei neural processing units (NPUs). All you need to do is modify the network structure and rearrange the operator weights offline without retraining. At the same time, for some operators, such as the Reducemax, we observe that transferring the Cdimensional data to the W-dimension(C2W) and replacing the Reducemax with the Maxpool can accomplish acceleration under certain circumstances.Keywords: convolution, deconvolution, W2C, C2W, alignment, hardware accelerator
Procedia PDF Downloads 111