Search results for: multiple myeloma
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4741

Search results for: multiple myeloma

2491 Effect of Erythropoietin Hormone Supplementation on Hypoxia-Inducible Factor1-Alpha in Rat Kidneys with Experimental Diabetic Nephropathy

Authors: Maha Deif, Alaa Eldin Hassan, Eman Shaat, Nesrine Elazhary, Eman Magdy

Abstract:

Background: Erythropoietin (EPO) is a hematopoietic factor with multiple protective effects. The aim of the present study was to investigate the potential effect of EPO administration on renal functions and hypoxia inducible factor 1-alpha (HIF-1a) in diabetic rat kidneys. Methodology: The current study was carried out on 40 male albino rats divided into four groups (n= 10 in each). Group I served as normal control, group II was the diabetic control, group III rats received EPO on the same day of diagnosis of diabetes mellitus (DM), while group IV received the first dose of EPO 2 weeks after the diagnosis of DM. Results: The results showed that EPO supplementation leads to a significant decrease in serum urea, urinary protein and creatinine clearance as well as a significant increase in renal HIF-1a in group III and IV rats compared to the diabetic control group (group II). However, fasting blood glucose was significantly decreased in group III as compared to the diabetic control group in the third week, but no significant difference was reported in the fourth week among groups II, III and IV. Conclusion: EPO administration leads to the improvement of renal functions and increased levels of HIF-1a in diabetic rats.

Keywords: erythropoietin, diabetic nephropathy, hypoxia-inducible factor1-alpha, renal functions

Procedia PDF Downloads 286
2490 Multi-Source Data Fusion for Urban Comprehensive Management

Authors: Bolin Hua

Abstract:

In city governance, various data are involved, including city component data, demographic data, housing data and all kinds of business data. These data reflects different aspects of people, events and activities. Data generated from various systems are different in form and data source are different because they may come from different sectors. In order to reflect one or several facets of an event or rule, data from multiple sources need fusion together. Data from different sources using different ways of collection raised several issues which need to be resolved. Problem of data fusion include data update and synchronization, data exchange and sharing, file parsing and entry, duplicate data and its comparison, resource catalogue construction. Governments adopt statistical analysis, time series analysis, extrapolation, monitoring analysis, value mining, scenario prediction in order to achieve pattern discovery, law verification, root cause analysis and public opinion monitoring. The result of Multi-source data fusion is to form a uniform central database, which includes people data, location data, object data, and institution data, business data and space data. We need to use meta data to be referred to and read when application needs to access, manipulate and display the data. A uniform meta data management ensures effectiveness and consistency of data in the process of data exchange, data modeling, data cleansing, data loading, data storing, data analysis, data search and data delivery.

Keywords: multi-source data fusion, urban comprehensive management, information fusion, government data

Procedia PDF Downloads 393
2489 Detecting Music Enjoyment Level Using Electroencephalogram Signals and Machine Learning Techniques

Authors: Raymond Feng, Shadi Ghiasi

Abstract:

An electroencephalogram (EEG) is a non-invasive technique that records electrical activity in the brain using scalp electrodes. Researchers have studied the use of EEG to detect emotions and moods by collecting signals from participants and analyzing how those signals correlate with their activities. In this study, researchers investigated the relationship between EEG signals and music enjoyment. Participants listened to music while data was collected. During the signal-processing phase, power spectral densities (PSDs) were computed from the signals, and dominant brainwave frequencies were extracted from the PSDs to form a comprehensive feature matrix. A machine learning approach was then taken to find correlations between the processed data and the music enjoyment level indicated by the participants. To improve on previous research, multiple machine learning models were employed, including K-Nearest Neighbors Classifier, Support Vector Classifier, and Decision Tree Classifier. Hyperparameters were used to fine-tune each model to further increase its performance. The experiments showed that a strong correlation exists, with the Decision Tree Classifier with hyperparameters yielding 85% accuracy. This study proves that EEG is a reliable means to detect music enjoyment and has future applications, including personalized music recommendation, mood adjustment, and mental health therapy.

Keywords: EEG, electroencephalogram, machine learning, mood, music enjoyment, physiological signals

Procedia PDF Downloads 62
2488 Faster, Lighter, More Accurate: A Deep Learning Ensemble for Content Moderation

Authors: Arian Hosseini, Mahmudul Hasan

Abstract:

To address the increasing need for efficient and accurate content moderation, we propose an efficient and lightweight deep classification ensemble structure. Our approach is based on a combination of simple visual features, designed for high-accuracy classification of violent content with low false positives. Our ensemble architecture utilizes a set of lightweight models with narrowed-down color features, and we apply it to both images and videos. We evaluated our approach using a large dataset of explosion and blast contents and compared its performance to popular deep learning models such as ResNet-50. Our evaluation results demonstrate significant improvements in prediction accuracy, while benefiting from 7.64x faster inference and lower computation cost. While our approach is tailored to explosion detection, it can be applied to other similar content moderation and violence detection use cases as well. Based on our experiments, we propose a "think small, think many" philosophy in classification scenarios. We argue that transforming a single, large, monolithic deep model into a verification-based step model ensemble of multiple small, simple, and lightweight models with narrowed-down visual features can possibly lead to predictions with higher accuracy.

Keywords: deep classification, content moderation, ensemble learning, explosion detection, video processing

Procedia PDF Downloads 55
2487 An Adaptive Distributed Incremental Association Rule Mining System

Authors: Adewale O. Ogunde, Olusegun Folorunso, Adesina S. Sodiya

Abstract:

Most existing Distributed Association Rule Mining (DARM) systems are still facing several challenges. One of such challenges that have not received the attention of many researchers is the inability of existing systems to adapt to constantly changing databases and mining environments. In this work, an Adaptive Incremental Mining Algorithm (AIMA) is therefore proposed to address these problems. AIMA employed multiple mobile agents for the entire mining process. AIMA was designed to adapt to changes in the distributed databases by mining only the incremental database updates and using this to update the existing rules in order to improve the overall response time of the DARM system. In AIMA, global association rules were integrated incrementally from one data site to another through Results Integration Coordinating Agents. The mining agents in AIMA were made adaptive by defining mining goals with reasoning and behavioral capabilities and protocols that enabled them to either maintain or change their goals. AIMA employed Java Agent Development Environment Extension for designing the internal agents’ architecture. Results from experiments conducted on real datasets showed that the adaptive system, AIMA performed better than the non-adaptive systems with lower communication costs and higher task completion rates.

Keywords: adaptivity, data mining, distributed association rule mining, incremental mining, mobile agents

Procedia PDF Downloads 393
2486 Quantitative Structure–Activity Relationship Analysis of Some Benzimidazole Derivatives by Linear Multivariate Method

Authors: Strahinja Z. Kovačević, Lidija R. Jevrić, Sanja O. Podunavac Kuzmanović

Abstract:

The relationship between antibacterial activity of eighteen different substituted benzimidazole derivatives and their molecular characteristics was studied using chemometric QSAR (Quantitative Structure–Activity Relationships) approach. QSAR analysis has been carried out on inhibitory activity towards Staphylococcus aureus, by using molecular descriptors, as well as minimal inhibitory activity (MIC). Molecular descriptors were calculated from the optimized structures. Principal component analysis (PCA) followed by hierarchical cluster analysis (HCA) and multiple linear regression (MLR) was performed in order to select molecular descriptors that best describe the antibacterial behavior of the compounds investigated, and to determine the similarities between molecules. The HCA grouped the molecules in separated clusters which have the similar inhibitory activity. PCA showed very similar classification of molecules as the HCA, and displayed which descriptors contribute to that classification. MLR equations, that represent MIC as a function of the in silico molecular descriptors were established. The statistical significance of the estimated models was confirmed by standard statistical measures and cross-validation parameters (SD = 0.0816, F = 46.27, R = 0.9791, R2CV = 0.8266, R2adj = 0.9379, PRESS = 0.1116). These parameters indicate the possibility of application of the established chemometric models in prediction of the antibacterial behaviour of studied derivatives and structurally very similar compounds.

Keywords: antibacterial, benzimidazole, molecular descriptors, QSAR

Procedia PDF Downloads 364
2485 Rapid Evidence Remote Acquisition in High-Availability Server and Storage System for Digital Forensic to Unravel Academic Crime

Authors: Bagus Hanindhito, Fariz Azmi Pratama, Ulfah Nadiya

Abstract:

Nowadays, digital system including, but not limited to, computer and internet have penetrated the education system widely. Critical information such as students’ academic records is stored in a server off- or on-campus. Although several countermeasures have been taken to protect the vital resources from outsider attack, the defense from insiders threat is not getting serious attention. At the end of 2017, a security incident that involved academic information system in one of the most respected universities in Indonesia affected not only the reputation of the institution and its academia but also academic integrity in Indonesia. In this paper, we will explain our efforts in investigating this security incident where we have implemented a novel rapid evidence remote acquisition method in high-availability server and storage system thus our data collection efforts do not disrupt the academic information system and can be conducted remotely minutes after incident report has been received. The acquired evidence is analyzed during digital forensic by constructing the model of the system in an isolated environment which allows multiple investigators to work together. In the end, the suspect is identified as a student (insider), and the investigation result is used by prosecutors to charge the suspect as an academic crime.

Keywords: academic information system, academic crime, digital forensic, high-availability server and storage, rapid evidence remote acquisition, security incident

Procedia PDF Downloads 152
2484 The Challenges to Information Communication Technology Integration in Mathematics Teaching and Learning

Authors: George Onomah

Abstract:

Background: The integration of information communication technology (ICT) in Mathematics education faces notable challenges, which this study aimed to dissect and understand. Objectives: The primary goal was to assess the internal and external factors affecting the adoption of ICT by in-service Mathematics teachers. Internal factors examined included teachers' pedagogical beliefs, prior teaching experience, attitudes towards computers, and proficiency with technology. External factors included the availability of technological resources, the level of ICT training received, the sufficiency of allocated time for technology use, and the institutional culture within educational environments. Methods: A descriptive survey design was employed to methodically investigate these factors. Data collection was carried out using a five-point Likert scale questionnaire, administered to a carefully selected sample of 100 in-service Mathematics teachers through a combination of purposive and convenience sampling techniques. Findings: Results from multiple regression analysis revealed a significant underutilization of ICT in Mathematics teaching, highlighting a pronounced deficiency in current classroom practices. Recommendations: The findings suggest an urgent need for educational department heads to implement regular and comprehensive ICT training programs aimed at enhancing teachers' technological capabilities and promoting the integration of ICT in Mathematics teaching methodologies.

Keywords: ICT, Mathematics, integration, barriers

Procedia PDF Downloads 40
2483 True Single SKU Script: Applying the Automated Test to Set Software Properties in a Global Software Development Environment

Authors: Antonio Brigido, Maria Meireles, Francisco Barros, Gaspar Mota, Fernanda Terra, Lidia Melo, Marcelo Reis, Camilo Souza

Abstract:

As the globalization of the software process advances, companies are increasingly committed to improving software development technologies across multiple locations. On the other hand, working with teams distributed in different locations also raises new challenges. In this sense, automated processes can help to improve the quality of process execution. Therefore, this work presents the development of a tool called TSS Script that automates the sample preparation process for carrier requirements validation tests. The objective of the work is to obtain significant gains in execution time and reducing errors in scenario preparation. To estimate the gains over time, the executions performed in an automated and manual way were timed. In addition, a questionnaire-based survey was developed to discover new requirements and improvements to include in this automated support. The results show an average gain of 46.67% of the total hours worked, referring to sample preparation. The use of the tool avoids human errors, and for this reason, it adds greater quality and speed to the process. Another relevant factor is the fact that the tester can perform other activities in parallel with sample preparation.

Keywords: Android, GSD, automated testing tool, mobile products

Procedia PDF Downloads 317
2482 Investigation of Different Stimulation Patterns to Reduce Muscle Fatigue during Functional Electrical Stimulation

Authors: R. Ruslee, H. Gollee

Abstract:

Functional electrical stimulation (FES) is a commonly used technique in rehabilitation and often associated with rapid muscle fatigue which becomes the limiting factor in its applications. The objective of this study is to investigate the effects on the onset of fatigue of conventional synchronous stimulation, as well as asynchronous stimulation that mimic voluntary muscle activation targeting different motor units which are activated sequentially or randomly via multiple pairs of stimulation electrodes. We investigate three different approaches with various electrode configurations, as well as different patterns of stimulation applied to the gastrocnemius muscle: Conventional Synchronous Stimulation (CSS), Asynchronous Sequential Stimulation (ASS) and Asynchronous Random Stimulation (ARS). Stimulation was applied repeatedly for 300 ms followed by 700 ms of no-stimulation with 40 Hz effective frequency for all protocols. Ten able-bodied volunteers (28±3 years old) participated in this study. As fatigue indicators, we focused on the analysis of Normalized Fatigue Index (NFI), Fatigue Time Interval (FTI) and pre-post Twitch-Tetanus Ratio (ΔTTR). The results demonstrated that ASS and ARS give higher NFI and longer FTI confirming less fatigue for asynchronous stimulation. In addition, ASS and ARS resulted in higher ΔTTR than conventional CSS. In this study, we proposed a randomly distributed stimulation method for the application of FES and investigated its suitability for reducing muscle fatigue compared to previously applied methods. The results validated that asynchronous stimulation reduces fatigue, and indicates that random stimulation may improve fatigue resistance in some conditions.

Keywords: asynchronous stimulation, electrode configuration, functional electrical stimulation (FES), muscle fatigue, pattern stimulation, random stimulation, sequential stimulation, synchronous stimulation

Procedia PDF Downloads 306
2481 Thyroid Stimulating Hormone Is a Biomarker for Stress: A Prospective Longitudinal Study

Authors: Jeonghun Lee

Abstract:

Thyroid-stimulating hormone (TSH) is regulated by the negative feedback of T3 and T4 but is affected by cortisol and cytokines during allostasis. Hence, TSH levels can be influenced by stress through cortisol. In the present study, changes in TSH levels under stress and the potential of TSH as a stress marker were examined in patients lacking T3 or T4 feedback after thyroid surgery. The three stress questionnaires (Korean version of the Daily Stress Inventory, Social Readjustment Rating Scale, and Stress Overload Scale-Short [SOSS]), open-ended question (OQ), and thyroid function tests were performed twice in 106 patients enrolled from January 2019 to October 2020. Statistical analysis was performed using the generalized linear mixed effect model (GLMM) in R software version 4.1.0. In a multiple LMM involving 106 patients, T3, T4, SOSS (category), open-ended questions, the extent of thyroidectomy, and preoperative TSH were significantly correlated with lnTSH. T3 and T4 increased by 1 and lnTSH decreased by 0.03, 3.52, respectively. In case of a stressful event on OQ, lnTSH increased by 1.55. In the high-risk group, lnTSH increased by 0.79, compared with the low group (p<0.05). TSH had a significant relationship with stress, together with T3, T4, and the extent of thyroidectomy. As such, it has the potential to be used as a stress marker, though it showed a low correlation with other stress questionnaires. To address this limitation, questionnaires on various social environments and research on copy strategies are necessary for future studies.

Keywords: stress, surgery, thyroid stimulating hormone, thyroidectomy

Procedia PDF Downloads 91
2480 Graph Neural Networks and Rotary Position Embedding for Voice Activity Detection

Authors: YingWei Tan, XueFeng Ding

Abstract:

Attention-based voice activity detection models have gained significant attention in recent years due to their fast training speed and ability to capture a wide contextual range. The inclusion of multi-head style and position embedding in the attention architecture are crucial. Having multiple attention heads allows for differential focus on different parts of the sequence, while position embedding provides guidance for modeling dependencies between elements at various positions in the input sequence. In this work, we propose an approach by considering each head as a node, enabling the application of graph neural networks (GNN) to identify correlations among the different nodes. In addition, we adopt an implementation named rotary position embedding (RoPE), which encodes absolute positional information into the input sequence by a rotation matrix, and naturally incorporates explicit relative position information into a self-attention module. We evaluate the effectiveness of our method on a synthetic dataset, and the results demonstrate its superiority over the baseline CRNN in scenarios with low signal-to-noise ratio and noise, while also exhibiting robustness across different noise types. In summary, our proposed framework effectively combines the strengths of CNN and RNN (LSTM), and further enhances detection performance through the integration of graph neural networks and rotary position embedding.

Keywords: voice activity detection, CRNN, graph neural networks, rotary position embedding

Procedia PDF Downloads 71
2479 Experiences and Perceptions of the Barriers and Facilitators of Continence Care Provision in Residential and Nursing Homes for Older Adults: A Systematic Evidence Synthesis and Qualitative Exploration

Authors: Jennifer Wheeldon, Nick de Viggiani, Nikki Cotterill

Abstract:

Background: Urinary and fecal incontinence affect a significant proportion of older adults aged 65 and over who permanently reside in residential and nursing home facilities. Incontinence symptoms have been linked to comorbidities, an increased risk of infection and reduced quality of life and mental wellbeing of residents. However, continence care provision can often be poor, further compromising the health and wellbeing of this vulnerable population. Objectives: To identify experiences and perceptions of continence care provision in older adult residential care settings and to identify factors that help or hinder good continence care provision. Settings included both residential care homes and nursing homes for older adults. Methods: A qualitative evidence synthesis using systematic review methodology established the current evidence-base. Data from 20 qualitative and mixed-method studies was appraised and synthesized. Following the review process, 10* qualitative interviews with staff working in older adult residential care settings were conducted across six* sites, which included registered managers, registered nurses and nursing/care assistants/aides. Purposive sampling recruited individuals from across England. Both evidence synthesis and interview data was analyzed thematically, both manually and with NVivo software. Results: The evidence synthesis revealed complex barriers and facilitators for continence care provision at three influencing levels: macro (structural and societal external influences), meso (organizational and institutional influences) and micro (day-to-day actions of individuals impacting service delivery). Macro-level barriers included negative stigmas relating to incontinence, aging and working in the older adult social care sector, restriction of continence care resources such as containment products (i.e. pads), short staffing in care facilities, shortfalls in the professional education and training of care home staff and the complex health and social care needs of older adult residents. Meso-level barriers included task-centered organizational cultures, ageist institutional perspectives regarding old age and incontinence symptoms, inadequate care home management and poor communication and teamwork among care staff. Micro-level barriers included poor knowledge and negative attitudes of care home staff and residents regarding incontinence symptoms and symptom management and treatment. Facilitators at the micro-level included proactive and inclusive leadership skills of individuals in management roles. Conclusions: The findings of the evidence synthesis study help to outline the complexities of continence care provision in older adult care homes facilities. Macro, meso and micro level influences demonstrate problematic and interrelated barriers across international contexts, indicating that improving continence care in this setting is extremely challenging due to the multiple levels at which care provision and services are impacted. Both international and national older adult social care policy-makers, researchers and service providers must recognize this complexity, and any intervention seeking to improve continence care in older adult care home settings must be planned accordingly and appreciatively of the complex and interrelated influences. It is anticipated that the findings of the qualitative interviews will shed further light on the national context of continence care provision specific to England; data collection is ongoing*. * Sample size is envisaged to be between 20-30 participants from multiple sites by Spring 2023.

Keywords: continence care, residential and nursing homes, evidence synthesis, qualitative

Procedia PDF Downloads 87
2478 In vitro Antioxidant Activity of Derris scandens Extract

Authors: Nattawit Thiapairat

Abstract:

Multiple diseases have been linked to excessive levels of free radicals, which cause tissue or cell damage as a result of oxidative stress. Many plants are sources of high antioxidant activity. Derris scandens has a high amount of phenolic and flavonoid contents which demonstrated good biological activities. This study focused on the antioxidant activity of polyphenols extracted from D. scandens. This study performs total flavonoids content and various antioxidant assays, which were 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging capacity assays. The total flavonoid content of D. scandens extract was determined and expressed as quercetin equivalents (QE)/g measured by the aluminum chloride colorimetric method. The antioxidant activity of D. scandens extract was also determined by DPPH and ABTS assays. In the DPPH assay, vitamin C was used as a positive control, whereas Trolox was used as a positive control in the ABTS assay. The half-maximal inhibitory concentration (IC50) values for D. scandens extract from DPPH and ABTS assays were 41.79 μg/mL ± 0.783 and 29.42 μg/mL ± 0.890, respectively, in the DPPH assay. To conclude, D. scandens extract consists of a high amount of total phenolic content, which exhibits a significant antioxidant activity. However, further investigation regarding antioxidant activity such as SOD, ROS, and RNS scavenging assays and in vivo experiments should be performed.

Keywords: ABTS assay, antioxidant activity, Derris scandens, DPPH assays, total flavonoid content

Procedia PDF Downloads 213
2477 Expand Rabies Post-Exposure Prophylaxis to Where It Is Needed the Most

Authors: Henry Wilde, Thiravat Hemachudha

Abstract:

Human rabies deaths are underreported worldwide at 55,000 annual cases; more than of dengue and Japanese encephalitis. Almost half are children. A recent study from the Philippines of nearly 2,000 rabies deaths revealed that none of had received incomplete or no post exposure prophylaxis. Coming from a canine rabies endemic country, this is not unique. There are two major barriers to reducing human rabies deaths: 1) the large number of unvaccinated dogs and 2) post-exposure prophylaxis (PEP) that is not available, incomplete, not affordable, or not within reach for bite victims travel means. Only the first barrier, inadequate vaccination of dogs, is now being seriously addressed. It is also often not done effectively or sustainably. Rabies PEP has evolved as a complex, prolonged process, usually delegated to centers in larger cities. It is virtually unavailable in villages or small communities where most dog bites occur, victims are poor and usually unable to travel a long distance multiple times to receive PEP. Reseacrh that led to better understanding of the pathophysiology of rabies and immune responses to potent vaccines and immunoglobulin have allowed shortening and making PEP more evidence based. This knowledge needs to be adopted and applied so that PEP can be rendered safely and affordably where needed the most: by village health care workers who have long performed more complex services after appropriate training. Recent research makes this an important and long neglected goal that is now within our means to implement.

Keywords: rabies, post-exposure prophylaxis, availability, immunoglobulin

Procedia PDF Downloads 264
2476 Twitter Sentiment Analysis during the Lockdown on New-Zealand

Authors: Smah Almotiri

Abstract:

One of the most common fields of natural language processing (NLP) is sentimental analysis. The inferred feeling in the text can be successfully mined for various events using sentiment analysis. Twitter is viewed as a reliable data point for sentimental analytics studies since people are using social media to receive and exchange different types of data on a broad scale during the COVID-19 epidemic. The processing of such data may aid in making critical decisions on how to keep the situation under control. The aim of this research is to look at how sentimental states differed in a single geographic region during the lockdown at two different times.1162 tweets were analyzed related to the COVID-19 pandemic lockdown using keywords hashtags (lockdown, COVID-19) for the first sample tweets were from March 23, 2020, until April 23, 2020, and the second sample for the following year was from March 1, 2020, until April 4, 2020. Natural language processing (NLP), which is a form of Artificial intelligence, was used for this research to calculate the sentiment value of all of the tweets by using AFINN Lexicon sentiment analysis method. The findings revealed that the sentimental condition in both different times during the region's lockdown was positive in the samples of this study, which are unique to the specific geographical area of New Zealand. This research suggests applying machine learning sentimental methods such as Crystal Feel and extending the size of the sample tweet by using multiple tweets over a longer period of time.

Keywords: sentiment analysis, Twitter analysis, lockdown, Covid-19, AFINN, NodeJS

Procedia PDF Downloads 190
2475 Leveraging Large Language Models to Build a Cutting-Edge French Word Sense Disambiguation Corpus

Authors: Mouheb Mehdoui, Amel Fraisse, Mounir Zrigui

Abstract:

With the increasing amount of data circulating over the Web, there is a growing need to develop and deploy tools aimed at unraveling semantic nuances within text or sentences. The challenges in extracting precise meanings arise from the complexity of natural language, while words usually have multiple interpretations depending on the context. The challenge of precisely interpreting words within a given context is what the task of Word Sense Disambiguation meets. It is a very old domain within the area of Natural Language Processing aimed at determining a word’s meaning that it is going to carry in a particular context, hence increasing the correctness of applications processing the language. Numerous linguistic resources are accessible online, including WordNet, thesauri, and dictionaries, enabling exploration of diverse contextual meanings. However, several limitations persist. These include the scarcity of resources for certain languages, a limited number of examples within corpora, and the challenge of accurately detecting the topic or context covered by text, which significantly impacts word sense disambiguation. This paper will discuss the different approaches to WSD and review corpora available for this task. We will contrast these approaches, highlighting the limitations, which will allow us to build a corpus in French, targeted for WSD.

Keywords: semantic enrichment, disambiguation, context fusion, natural language processing, multilingual applications

Procedia PDF Downloads 7
2474 Value Chain Analysis of Melon “Egusi” (Citrullus lanatus Thunb. Mansf) among Rural Farm Enterprises in South East, Nigeria

Authors: Chigozirim Onwusiribe, Jude Mbanasor

Abstract:

Egusi Melon (Citrullus Lanatus Thunb. Mansf ) is a very important oil seed that serves a major ingredient in the diet of most of the households in Nigeria. Egusi Melon is very nutritious and very important in meeting the food security needs of Nigerians. Egusi Melon is cultivated in most farm enterprise in South East Nigeria but the profitability of its value chain needs to be investigated. This study analyzed the profitability of the Egusi Melon value chain. Specifically this study developed a value chain map for Egusi Melon, analysed the profitability of each stage of the Egusi Melon Value chain and analysed the determinants of the profitability of the Egusi Melon at each stage of the value chain. Multi stage sampling technique was used to select 125 farm enterprises with similar capacity and characteristics. Questionnaire and interview were used to elicit the required data while descriptive statistics, Food and Agriculture Organization Value Chain Analysis Tool, profitability ratios and multiple regression analysis were used for the data analysis. One of the findings showed that the stages of the Egusi Melon value chain are very profitable. Based on the findings, we recommend the provision of grants by government and donor agencies to the farm enterprises through their cooperative societies, this will provide the necessary funds for the local fabrication of value addition and processing equipment to suit their unique value addition needs not met by the imported equipment.

Keywords: value, chain, melon, farm, enterprises

Procedia PDF Downloads 134
2473 A Novel Small-Molecule Inhibitor of Influenza a Virus Acts by Suppressing PA Endonuclease Activity of the Viral Polymerase

Authors: Shuafeng Yuan, Bojian Zheng

Abstract:

The RNA-dependent RNA polymerase of influenza a virus comprises conserved and independently folded subdomains with defined functionalities. The N-terminal domain of the PA subunit (PAN) harbors the endonuclease function so that it can serve as a desired target for drug discovery. To identify a class of anti-influenza inhibitors that impedes PAN endonuclease activity, a screening approach that integrated the fluorescence resonance energy transfer based endonuclease inhibitor assay with the DNA gel-based endonuclease inhibitor assay was conducted, followed by the evaluation of antiviral efficacies and potential cytotoxicity of the primary hits in vitro and in vivo. A small-molecule compound ANA-0 was identified as a potent inhibitor against the replication of multiple subtypes of influenza A virus, including H1N1, H3N2, H5N1, H7N7, H7N9 and H9N2, in cell cultures. Combinational treatment of zanamivir and ANA-0 exerted synergistic anti-influenza effect in vitro. Intranasal administration of ANA-0 protected mice from lethal challenge and reduced lung viral loads in H1N1 virus infected BALB/c mice. Docking analyses predicted ANA-0 bound the endonuclease cavity of PAN by interacting with the metal-binding and catalytic residues. In summary, ANA-0 shows potential to be developed to novel anti-influenza agents.

Keywords: anti-influenza, novel compound, inhibition of endonuclease, PA

Procedia PDF Downloads 245
2472 Integrating of Multi-Criteria Decision Making and Spatial Data Warehouse in Geographic Information System

Authors: Zohra Mekranfar, Ahmed Saidi, Abdellah Mebrek

Abstract:

This work aims to develop multi-criteria decision making (MCDM) and spatial data warehouse (SDW) methods, which will be integrated into a GIS according to a ‘GIS dominant’ approach. The GIS operating tools will be operational to operate the SDW. The MCDM methods can provide many solutions to a set of problems with various and multiple criteria. When the problem is so complex, integrating spatial dimension, it makes sense to combine the MCDM process with other approaches like data mining, ascending analyses, we present in this paper an experiment showing a geo-decisional methodology of SWD construction, On-line analytical processing (OLAP) technology which combines both basic multidimensional analysis and the concepts of data mining provides powerful tools to highlight inductions and information not obvious by traditional tools. However, these OLAP tools become more complex in the presence of the spatial dimension. The integration of OLAP with a GIS is the future geographic and spatial information solution. GIS offers advanced functions for the acquisition, storage, analysis, and display of geographic information. However, their effectiveness for complex spatial analysis is questionable due to their determinism and their decisional rigor. A prerequisite for the implementation of any analysis or exploration of spatial data requires the construction and structuring of a spatial data warehouse (SDW). This SDW must be easily usable by the GIS and by the tools offered by an OLAP system.

Keywords: data warehouse, GIS, MCDM, SOLAP

Procedia PDF Downloads 178
2471 Antecedents of Sport Commitment among Cricket Players: A Comparison Based on Demographic Factors

Authors: Navodita Mishra, T. J. Kamalanabhan

Abstract:

The primary purpose of this study was to identify the antecedents of sport commitment among cricket players and to understand demographic variables that may impact these factors. Commitment towards one’s sport play a crucial role in determining discipline and efforts of the player. Moreover, demographic variables would seem to play an important role in determining which factors or predictors have the greatest impact on commitment level. This study hypothesized the effect of demographic factors on sport commitment among cricket players. It attempts to examine the extent to which demographic factors can differentially motivate players to exhibit commitment towards their respective sport. Questionnaire survey method was adopted using purposive sampling technique. Using Multiple Regression, ANOVA and t-test, the hypotheses were tested based on a sample of 350 players from Cricket Academy. Our main results from the multivariate analysis indicated that (1) enjoyment and leadership of coach and peer affect the level of commitment to a greater extent whereas (2) personal investment is a significant predictor of commitment among rural background players Moreover, level of sport commitment among players is positively related to household income, the rural background players participate in sports to a greater extent than the urban players, there is no evidence of regional differentials in commitment but age differences (i.e. U-19 vs. U-25) play an important role in the decision to continue the participation in sports.

Keywords: individual sport commitment, social factors, demographic factors, cricket

Procedia PDF Downloads 537
2470 The Psychological Significance of Cultural and Religious Values Among the Arab Population

Authors: Michel Mikhail

Abstract:

Introduction: Values, which are the guiding principles and beliefs of our lives, have an influence on one’s psychological health. This study aims to investigate how Schwartz’s four higher-order values (conservation, openness to change, self-transcendence, and self-enhancement) and religious values influence psychological health among the Arab population. Methods: A total of 1,023 respondents from nine Arab countries aged 18 to 71 filled out an online survey with measures of the following constructs: Schwartz’s four higher-order values (Portrait Value Questionnaire-21), religious values (Sahin’s Index of Islamic Moral Values), and general psychological health (General Health Questionnaire-28). Results: Two models of multiple regression were conducted to investigate the relationships between values and psychological health. Higher conservation, self-enhancement, and religious values were significantly associated with better psychological health, with conservation losing significance after adding religious values to the model. All of Schwartz’s four values were found to have a significant relationship with religious values. More self-enhancement and conservation values were associated with higher identification of religious values, and the opposite was true for the other two values. Conclusion: The findings challenged existing assumptions that conservation values relate negatively to psychological health. This finding could be explained by the congruence of conservation values and the Arab culture. The most powerful relationships were those of self-enhancement and religious values, both of which were positively associated with psychological health. As such, therapists should be aware to reconsider biases against religious or conservation values and rather pay attention to their potential positive influence over one’s psychological health.

Keywords: counseling psychology, counseling and cultural values, counseling and religious values, psychotherapy and Arab values

Procedia PDF Downloads 48
2469 Frequency of Polymorphism of Mrp1/Abcc1 And Mrp2/Abcc2 in Healthy Volunteers of the Center Savannah (Colombia)

Authors: R. H. Bustos, L. Martinez, J. García, F. Suárez

Abstract:

MRP1 (Multi-drug resistance associated protein 1) and MRP2 (Multi-drug resistance associated protein 2) are two proteins belonging to the transporters of ABC (ATP-Binding Cassette). These transporter proteins are involved in the efflux of several biological drugs and xenobiotic and also in multiple physiological, pathological and pharmacological processes. Evidence has been found that there is a correlation among different polymorphisms found and their clinical implication in the resistance to antiepileptic, chemotherapy and anti-infectious drugs. In our study, exonic regions of MRP1/ABCC1 y MRP2/ABCC2 were studied in the Colombian population, specifically in the region of the central Savannah (Cundinamarca) to determinate SNP (Single Nucleotide Polymorphisms) and determinate its allele frequency and its genomics frequency. Results showed that for our population, SNP are found that have been previously reported for MRP1/ABCC1 (rs200647436, rs200624910, rs150214567) as well as for MRP2/ABCC2 (rs2273697, rs3740066, rs142573385, rs17216212). In addition, 13 new SNP were identified. Evidences show an important clinic correlation for polymorphisms rs3740066 and rs2273697. The study object population displays genetic variability as compared to the one reported in other populations.

Keywords: ATP-binding cassette (ABCC), Colombian population, multidrug-resistance protein (MRP), pharmacogenetic, single nucleotide polymorphism (SNP)

Procedia PDF Downloads 324
2468 Heritage and Tourism in the Era of Big Data: Analysis of Chinese Cultural Tourism in Catalonia

Authors: Xinge Liao, Francesc Xavier Roige Ventura, Dolores Sanchez Aguilera

Abstract:

With the development of the Internet, the study of tourism behavior has rapidly expanded from the traditional physical market to the online market. Data on the Internet is characterized by dynamic changes, and new data appear all the time. In recent years the generation of a large volume of data was characterized, such as forums, blogs, and other sources, which have expanded over time and space, together they constitute large-scale Internet data, known as Big Data. This data of technological origin that derives from the use of devices and the activity of multiple users is becoming a source of great importance for the study of geography and the behavior of tourists. The study will focus on cultural heritage tourist practices in the context of Big Data. The research will focus on exploring the characteristics and behavior of Chinese tourists in relation to the cultural heritage of Catalonia. Geographical information, target image, perceptions in user-generated content will be studied through data analysis from Weibo -the largest social networks of blogs in China. Through the analysis of the behavior of heritage tourists in the Big Data environment, this study will understand the practices (activities, motivations, perceptions) of cultural tourists and then understand the needs and preferences of tourists in order to better guide the sustainable development of tourism in heritage sites.

Keywords: Barcelona, Big Data, Catalonia, cultural heritage, Chinese tourism market, tourists’ behavior

Procedia PDF Downloads 138
2467 Detection of Hepatitis B by the Use of Artifical Intelegence

Authors: Shizra Waris, Bilal Shoaib, Munib Ahmad

Abstract:

Background; The using of clinical decision support systems (CDSSs) may recover unceasing disease organization, which requires regular visits to multiple health professionals, treatment monitoring, disease control, and patient behavior modification. The objective of this survey is to determine if these CDSSs improve the processes of unceasing care including diagnosis, treatment, and monitoring of diseases. Though artificial intelligence is not a new idea it has been widely documented as a new technology in computer science. Numerous areas such as education business, medical and developed have made use of artificial intelligence Methods: The survey covers articles extracted from relevant databases. It uses search terms related to information technology and viral hepatitis which are published between 2000 and 2016. Results: Overall, 80% of studies asserted the profit provided by information technology (IT); 75% of learning asserted the benefits concerned with medical domain;25% of studies do not clearly define the added benefits due IT. The CDSS current state requires many improvements to hold up the management of liver diseases such as HCV, liver fibrosis, and cirrhosis. Conclusion: We concluded that the planned model gives earlier and more correct calculation of hepatitis B and it works as promising tool for calculating of custom hepatitis B from the clinical laboratory data.

Keywords: detection, hapataties, observation, disesese

Procedia PDF Downloads 156
2466 Electromechanical-Traffic Model of Compression-Based Piezoelectric Energy Harvesting System

Authors: Saleh Gareh, B. C. Kok, H. H. Goh

Abstract:

Piezoelectric energy harvesting has advantages over other alternative sources due to its large power density, ease of applications, and capability to be fabricated at different scales: macro, micro, and nano. This paper presents an electromechanical-traffic model for roadway compression-based piezoelectric energy harvesting system. A two-degree-of-freedom (2-DOF) electromechanical model has been developed for the piezoelectric energy harvesting unit to define its performance in power generation under a number of external excitations on road surface. Lead Zirconate Titanate (PZT-5H) is selected as the piezoelectric material to be used in this paper due to its high Piezoelectric Charge Constant (d) and Piezoelectric Voltage Constant (g) values. The main source of vibration energy that has been considered in this paper is the moving vehicle on the road. The effect of various frequencies on possible generated power caused by different vibration characteristics of moving vehicle has been studied. A single unit of circle-shape Piezoelectric Cymbal Transducer (PCT) with diameter of 32 mm and thickness of 0.3 mm be able to generate about 0.8 mW and 3 mW of electric power under 4 Hz and 20 Hz of excitation, respectively. The estimated power to be generated for multiple arrays of PCT is approximately 150 kW/ km. Thus, the developed electromechanical-traffic model has enormous potential to be used in estimating the macro scale of roadway power generation system.

Keywords: piezoelectric energy harvesting, cymbal transducer, PZT (lead zirconate titanate), 2-DOF

Procedia PDF Downloads 355
2465 Prediction on Housing Price Based on Deep Learning

Authors: Li Yu, Chenlu Jiao, Hongrun Xin, Yan Wang, Kaiyang Wang

Abstract:

In order to study the impact of various factors on the housing price, we propose to build different prediction models based on deep learning to determine the existing data of the real estate in order to more accurately predict the housing price or its changing trend in the future. Considering that the factors which affect the housing price vary widely, the proposed prediction models include two categories. The first one is based on multiple characteristic factors of the real estate. We built Convolution Neural Network (CNN) prediction model and Long Short-Term Memory (LSTM) neural network prediction model based on deep learning, and logical regression model was implemented to make a comparison between these three models. Another prediction model is time series model. Based on deep learning, we proposed an LSTM-1 model purely regard to time series, then implementing and comparing the LSTM model and the Auto-Regressive and Moving Average (ARMA) model. In this paper, comprehensive study of the second-hand housing price in Beijing has been conducted from three aspects: crawling and analyzing, housing price predicting, and the result comparing. Ultimately the best model program was produced, which is of great significance to evaluation and prediction of the housing price in the real estate industry.

Keywords: deep learning, convolutional neural network, LSTM, housing prediction

Procedia PDF Downloads 306
2464 The Relationship between General Self-Efficacy, Perfectionism and Trait Anxiety: A Study among Gifted Students

Authors: Marialena Kostouli, Georgia Tsoulfa

Abstract:

The aim of this study is to investigate the relationship between general self-efficacy, perfectionism, and gifted students’ trait anxiety. One hundred fifty three students, who were all selected and enrolled at the Center for Talented Youth (CTY) - Greece summer program, participated in the study. The sample consisted of 78 males (51%) and 75 females (49%), with a mean age of 14.96 years (SD = 1.16 years). Three self-report questionnaires were used for the purposes of the current study, the Frost Multidimensional Perfectionism scale, the State-Trait anxiety inventory and the General Self-Efficacy scale. The results revealed a significant correlation between trait anxiety, general self-efficacy and the four sub-scales of perfectionism (concern over mistakes and doubts about actions, excessive concern with parents’ expectations and evaluation, excessively high personal standards and concern with precision, order, and organization). It was also found that the female CTY students experience greater levels of trait anxiety compared to the male CTYers. Moreover, a multiple regression analysis was conducted in order to determine the possible predictors of gifted students’ trait anxiety. The analysis showed that general self-efficacy and the concern over mistakes and doubts about actions significantly predicted the trait anxiety of the gifted children that we examined. Avenues of further research and implications for the development of interventions to help gifted students promote their general self-efficacy, reduce their concern over their actions and develop strategies in order to cope with their anxiety are discussed.

Keywords: general self-efficacy, gifted students, perfectionism, trait anxiety

Procedia PDF Downloads 341
2463 Bioinformatic Study of Follicle Stimulating Hormone Receptor (FSHR) Gene in Different Buffalo Breeds

Authors: Hamid Mustafa, Adeela Ajmal, Kim EuiSoo, Noor-ul-Ain

Abstract:

World wild, buffalo production is considered as most important component of food industry. Efficient buffalo production is related with reproductive performance of this species. Lack of knowledge of reproductive efficiency and its related genes in buffalo species is a major constraint for sustainable buffalo production. In this study, we performed some bioinformatics analysis on Follicle Stimulating Hormone Receptor (FSHR) gene and explored the possible relationship of this gene among different buffalo breeds and with other farm animals. We also found the evolution pattern for this gene among these species. We investigate CDS lengths, Stop codon variation, homology search, signal peptide, isoelectic point, tertiary structure, motifs and phylogenetic tree. The results of this study indicate 4 different motif in this gene, which are Activin-recp, GS motif, STYKc Protein kinase and transmembrane. The results also indicate that this gene has very close relationship with cattle, bison, sheep and goat. Multiple alignment (MA) showed high conservation of motif which indicates constancy of this gene during evolution. The results of this study can be used and applied for better understanding of this gene for better characterization of Follicle Stimulating Hormone Receptor (FSHR) gene structure in different farm animals, which would be helpful for efficient breeding plans for animal’s production.

Keywords: buffalo, FSHR gene, bioinformatics, production

Procedia PDF Downloads 532
2462 Investigating the Role of Dystrophin in Neuronal Homeostasis

Authors: Samantha Shallop, Hakinya Karra, Tytus Bernas, Gladys Shaw, Gretchen Neigh, Jeffrey Dupree, Mathula Thangarajh

Abstract:

Abnormal neuronal homeostasis is considered a structural correlate of cognitive deficits in Duchenne Muscular Dystrophy. Neurons are highly polarized cells with multiple dendrites but a single axon. Trafficking of cellular organelles are highly regulated, with the cargo in the somatodendritic region of the neuron not permitted to enter the axonal compartment. We investigated the molecular mechanisms that regular organelle trafficking in neurons using a multimodal approach, including high-resolution structural illumination, proteomics, immunohistochemistry, and computational modeling. We investigated the expression of ankyrin-G, the master regulator controlling neuronal polarity. The expression of ankyrin G and the morphology of the axon initial segment was profoundly abnormal in the CA1 hippocampal neurons in the mdx52 animal model of DMD. Ankyrin-G colocalized with kinesin KIF5a, the anterograde protein transporter, with higher levels in older mdx52 mice than younger mdx52 mice. These results suggest that the functional trafficking from the somatodendritic compartment is abnormal. Our data suggests that dystrophin deficiency compromised neuronal homeostasis via ankyrin-G-based mechanisms.

Keywords: neurons, axonal transport, duchenne muscular dystrophy, organelle transport

Procedia PDF Downloads 95