Search results for: modeling methodology
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8738

Search results for: modeling methodology

6488 Facilitating Career Development of Women in Science, Technology, Engineering, Mathematics and Medicine: Towards Increasing Understanding, Participation, Progression and Retention through an Intersectionality Perspective

Authors: Maria Tsouroufli, Andrea Mondokova, Subashini Suresh

Abstract:

Background: The under-representation of women and consequent failure to fulfil their potential contribution to Science, Technology, Engineering, Maths, and Medicine (STEMM) subjects in the UK is an issue that the Higher Education sector is being encouraged to address. Focus: The aim of this research is to investigate the barriers, facilitators, and incentives that influence diverse groups of women who have embarked upon a related career in STEMM subjects. The project will address a number of interconnected research questions: 1. How do participants perceive the barriers, facilitators and incentives for women in terms of research, teaching and management/leadership at each stage of their development towards forging a career in STEMM? 2. How might gender intersect with ethnicity, pregnancy/maternity and academic grade in the career experiences of women in STEMM? 3. How do participants perceive the example of female role models in emulating them as a career model? 4. How do successful females in STEMM see themselves as role models and what strategies do they employ to promote their careers? 5. How does institutional culture manifest itself as a barrier or facilitator for women in STEMM subjects in the institution? Methodology and Theoretical framework: A mixed-methodology will be employed in a case study of one university. The study will draw on extant quantitative data for context and involve conducting a qualitative inquiry to discover the perceptions of staff and students around the key concepts under study (career progression, sense of belonging and tenure, role-models, personal satisfaction, perceived gender in/equality, institutional culture). The analysis will be informed by an intersectionality framework, feminist and gender theory, and organisational psychology and human resource management perspectives. Implications: Preliminary findings will be collected in 2017. Conclusions will be drawn and used to inform recruitment and retention, and the development and implementation of initiatives to enhance the experiences and outcomes of women working and studying in STEMM subjects in Higher Education.

Keywords: under-representation, women, STEMM subjects, intersectionality

Procedia PDF Downloads 271
6487 Environmental Performance Improvement of Additive Manufacturing Processes with Part Quality Point of View

Authors: Mazyar Yosofi, Olivier Kerbrat, Pascal Mognol

Abstract:

Life cycle assessment of additive manufacturing processes has evolved significantly since these past years. A lot of existing studies mainly focused on energy consumption. Nowadays, new methodologies of life cycle inventory acquisition came through the literature and help manufacturers to take into account all the input and output flows during the manufacturing step of the life cycle of products. Indeed, the environmental analysis of the phenomena that occur during the manufacturing step of additive manufacturing processes is going to be well known. Now it becomes possible to count and measure accurately all the inventory data during the manufacturing step. Optimization of the environmental performances of processes can now be considered. Environmental performance improvement can be made by varying process parameters. However, a lot of these parameters (such as manufacturing speed, the power of the energy source, quantity of support materials) affect directly the mechanical properties, surface finish and the dimensional accuracy of a functional part. This study aims to improve the environmental performance of an additive manufacturing process without deterioration of the part quality. For that purpose, the authors have developed a generic method that has been applied on multiple parts made by additive manufacturing processes. First, a complete analysis of the process parameters is made in order to identify which parameters affect only the environmental performances of the process. Then, multiple parts are manufactured by varying the identified parameters. The aim of the second step is to find the optimum value of the parameters that decrease significantly the environmental impact of the process and keep the part quality as desired. Finally, a comparison between the part made by initials parameters and changed parameters is made. In this study, the major finding claims by authors is to reduce the environmental impact of an additive manufacturing process while respecting the three quality criterion of parts, mechanical properties, dimensional accuracy and surface roughness. Now that additive manufacturing processes can be seen as mature from a technical point of view, environmental improvement of these processes can be considered while respecting the part properties. The first part of this study presents the methodology applied to multiple academic parts. Then, the validity of the methodology is demonstrated on functional parts.

Keywords: additive manufacturing, environmental impact, environmental improvement, mechanical properties

Procedia PDF Downloads 272
6486 Methodologies for Management of Sustainable Tourism: A Case Study in Jalapão/to/Brazil

Authors: Mary L. G. S. Senna, Veruska C. Dutra, Afonso R. Aquino

Abstract:

The study is in application and analysis of two tourism management tools that can contribute to making public managers decision: the Barometer of Tourism Sustainability (BTS) and the Ecological Footprint (EF). The results have shown that BTS allows you to have an integrated view of the tourism system, awakening to the need for planning of appropriate actions so that it can achieve the positive scale proposed (potentially sustainable). Already the methodology of ecological tourism footprint is an important tool to measure potential impacts generated by tourism to tourist reality.

Keywords: barometer of tourism sustainability, ecological footprint of tourism, Jalapão/Brazil, sustainable tourism

Procedia PDF Downloads 484
6485 Groundwater Numerical Modeling, an Application of Remote Sensing, and GIS Techniques in South Darb El Arbaieen, Western Desert, Egypt

Authors: Abdallah M. Fayed

Abstract:

The study area is located in south Darb El Arbaieen, western desert of Egypt. It occupies the area between latitudes 22° 00/ and 22° 30/ North and Longitudes 29° 30/ and 30° 00/ East, from southern border of Egypt to the area north Bir Kuraiym and from the area East of East Owienat to the area west Tushka district, its area about 2750 Km2. The famous features; southern part of Darb El Arbaieen road, G Baraqat El Scab El Qarra, Bir Dibis, Bir El Shab and Bir Kuraiym, Interpretation of soil stratification shows layers that are related to Quaternary and Upper-Lower Cretaceous eras. It is dissected by a series of NE-SW striking faults. The regional groundwater flow direction is in SW-NE direction with a hydraulic gradient is 1m / 2km. Mathematical model program has been applied for evaluation of groundwater potentials in the main Aquifer –Nubian Sandstone- in the area of study and Remote sensing technique is considered powerful, accurate and saving time in this respect. These techniques are widely used for illustrating and analysis different phenomenon such as the new development in the desert (land reclamation), residential development (new communities), urbanization, etc. The major issues concerning water development objective of this work is to determine the new development areas in western desert of Egypt during the period from 2003 to 2015 using remote sensing technique, the impacts of the present and future development have been evaluated by using the two-dimensional numerical groundwater flow Simulation Package (visual modflow 4.2). The package was used to construct and calibrate a numerical model that can be used to simulate the response of the aquifer in the study area under implementing different management alternatives in the form of changes in piezometric levels and salinity. Total period of simulation is 100 years. After steady state calibration, two different scenarios are simulated for groundwater development. 21 production wells are installed at the study area and used in the model, with the total discharge for the two scenarios were 105000 m3/d, 210000 m3/d. The drawdown was 11.8 m and 23.7 m for the two scenarios in the end of 100 year. Contour maps for water heads and drawdown and hydrographs for piezometric head are represented. The drawdown was less than the half of the saturated thickness (the safe yield case).

Keywords: remote sensing, management of aquifer systems, simulation modeling, western desert, South Darb El Arbaieen

Procedia PDF Downloads 387
6484 Employing Operations Research at Universities to Build Management Systems

Authors: Abdallah A. Hlayel

Abstract:

Operations research science (OR) deals with good success in developing and applying scientific methods for problem solving and decision-making. However, by using OR techniques, we can enhance the use of computer decision support systems to achieve optimal management for institutions. OR applies comprehensive analysis including all factors that affect on it and builds mathematical modeling to solve business or organizational problems. In addition, it improves decision-making and uses available resources efficiently. The adoption of OR by universities would definitely contributes to the development and enhancement of the performance of OR techniques. This paper provides an understanding of the structures, approaches and models of OR in problem solving and decision-making.

Keywords: best candidates' method, decision making, decision support system, operations research

Procedia PDF Downloads 427
6483 The Two-Lane Rural Analysis and Comparison of Police Statistics and Results with the Help IHSDM

Authors: S. Amanpour, F. Mohamadian, S. A. Tabatabai

Abstract:

With the number of accidents and fatalities in recent years can be concluded that Iran is the status of road accidents, remains in a crisis. Investigate the causes of such incidents in all countries is a necessity. By doing this research, the results of the number and type of accidents and the location of the crash will be available. It is possible to prioritize economic and rational solutions to fix the flaws in the way of short-term the results are all the more strict rules about the desire to have black spots and cursory glance at the change of but results in long-term are desired to change the system or increase the width of the path or add extra track. In general, the relationship between the analysis of the accidents and near police statistics is the number of accidents in one year. This could prove the accuracy of the analysis done.

Keywords: traffic, IHSDM, crash, modeling, Khuzestan

Procedia PDF Downloads 266
6482 Numerical Simulation of Multijunction GaAs/CIGS Solar Cell by AMPS-1D

Authors: Hassane Ben Slimane, Benmoussa Dennai, Abderrahman Hemmani, Abderrachid Helmaoui

Abstract:

During the past few years a great variety of multi-junction solar cells has been developed with the aim of a further increase in efficiency beyond the limits of single junction devices. This paper analyzes the GaAs/CIGS based tandem solar cell performance by AMPS-1D numerical modeling. Various factors which affect the solar cell’s performance are investigated, carefully referring to practical cells, to obtain the optimum parameters for the GaAs and CIGS top and bottom solar cells. Among the factors studied are thickness and band gap energy of dual junction cells.

Keywords: multijunction solar cell, GaAs, CIGS, AMPS-1D

Procedia PDF Downloads 498
6481 The Creep Analysis of a Varying Thickness on a Rotating Composite Disk with Different Particle Size by Using Sherby’s Law

Authors: Rupinder Kaur, Harjot Kaur

Abstract:

The objective of this paper is to present the study of the effect of varying thickness on rotating composite disks made from Al-SiC_P having different particle sizes. Mathematical modeling is used to calculate the effect of varying thickness with different particle sizes on rotating composite disks in radial as well as tangential directions with thermal gradients. In comparison to various particle sizes with varied thicknesses, long-term deformation occurs. The results are displayed visually, demonstrating how creep deformation decreases with changing particle size and thickness.

Keywords: creep, varying thickness, particle size, stresses and strain rates

Procedia PDF Downloads 69
6480 Defining a Framework for Holistic Life Cycle Assessment of Building Components by Considering Parameters Such as Circularity, Material Health, Biodiversity, Pollution Control, Cost, Social Impacts, and Uncertainty

Authors: Naomi Grigoryan, Alexandros Loutsioli Daskalakis, Anna Elisse Uy, Yihe Huang, Aude Laurent (Webanck)

Abstract:

In response to the building and construction sectors accounting for a third of all energy demand and emissions, the European Union has placed new laws and regulations in the construction sector that emphasize material circularity, energy efficiency, biodiversity, and social impact. Existing design tools assess sustainability in early-stage design for products or buildings; however, there is no standardized methodology for measuring the circularity performance of building components. Existing assessment methods for building components focus primarily on carbon footprint but lack the comprehensive analysis required to design for circularity. The research conducted in this paper covers the parameters needed to assess sustainability in the design process of architectural products such as doors, windows, and facades. It maps a framework for a tool that assists designers with real-time sustainability metrics. Considering the life cycle of building components such as façades, windows, and doors involves the life cycle stages applied to product design and many of the methods used in the life cycle analysis of buildings. The current industry standards of sustainability assessment for metal building components follow cradle-to-grave life cycle assessment (LCA), track Global Warming Potential (GWP), and document the parameters used for an Environmental Product Declaration (EPD). Developed by the Ellen Macarthur Foundation, the Material Circularity Indicator (MCI) is a methodology utilizing the data from LCA and EPDs to rate circularity, with a "value between 0 and 1 where higher values indicate a higher circularity+". Expanding on the MCI with additional indicators such as the Water Circularity Index (WCI), the Energy Circularity Index (ECI), the Social Circularity Index (SCI), Life Cycle Economic Value (EV), and calculating biodiversity risk and uncertainty, the assessment methodology of an architectural product's impact can be targeted more specifically based on product requirements, performance, and lifespan. Broadening the scope of LCA calculation for products to incorporate aspects of building design allows product designers to account for the disassembly of architectural components. For example, the Material Circularity Indicator for architectural products such as windows and facades is typically low due to the impact of glass, as 70% of glass ends up in landfills due to damage in the disassembly process. The low MCI can be combatted by expanding beyond cradle-to-grave assessment and focusing the design process on disassembly, recycling, and repurposing with the help of real-time assessment tools. Design for Disassembly and Urban Mining has been integrated within the construction field on small scales as project-based exercises, not addressing the entire supply chain of architectural products. By adopting more comprehensive sustainability metrics and incorporating uncertainty calculations, the sustainability assessment of building components can be more accurately assessed with decarbonization and disassembly in mind, addressing the large-scale commercial markets within construction, some of the most significant contributors to climate change.

Keywords: architectural products, early-stage design, life cycle assessment, material circularity indicator

Procedia PDF Downloads 70
6479 Rheological Modeling for Shape-Memory Thermoplastic Polymers

Authors: H. Hosseini, B. V. Berdyshev, I. Iskopintsev

Abstract:

This paper presents a rheological model for producing shape-memory thermoplastic polymers. Shape-memory occurs as a result of internal rearrangement of the structural elements of a polymer. A non-linear viscoelastic model was developed that allows qualitative and quantitative prediction of the stress-strain behavior of shape-memory polymers during heating. This research was done to develop a technique to determine the maximum possible change in size of heat-shrinkable products during heating. The rheological model used in this work was particularly suitable for defining process parameters and constructive parameters of the processing equipment.

Keywords: elastic deformation, heating, shape-memory polymers, stress-strain behavior, viscoelastic model

Procedia PDF Downloads 305
6478 Smart Books as a Supporting Tool for Developing Skills of Designing and Employing Webquest 2.0

Authors: Huda Alyami

Abstract:

The present study aims to measure the effectiveness of an "Interactive eBook" in order to develop skills of designing and employing webquests for female intern teachers. The study uses descriptive analytical methodology as well as quasi-experimental methodology. The sample of the study consists of (30) female intern teachers from the Department of Special Education (in the tracks of Gifted Education and Learning Difficulties), during the first semester of the academic year 2015, at King Abdul-Aziz University in Jeddah city. The sample is divided into (15) female intern teachers for the experimental group, and (15) female intern teachers for the control group. A set of qualitative and quantitative tools have been prepared and verified for the study, embodied in: a list of the designing webquests' skills, a list of the employing webquests' skills, a webquests' knowledge achievement test, a product rating card, an observation card, and an interactive ebook. The study concludes the following results: 1. After pre-control, there are statistically significant differences, at the significance level of (α ≤ 0.05), between the mean scores of the experimental and the control groups in the post measurement of the webquests' knowledge achievement test, in favor of the experimental group. 2. There are statistically significant differences, at the significance level of (α ≤ 0.05), between the mean scores of experimental and control groups in the post measurement of the product rating card in favor of the experimental group. 3. There are statistically significant differences, at the significance level of (α ≤ 0.05), between the mean scores of experimental and control groups in the post measurement of the observation card for the experimental group. In the light of the previous findings, the study recommends the following: taking advantage of interactive ebooks when teaching all educational courses for various disciplines at the university level, creating educational participative platforms to share educational interactive ebooks for various disciplines at the local and regional levels. The study suggests conducting further qualitative studies on the effectiveness of interactive ebooks, in addition to conducting studies on the use of (Web 2.0) in webquests.

Keywords: interactive eBook, webquest, design, employing, develop skills

Procedia PDF Downloads 169
6477 Peer Support Groups as a Tool to Increase Chances of Passing General Practice UK Qualification Exams

Authors: Thomas Abraham, Garcia de la Vega Felipe, Lubna Nishath, Nzekwe Nduka, Powell Anne-Marie

Abstract:

Introduction: The purpose of this paper is to discuss the effectiveness of a peer support network created to provide medical education, pastoral support, and reliable resources to registrars to help them pass the MRCGP exams. This paper will include a description of the network and its purpose, discuss how it has been used by trainees since its creation, and explain how this methodology can be applied to other areas of medical education and primary care. Background: The peer support network was created in February 2021, using Facebook, Telegram, and WhatsApp platforms to facilitate discussion of cases and answer queries about the exams, share resources, and offer peer support from qualified GPs and specialists. The network was created and is maintained by the authors of this paper and is open to anyone who is registered with the General Medical Council (GMC) and is studying for the MRCGP exams. Purpose: The purpose of the network is to provide medical education, pastoral support, and reliable resources to registrars to help them pass the exams. The network is free to use and is designed to take the onus away from a single medical educator and collate a vast amount of information from multiple medical educators/trainers; thereby creating a digital library of information for all trainees - exam related or otherwise. Methodology The network is managed by a team of moderators who respond to queries and facilitate discussion. Smaller study groups are created from the main group and provide a platform for trainees to work together, share resources, and provide peer support. The network has had thousands of trainees using it since February 2021, with positive feedback from all trainees. Results: The feedback from trainees has been overwhelmingly positive. Word of mouth has spread rapidly, growing the groups exponentially. Trainees add colleagues to the groups and often stay after they pass their exams to 'give back' to their fellow trainees. To date, thousands of trainees have passed the MRCGP exams using the resources and support provided by the network. Conclusion The success of this peer support network demonstrates the effectiveness of creating a network of thousands of doctors to provide medical education and support.

Keywords: peer support, medical education, pastoral support, MRCGP exams

Procedia PDF Downloads 116
6476 The Modelling of Real Time Series Data

Authors: Valeria Bondarenko

Abstract:

We proposed algorithms for: estimation of parameters fBm (volatility and Hurst exponent) and for the approximation of random time series by functional of fBm. We proved the consistency of the estimators, which constitute the above algorithms, and proved the optimal forecast of approximated time series. The adequacy of estimation algorithms, approximation, and forecasting is proved by numerical experiment. During the process of creating software, the system has been created, which is displayed by the hierarchical structure. The comparative analysis of proposed algorithms with the other methods gives evidence of the advantage of approximation method. The results can be used to develop methods for the analysis and modeling of time series describing the economic, physical, biological and other processes.

Keywords: mathematical model, random process, Wiener process, fractional Brownian motion

Procedia PDF Downloads 341
6475 Morphological and Optical Properties of (Al, In) Doped ZnO Thin ‎Films Textured (103) by Sol-Gel Method

Authors: S. Benzitouni, M. Zaabat, A. Mahdjoub, A. Benaboud, T.Saidani ‎

Abstract:

To improve the physical properties of ZnO nanostructures textured (103) by sol-gel ‎dip coating method, Al and In are used as dopant with different weight ratios (5%, 10%). ‎The comparative study between Al doped ZnO thin films (AZO) and In doped ZnO (IZO) ‎are made by different analysis technic. XRD showed that the films are Pollycristallins with ‎hexagonal wûrtzite structure and preferred orientation (002) and (103). UV-Vis ‎spectroscopy showed that all films have a high transmission (> 85%); the interference ‎fringes are only observed for IZO. The optical gap is reduced due to the introduction of In ‎‎(minimum value is 3.12 eV), but increased in the presence of Al (maximum value is 3.34 ‎eV). The thickness of the layers was obtained by modeling (using Forouhi Bloomer ‎method). AFM used to observe the surface texture of the films and determined grain size ‎and surface roughness (RMS) which varies in a small range [3.14 to 1.25] nm‎.

Keywords: ZnO, optical gap, roughness (RMS), nanostructures‎

Procedia PDF Downloads 310
6474 Spatial Architecture Impact in Mediation Open Circuit Voltage Control of Quantum Solar Cell Recovery Systems

Authors: Moustafa Osman Mohammed

Abstract:

The photocurrent generations are influencing ultra-high efficiency solar cells based on self-assembled quantum dot (QD) nanostructures. Nanocrystal quantum dots (QD) provide a great enhancement toward solar cell efficiencies through the use of quantum confinement to tune absorbance across the solar spectrum enabled multi-exciton generation. Based on theoretical predictions, QDs have potential to improve systems efficiency in approximate regular electrons excitation intensity greater than 50%. In solar cell devices, an intermediate band formed by the electron levels in quantum dot systems. The spatial architecture is exploring how can solar cell integrate and produce not only high open circuit voltage (> 1.7 eV) but also large short-circuit currents due to the efficient absorption of sub-bandgap photons. In the proposed QD system, the structure allows barrier material to absorb wavelengths below 700 nm while multi-photon processes in the used quantum dots to absorb wavelengths up to 2 µm. The assembly of the electronic model is flexible to demonstrate the atoms and molecules structure and material properties to tune control energy bandgap of the barrier quantum dot to their respective optimum values. In terms of energy virtual conversion, the efficiency and cost of the electronic structure are unified outperform a pair of multi-junction solar cell that obtained in the rigorous test to quantify the errors. The milestone toward achieving the claimed high-efficiency solar cell device is controlling the edge causes of energy bandgap between the barrier material and quantum dot systems according to the media design limits. Despite this remarkable potential for high photocurrent generation, the achievable open-circuit voltage (Voc) is fundamentally limited due to non-radiative recombination processes in QD solar cells. The orientation of voltage recovery system is compared theoretically with experimental Voc variation in mediation upper–limit obtained one diode modeling form at the cells with different bandgap (Eg) as classified in the proposed spatial architecture. The opportunity for improvement Voc is valued approximately greater than 1V by using smaller QDs through QD solar cell recovery systems as confined to other micro and nano operations states.

Keywords: nanotechnology, photovoltaic solar cell, quantum systems, renewable energy, environmental modeling

Procedia PDF Downloads 139
6473 Analysis of Waterjet Propulsion System for an Amphibious Vehicle

Authors: Nafsi K. Ashraf, C. V. Vipin, V. Anantha Subramanian

Abstract:

This paper reports the design of a waterjet propulsion system for an amphibious vehicle based on circulation distribution over the camber line for the sections of the impeller and stator. In contrast with the conventional waterjet design, the inlet duct is straight for water entry parallel and in line with the nozzle exit. The extended nozzle after the stator bowl makes the flow more axial further improving thrust delivery. Waterjet works on the principle of volume flow rate through the system and unlike the propeller, it is an internal flow system. The major difference between the propeller and the waterjet occurs at the flow passing the actuator. Though a ducted propeller could constitute the equivalent of waterjet propulsion, in a realistic situation, the nozzle area for the Waterjet would be proportionately larger to the inlet area and propeller disc area. Moreover, the flow rate through impeller disk is controlled by nozzle area. For these reasons the waterjet design is based on pump systems rather than propellers and therefore it is important to bring out the characteristics of the flow from this point of view. The analysis is carried out using computational fluid dynamics. Design of waterjet propulsion is carried out adapting the axial flow pump design and performance analysis was done with three-dimensional computational fluid dynamics (CFD) code. With the varying environmental conditions as well as with the necessity of high discharge and low head along with the space confinement for the given amphibious vehicle, an axial pump design is suitable. The major problem of inlet velocity distribution is the large variation of velocity in the circumferential direction which gives rise to heavy blade loading that varies with time. The cavitation criteria have also been taken into account as per the hydrodynamic pump design. Generally, waterjet propulsion system can be parted into the inlet, the pump, the nozzle and the steering device. The pump further comprises an impeller and a stator. Analytical and numerical approaches such as RANSE solver has been undertaken to understand the performance of designed waterjet propulsion system. Unlike in case of propellers the analysis was based on head flow curve with efficiency and power curves. The modeling of the impeller is performed using rigid body motion approach. The realizable k-ϵ model has been used for turbulence modeling. The appropriate boundary conditions are applied for the domain, domain size and grid dependence studies are carried out.

Keywords: amphibious vehicle, CFD, impeller design, waterjet propulsion

Procedia PDF Downloads 207
6472 Poultry in Motion: Text Mining Social Media Data for Avian Influenza Surveillance in the UK

Authors: Samuel Munaf, Kevin Swingler, Franz Brülisauer, Anthony O’Hare, George Gunn, Aaron Reeves

Abstract:

Background: Avian influenza, more commonly known as Bird flu, is a viral zoonotic respiratory disease stemming from various species of poultry, including pets and migratory birds. Researchers have purported that the accessibility of health information online, in addition to the low-cost data collection methods the internet provides, has revolutionized the methods in which epidemiological and disease surveillance data is utilized. This paper examines the feasibility of using internet data sources, such as Twitter and livestock forums, for the early detection of the avian flu outbreak, through the use of text mining algorithms and social network analysis. Methods: Social media mining was conducted on Twitter between the period of 01/01/2021 to 31/12/2021 via the Twitter API in Python. The results were filtered firstly by hashtags (#avianflu, #birdflu), word occurrences (avian flu, bird flu, H5N1), and then refined further by location to include only those results from within the UK. Analysis was conducted on this text in a time-series manner to determine keyword frequencies and topic modeling to uncover insights in the text prior to a confirmed outbreak. Further analysis was performed by examining clinical signs (e.g., swollen head, blue comb, dullness) within the time series prior to the confirmed avian flu outbreak by the Animal and Plant Health Agency (APHA). Results: The increased search results in Google and avian flu-related tweets showed a correlation in time with the confirmed cases. Topic modeling uncovered clusters of word occurrences relating to livestock biosecurity, disposal of dead birds, and prevention measures. Conclusions: Text mining social media data can prove to be useful in relation to analysing discussed topics for epidemiological surveillance purposes, especially given the lack of applied research in the veterinary domain. The small sample size of tweets for certain weekly time periods makes it difficult to provide statistically plausible results, in addition to a great amount of textual noise in the data.

Keywords: veterinary epidemiology, disease surveillance, infodemiology, infoveillance, avian influenza, social media

Procedia PDF Downloads 93
6471 Conditions for Fault Recovery of Interconnected Asynchronous Sequential Machines with State Feedback

Authors: Jung–Min Yang

Abstract:

In this paper, fault recovery for parallel interconnected asynchronous sequential machines is studied. An adversarial input can infiltrate into one of two submachines comprising parallel composition of the considered asynchronous sequential machine, causing an unauthorized state transition. The control objective is to elucidate the condition for the existence of a corrective controller that makes the closed-loop system immune against any occurrence of adversarial inputs. In particular, an efficient existence condition is presented that does not need the complete modeling of the interconnected asynchronous sequential machine.

Keywords: asynchronous sequential machines, parallel composi-tion, corrective control, fault tolerance

Procedia PDF Downloads 211
6470 Object-Oriented Multivariate Proportional-Integral-Derivative Control of Hydraulic Systems

Authors: J. Fernandez de Canete, S. Fernandez-Calvo, I. García-Moral

Abstract:

This paper presents and discusses the application of the object-oriented modelling software SIMSCAPE to hydraulic systems, with particular reference to multivariable proportional-integral-derivative (PID) control. As a result, a particular modelling approach of a double cylinder-piston coupled system is proposed and motivated, and the SIMULINK based PID tuning tool has also been used to select the proper controller parameters. The paper demonstrates the usefulness of the object-oriented approach when both physical modelling and control are tackled.

Keywords: object-oriented modeling, multivariable hydraulic system, multivariable PID control, computer simulation

Procedia PDF Downloads 333
6469 Modeling and Optimizing of Sinker Electric Discharge Machine Process Parameters on AISI 4140 Alloy Steel by Central Composite Rotatable Design Method

Authors: J. Satya Eswari, J. Sekhar Babub, Meena Murmu, Govardhan Bhat

Abstract:

Electrical Discharge Machining (EDM) is an unconventional manufacturing process based on removal of material from a part by means of a series of repeated electrical sparks created by electric pulse generators at short intervals between a electrode tool and the part to be machined emmersed in dielectric fluid. In this paper, a study will be performed on the influence of the factors of peak current, pulse on time, interval time and power supply voltage. The output responses measured were material removal rate (MRR) and surface roughness. Finally, the parameters were optimized for maximum MRR with the desired surface roughness. RSM involves establishing mathematical relations between the design variables and the resulting responses and optimizing the process conditions. RSM is not free from problems when it is applied to multi-factor and multi-response situations. Design of experiments (DOE) technique to select the optimum machining conditions for machining AISI 4140 using EDM. The purpose of this paper is to determine the optimal factors of the electro-discharge machining (EDM) process investigate feasibility of design of experiment techniques. The work pieces used were rectangular plates of AISI 4140 grade steel alloy. The study of optimized settings of key machining factors like pulse on time, gap voltage, flushing pressure, input current and duty cycle on the material removal, surface roughness is been carried out using central composite design. The objective is to maximize the Material removal rate (MRR). Central composite design data is used to develop second order polynomial models with interaction terms. The insignificant coefficients’ are eliminated with these models by using student t test and F test for the goodness of fit. CCD is first used to establish the determine the optimal factors of the electro-discharge machining (EDM) for maximizing the MRR. The responses are further treated through a objective function to establish the same set of key machining factors to satisfy the optimization problem of the electro-discharge machining (EDM) process. The results demonstrate the better performance of CCD data based RSM for optimizing the electro-discharge machining (EDM) process.

Keywords: electric discharge machining (EDM), modeling, optimization, CCRD

Procedia PDF Downloads 329
6468 An Experiment with Science Popularization in Rural Schools of Sehore District in Madhya Pradesh, India

Authors: Peeyush Verma, Anil Kumar, Anju Rawlley, Chanchal Mehra

Abstract:

India's school-going population is largely served by an educational system that is, in most rural parts, stuck with methods that emphasize rote learning, endless examinations, and monotonous classroom activities. Rural government schools are generally seen as having poor infrastructure, poor support system and low motivation for teaching as well as learning. It was experienced during the survey of this project that there is lesser motivation of rural boys and girls to attend their schools and still less likely chances to study science, tabooed as “difficult”. An experiment was conducted with the help of Rural Knowledge Network Project through Department of Science and Technology, Govt of India in five remote villages of Sehore District in Madhya Pradesh (India) during 2012-2015. These schools are located about 50-70 Km away from Bhopal, the capital of Madhya Pradesh and can distinctively qualify as average rural schools. Three tier methodology was adapted to unfold the experiment. In first tier randomly selected boys and girls from these schools were taken to a daylong visit to the Regional Science Centre located in Bhopal. In second tier, randomly selected half of those who visited earlier were again taken to the Science Centre to make models of Science. And in third tier, all the boys and girls studying science were exposed to video lectures and study material through web. The results have shown an interesting face towards learning science among youths in rural schools through peer learning or incremental learning. The students who had little or no interest in learning science became good learners and queries started pouring in from the neighbourhood village as well as a few parents requested to take their wards in the project to learn science. The paper presented is a case study of the experiment conducted in five rural schools of Sehore District. It reflects upon the methodology of developing awareness and interest among students and finally engaging them in popularising science through peer-to-peer learning using incremental learning elements. The students, who had a poor perception about science initially, had changed their attitude towards learning science during the project period. The results of this case, however, cannot be generalised unless replicated in the same setting elsewhere.

Keywords: popularisation of science, science temper, incremental learning, peer-to-peer learning

Procedia PDF Downloads 297
6467 Enhancing Early Detection of Coronary Heart Disease Through Cloud-Based AI and Novel Simulation Techniques

Authors: Md. Abu Sufian, Robiqul Islam, Imam Hossain Shajid, Mahesh Hanumanthu, Jarasree Varadarajan, Md. Sipon Miah, Mingbo Niu

Abstract:

Coronary Heart Disease (CHD) remains a principal cause of global morbidity and mortality, characterized by atherosclerosis—the build-up of fatty deposits inside the arteries. The study introduces an innovative methodology that leverages cloud-based platforms like AWS Live Streaming and Artificial Intelligence (AI) to early detect and prevent CHD symptoms in web applications. By employing novel simulation processes and AI algorithms, this research aims to significantly mitigate the health and societal impacts of CHD. Methodology: This study introduces a novel simulation process alongside a multi-phased model development strategy. Initially, health-related data, including heart rate variability, blood pressure, lipid profiles, and ECG readings, were collected through user interactions with web-based applications as well as API Integration. The novel simulation process involved creating synthetic datasets that mimic early-stage CHD symptoms, allowing for the refinement and training of AI algorithms under controlled conditions without compromising patient privacy. AWS Live Streaming was utilized to capture real-time health data, which was then processed and analysed using advanced AI techniques. The novel aspect of our methodology lies in the simulation of CHD symptom progression, which provides a dynamic training environment for our AI models enhancing their predictive accuracy and robustness. Model Development: it developed a machine learning model trained on both real and simulated datasets. Incorporating a variety of algorithms including neural networks and ensemble learning model to identify early signs of CHD. The model's continuous learning mechanism allows it to evolve adapting to new data inputs and improving its predictive performance over time. Results and Findings: The deployment of our model yielded promising results. In the validation phase, it achieved an accuracy of 92% in predicting early CHD symptoms surpassing existing models. The precision and recall metrics stood at 89% and 91% respectively, indicating a high level of reliability in identifying at-risk individuals. These results underscore the effectiveness of combining live data streaming with AI in the early detection of CHD. Societal Implications: The implementation of cloud-based AI for CHD symptom detection represents a significant step forward in preventive healthcare. By facilitating early intervention, this approach has the potential to reduce the incidence of CHD-related complications, decrease healthcare costs, and improve patient outcomes. Moreover, the accessibility and scalability of cloud-based solutions democratize advanced health monitoring, making it available to a broader population. This study illustrates the transformative potential of integrating technology and healthcare, setting a new standard for the early detection and management of chronic diseases.

Keywords: coronary heart disease, cloud-based ai, machine learning, novel simulation techniques, early detection, preventive healthcare

Procedia PDF Downloads 48
6466 A Collaborative Application of Six Sigma and Value Engineering in Supply Chain and Logistics

Authors: Arun Raja, Kevin Thomas, Sreyas Tribhu, S. P. Anbuudayasankar

Abstract:

This paper deals with the application of six sigma methodology in supply chain (SC) and logistics. A detailed cram about how the SC can be improved and its impact on the organization are dealt with and also how the quality plays a vital role in improving SC and logistics are identified. A simulation has been performed using the ARENA software to determine the process efficiency of a bottle manufacturing unit. Further, a Value Stream Mapping (VSM) analysis has been executed on the manufacturing process flow model and the manner by which Value Engineering (VE) holds a significant importance for quality assertion on the products is also studied.

Keywords: supply chain, six sigma, value engineering, logistics, quality

Procedia PDF Downloads 663
6465 Foil Bearing Stiffness Estimation with Pseudospectral Scheme

Authors: Balaji Sankar, Sadanand Kulkarni

Abstract:

Compliant foil gas lubricated bearings are used for the support of light loads in the order of few kilograms at high speeds, in the order of 50,000 RPM. The stiffness of the foil bearings depends both on the stiffness of the compliant foil and on the lubricating gas film. The stiffness of the bearings plays a crucial role in the stable operation of the supported rotor over a range of speeds. This paper describes a numerical approach to estimate the stiffness of the bearings using pseudo spectral scheme. Methodology to obtain the stiffness of the foil bearing as a function of weight of the shaft is given and the results are presented.

Keywords: foil bearing, simulation, numerical, stiffness estimation

Procedia PDF Downloads 327
6464 Social Vulnerability Mapping in New York City to Discuss Current Adaptation Practice

Authors: Diana Reckien

Abstract:

Vulnerability assessments are increasingly used to support policy-making in complex environments, like urban areas. Usually, vulnerability studies include the construction of aggregate (sub-) indices and the subsequent mapping of indices across an area of interest. Vulnerability studies show a couple of advantages: they are great communication tools, can inform a wider general debate about environmental issues, and can help allocating and efficiently targeting scarce resources for adaptation policy and planning. However, they also have a number of challenges: Vulnerability assessments are constructed on the basis of a wide range of methodologies and there is no single framework or methodology that has proven to serve best in certain environments, indicators vary highly according to the spatial scale used, different variables and metrics produce different results, and aggregate or composite vulnerability indicators that are mapped easily distort or bias the picture of vulnerability as they hide the underlying causes of vulnerability and level out conflicting reasons of vulnerability in space. So, there is urgent need to further develop the methodology of vulnerability studies towards a common framework, which is one reason of the paper. We introduce a social vulnerability approach, which is compared with other approaches of bio-physical or sectoral vulnerability studies relatively developed in terms of a common methodology for index construction, guidelines for mapping, assessment of sensitivity, and verification of variables. Two approaches are commonly pursued in the literature. The first one is an additive approach, in which all potentially influential variables are weighted according to their importance for the vulnerability aspect, and then added to form a composite vulnerability index per unit area. The second approach includes variable reduction, mostly Principal Component Analysis (PCA) that reduces the number of variables that are interrelated into a smaller number of less correlating components, which are also added to form a composite index. We test these two approaches of constructing indices on the area of New York City as well as two different metrics of variables used as input and compare the outcome for the 5 boroughs of NY. Our analysis yields that the mapping exercise yields particularly different results in the outer regions and parts of the boroughs, such as Outer Queens and Staten Island. However, some of these parts, particularly the coastal areas receive the highest attention in the current adaptation policy. We imply from this that the current adaptation policy and practice in NY might need to be discussed, as these outer urban areas show relatively low social vulnerability as compared with the more central parts, i.e. the high dense areas of Manhattan, Central Brooklyn, Central Queens and the Southern Bronx. The inner urban parts receive lesser adaptation attention, but bear a higher risk of damage in case of hazards in those areas. This is conceivable, e.g., during large heatwaves, which would more affect more the inner and poorer parts of the city as compared with the outer urban areas. In light of the recent planning practice of NY one needs to question and discuss who in NY makes adaptation policy for whom, but the presented analyses points towards an under representation of the needs of the socially vulnerable population, such as the poor, the elderly, and ethnic minorities, in the current adaptation practice in New York City.

Keywords: vulnerability mapping, social vulnerability, additive approach, Principal Component Analysis (PCA), New York City, United States, adaptation, social sensitivity

Procedia PDF Downloads 383
6463 Investigation of Damage in Glass Subjected to Static Indentation Using Continuum Damage Mechanics

Authors: J. Ismail, F. Zaïri, M. Naït-Abdelaziz, Z. Azari

Abstract:

In this work, a combined approach of continuum damage mechanics (CDM) and fracture mechanics is applied to model a glass plate behavior under static indentation. A spherical indenter is used and a CDM based constitutive model with an anisotropic damage tensor was selected and implemented into a finite element code to study the damage of glass. Various regions with critical damage values were predicted in good agreement with the experimental observations in the literature. In these regions, the directions of crack propagation, including both cracks initiating on the surface as well as in the bulk, were predicted using the strain energy density factor.

Keywords: finite element modeling, continuum damage mechanics, indentation, cracks

Procedia PDF Downloads 403
6462 Enhancing Seismic Resilience in Urban Environments

Authors: Beatriz González-rodrigo, Diego Hidalgo-leiva, Omar Flores, Claudia Germoso, Maribel Jiménez-martínez, Laura Navas-sánchez, Belén Orta, Nicola Tarque, Orlando Hernández- Rubio, Miguel Marchamalo, Juan Gregorio Rejas, Belén Benito-oterino

Abstract:

Cities facing seismic hazard necessitate detailed risk assessments for effective urban planning and vulnerability identification, ensuring the safety and sustainability of urban infrastructure. Comprehensive studies involving seismic hazard, vulnerability, and exposure evaluations are pivotal for estimating potential losses and guiding proactive measures against seismic events. However, broad-scale traditional risk studies limit consideration of specific local threats and identify vulnerable housing within a structural typology. Achieving precise results at neighbourhood levels demands higher resolution seismic hazard exposure, and vulnerability studies. This research aims to bolster sustainability and safety against seismic disasters in three Central American and Caribbean capitals. It integrates geospatial techniques and artificial intelligence into seismic risk studies, proposing cost-effective methods for exposure data collection and damage prediction. The methodology relies on prior seismic threat studies in pilot zones, utilizing existing exposure and vulnerability data in the region. Emphasizing detailed building attributes enables the consideration of behaviour modifiers affecting seismic response. The approach aims to generate detailed risk scenarios, facilitating prioritization of preventive actions pre-, during, and post-seismic events, enhancing decision-making certainty. Detailed risk scenarios necessitate substantial investment in fieldwork, training, research, and methodology development. Regional cooperation becomes crucial given similar seismic threats, urban planning, and construction systems among involved countries. The outcomes hold significance for emergency planning and national and regional construction regulations. The success of this methodology depends on cooperation, investment, and innovative approaches, offering insights and lessons applicable to regions facing moderate seismic threats with vulnerable constructions. Thus, this framework aims to fortify resilience in seismic-prone areas and serves as a reference for global urban planning and disaster management strategies. In conclusion, this research proposes a comprehensive framework for seismic risk assessment in high-risk urban areas, emphasizing detailed studies at finer resolutions for precise vulnerability evaluations. The approach integrates regional cooperation, geospatial technologies, and adaptive fragility curve adjustments to enhance risk assessment accuracy, guiding effective mitigation strategies and emergency management plans.

Keywords: assessment, behaviour modifiers, emergency management, mitigation strategies, resilience, vulnerability

Procedia PDF Downloads 53
6461 Towards a Vulnerability Model Assessment of The Alexandra Jukskei Catchment in South Africa

Authors: Vhuhwavho Gadisi, Rebecca Alowo, German Nkhonjera

Abstract:

This article sets out to detail an investigation of groundwater management in the Juksei Catchment of South Africa through spatial mapping of key hydrological relationships, interactions, and parameters in catchments. The Department of Water Affairs (DWA) noted gaps in the implementation of the South African National Water Act 1998: article 16, including the lack of appropriate models for dealing with water quantity parameters. For this reason, this research conducted a drastic GIS-based groundwater assessment to improve groundwater monitoring system in the Juksei River basin catchment of South Africa. The methodology employed was a mixed-methods approach/design that involved the use of DRASTIC analysis, questionnaire, literature review and observations to gather information on how to help people who use the Juskei River. GIS (geographical information system) mapping was carried out using a three-parameter DRASTIC (Depth to water, Recharge, Aquifer media, Soil media, Topography, Impact of the vadose zone, Hydraulic conductivity) vulnerability methodology. In addition, the developed vulnerability map was subjected to sensitivity analysis as a validation method. This approach included single-parameter sensitivity, sensitivity to map deletion, and correlation analysis of DRASTIC parameters. The findings were that approximately 5.7% (45km2) of the area in the northern part of the Juksei watershed is highly vulnerable. Approximately 53.6% (428.8 km^2) of the basin is also at high risk of groundwater contamination. This area is mainly located in the central, north-eastern, and western areas of the sub-basin. The medium and low vulnerability classes cover approximately 18.1% (144.8 km2) and 21.7% (168 km2) of the Jukskei River, respectively. The shallow groundwater of the Jukskei River belongs to a very vulnerable area. Sensitivity analysis indicated that water depth, water recharge, aquifer environment, soil, and topography were the main factors contributing to the vulnerability assessment. The conclusion is that the final vulnerability map indicates that the Juksei catchment is highly susceptible to pollution, and therefore, protective measures are needed for sustainable management of groundwater resources in the study area.

Keywords: contamination, DRASTIC, groundwater, vulnerability, model

Procedia PDF Downloads 68
6460 Sound Source Localisation and Augmented Reality for On-Site Inspection of Prefabricated Building Components

Authors: Jacques Cuenca, Claudio Colangeli, Agnieszka Mroz, Karl Janssens, Gunther Riexinger, Antonio D'Antuono, Giuseppe Pandarese, Milena Martarelli, Gian Marco Revel, Carlos Barcena Martin

Abstract:

This study presents an on-site acoustic inspection methodology for quality and performance evaluation of building components. The work focuses on global and detailed sound source localisation, by successively performing acoustic beamforming and sound intensity measurements. A portable experimental setup is developed, consisting of an omnidirectional broadband acoustic source and a microphone array and sound intensity probe. Three main acoustic indicators are of interest, namely the sound pressure distribution on the surface of components such as walls, windows and junctions, the three-dimensional sound intensity field in the vicinity of junctions, and the sound transmission loss of partitions. The measurement data is post-processed and converted into a three-dimensional numerical model of the acoustic indicators with the help of the simultaneously acquired geolocation information. The three-dimensional acoustic indicators are then integrated into an augmented reality platform superimposing them onto a real-time visualisation of the spatial environment. The methodology thus enables a measurement-supported inspection process of buildings and the correction of errors during construction and refurbishment. Two experimental validation cases are shown. The first consists of a laboratory measurement on a full-scale mockup of a room, featuring a prefabricated panel. The latter is installed with controlled defects such as lack of insulation and joint sealing material. It is demonstrated that the combined acoustic and augmented reality tool is capable of identifying acoustic leakages from the building defects and assist in correcting them. The second validation case is performed on a prefabricated room at a near-completion stage in the factory. With the help of the measurements and visualisation tools, the homogeneity of the partition installation is evaluated and leakages from junctions and doors are identified. Furthermore, the integration of acoustic indicators together with thermal and geometrical indicators via the augmented reality platform is shown.

Keywords: acoustic inspection, prefabricated building components, augmented reality, sound source localization

Procedia PDF Downloads 362
6459 Psychiatric/Psychological Issues in the Criminal Courts In Australia

Authors: Judge Paul Smith

Abstract:

Abstract—This paper addresses the use and admissibility of psychiatric/psychological evidence in Australia Courts. There have been different approaches in the Courts to the acceptance of such expert evidence. It details how such expert evidence is admissible at trial and sentence. The methodology used is an examination of the decided cases and relevant legislative provisions which relate to the admission of such evidence. The major findings are that the evidence can be admissible if it is relevant to issues in a trial or sentence. It concludes that psychiatric/psychological evidence can be very useful and indeed may be essential at sentence or trial.

Keywords: criminal, law, psychological, evidence

Procedia PDF Downloads 37