Search results for: linear multistep methods
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17932

Search results for: linear multistep methods

15682 Determination of the Minimum Time and the Optimal Trajectory of a Moving Robot Using Picard's Method

Authors: Abbes Lounis, Kahina Louadj, Mohamed Aidene

Abstract:

This paper presents an optimal control problem applied to a robot; the problem is to determine a command which makes it possible to reach a final state from a given initial state in record time. The approach followed to solve this optimization problem with constraints on the control starts by presenting the equations of motion of the dynamic system then by applying Pontryagin's maximum principle (PMP) to determine the optimal control, and Picard's successive approximation method combined with the shooting method to solve the resulting differential system.

Keywords: robotics, Pontryagin's Maximum Principle, PMP, Picard's method, shooting method, non-linear differential systems

Procedia PDF Downloads 255
15681 Tongue Image Retrieval Based Using Machine Learning

Authors: Ahmad FAROOQ, Xinfeng Zhang, Fahad Sabah, Raheem Sarwar

Abstract:

In Traditional Chinese Medicine, tongue diagnosis is a vital inspection tool (TCM). In this study, we explore the potential of machine learning in tongue diagnosis. It begins with the cataloguing of the various classifications and characteristics of the human tongue. We infer 24 kinds of tongues from the material and coating of the tongue, and we identify 21 attributes of the tongue. The next step is to apply machine learning methods to the tongue dataset. We use the Weka machine learning platform to conduct the experiment for performance analysis. The 457 instances of the tongue dataset are used to test the performance of five different machine learning methods, including SVM, Random Forests, Decision Trees, and Naive Bayes. Based on accuracy and Area under the ROC Curve, the Support Vector Machine algorithm was shown to be the most effective for tongue diagnosis (AUC).

Keywords: medical imaging, image retrieval, machine learning, tongue

Procedia PDF Downloads 81
15680 Transportation Mode Choice Analysis for Accessibility of the Mehrabad International Airport by Statistical Models

Authors: Navid Mirzaei Varzeghani, Mahmoud Saffarzadeh, Ali Naderan, Amirhossein Taheri

Abstract:

Countries are progressing, and the world's busiest airports see year-on-year increases in travel demand. Passenger acceptability of an airport depends on the airport's appeals, which may include one of these routes between the city and the airport, as well as the facilities to reach them. One of the critical roles of transportation planners is to predict future transportation demand so that an integrated, multi-purpose system can be provided and diverse modes of transportation (rail, air, and land) can be delivered to a destination like an airport. In this study, 356 questionnaires were filled out in person over six days. First, the attraction of business and non-business trips was studied using data and a linear regression model. Lower travel costs, a range of ages more significant than 55, and other factors are essential for business trips. Non-business travelers, on the other hand, have prioritized using personal vehicles to get to the airport and ensuring convenient access to the airport. Business travelers are also less price-sensitive than non-business travelers regarding airport travel. Furthermore, carrying additional luggage (for example, more than one suitcase per person) undoubtedly decreases the attractiveness of public transit. Afterward, based on the manner and purpose of the trip, the locations with the highest trip generation to the airport were identified. The most famous district in Tehran was District 2, with 23 visits, while the most popular mode of transportation was an online taxi, with 12 trips from that location. Then, significant variables in separation and behavior of travel methods to access the airport were investigated for all systems. In this scenario, the most crucial factor is the time it takes to get to the airport, followed by the method's user-friendliness as a component of passenger preference. It has also been demonstrated that enhancing public transportation trip times reduces private transportation's market share, including taxicabs. Based on the responses of personal and semi-public vehicles, the desire of passengers to approach the airport via public transportation systems was explored to enhance present techniques and develop new strategies for providing the most efficient modes of transportation. Using the binary model, it was clear that business travelers and people who had already driven to the airport were the least likely to change.

Keywords: multimodal transportation, demand modeling, travel behavior, statistical models

Procedia PDF Downloads 173
15679 Performance Evaluation of Dynamic Signal Control System for Mixed Traffic Conditions

Authors: Aneesh Babu, S. P. Anusha

Abstract:

A dynamic signal control system combines traditional traffic lights with an array of sensors to intelligently control vehicle and pedestrian traffic. The present study focus on evaluating the performance of dynamic signal control systems for mixed traffic conditions. Data collected from four different approaches to a typical four-legged signalized intersection at Trivandrum city in the Kerala state of India is used for the study. Performance of three other dynamic signal control methods, namely (i) Non-sequential method (ii) Webster design for consecutive signal cycle using flow as input, and (iii) dynamic signal control using RFID delay as input, were evaluated. The evaluation of the dynamic signal control systems was carried out using a calibrated VISSIM microsimulation model. Python programming was used to integrate the dynamic signal control algorithm through the COM interface in VISSIM. The intersection delay obtained from different dynamic signal control methods was compared with the delay obtained from fixed signal control. Based on the study results, it was observed that the intersection delay was reduced significantly by using dynamic signal control methods. The dynamic signal control method using delay from RFID sensors resulted in a higher percentage reduction in delay and hence is a suitable choice for implementation under mixed traffic conditions. The developed dynamic signal control strategies can be implemented in ITS applications under mixed traffic conditions.

Keywords: dynamic signal control, intersection delay, mixed traffic conditions, RFID sensors

Procedia PDF Downloads 106
15678 Induction Heating Process Design Using Comsol® Multiphysics Software Version 4.2a

Authors: K. Djellabi, M. E. H. Latreche

Abstract:

Induction heating computer simulation is a powerful tool for process design and optimization, induction coil design, equipment selection, as well as education and business presentations. The authors share their vast experience in the practical use of computer simulation for different induction heating and heat treating processes. In this paper deals with mathematical modeling and numerical simulation of induction heating furnaces with axisymmetric geometries. For the numerical solution, we propose finite element methods combined with boundary (FEM) for the electromagnetic model using COMSOL® Multiphysics Software. Some numerical results for an industrial furnace are shown with high frequency.

Keywords: numerical methods, induction furnaces, induction heating, finite element method, Comsol multiphysics software

Procedia PDF Downloads 449
15677 By-Line Analysis of Determinants Insurance Premiums : Evidence from Tunisian Market

Authors: Nadia Sghaier

Abstract:

In this paper, we aim to identify the determinants of the life and non-life insurance premiums of different lines for the case of the Tunisian insurance market over a recent period from 1997 to 2019. The empirical analysis is conducted using the linear cointegration techniques in the panel data framework, which allow both long and short-run relationships. The obtained results show evidence of long-run relationship between premiums, losses, and financial variables (stock market indices and interest rate). Furthermore, we find that the short-run effect of explanatory variables differs across lines. This finding has important implications for insurance tarification and regulation.

Keywords: insurance premiums, lines, Tunisian insurance market, cointegration approach in panel data

Procedia PDF Downloads 198
15676 Effect of Short Chain Alcohols on Bending Rigidity of Lipid Bilayer

Authors: Buti Suryabrahmam, V. A. Raghunathan

Abstract:

We study the effect of short chain alcohols on mechanical properties of saturated lipid bilayers in the fluid phase. The Bending rigidity of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) membrane was measured at 28 °C by employing Vesicle Fluctuation Analysis technique. The concentration and chain length (n) of alcohol in the buffer solution were varied from 0 to 1.5 M and from 2 to 8 respectively. We observed a non-linear reduction in the bending rigidity from ~17×10⁻²⁰ J to ~10×10⁻²⁰ J, for all chain lengths of alcohols used in our experiment. We observed approximately three orders of the concentration difference between ethanol and octanol, to show the similar reduction in the bending values. We attribute this phenomenon to thinning of the bilayer due to the adsorption of alcohols at the bilayer-water interface.

Keywords: alcohols, bending rigidity, DMPC, lipid bilayers

Procedia PDF Downloads 146
15675 Matrix Completion with Heterogeneous Cost

Authors: Ilqar Ramazanli

Abstract:

The matrix completion problem has been studied broadly under many underlying conditions. The problem has been explored under adaptive or non-adaptive, exact or estimation, single-phase or multi-phase, and many other categories. In most of these cases, the observation cost of each entry is uniform and has the same cost across the columns. However, in many real-life scenarios, we could expect elements from distinct columns or distinct positions to have a different cost. In this paper, we explore this generalization under adaptive conditions. We approach the problem under two different cost models. The first one is that entries from different columns have different observation costs, but within the same column, each entry has a uniform cost. The second one is any two entry has different observation cost, despite being the same or different columns. We provide complexity analysis of our algorithms and provide tightness guarantees.

Keywords: matroid optimization, matrix completion, linear algebra, algorithms

Procedia PDF Downloads 109
15674 Information and Communication Technology (ICT) and Yoruba Language Teaching

Authors: Ayoola Idowu Olasebikan

Abstract:

The global community has become increasingly dependent on various kinds of technologies out of which Information and Communication Technologies (ICTs) appear to be the most prominent. ICTs have become multipurpose tools which have had a revolutionary impact on how we see the world and how we live in it. Yoruba is the most widely spoken African language outside Africa but it remains one of the badly spoken language in the world as a result of its outdated teaching method in the African schools which prevented its standard version from being spoken and written. This paper conducts a critical review of the traditional methods of teaching Yoruba language. It then examines the possibility of leveraging on ICTs for improved methods of teaching Yoruba language to achieve global standard and spread. It identified key ICT platforms that can be deployed for the teaching of Yoruba language and the constraints facing each of them. The paper concludes that Information and Communication Technologies appear to provide veritable opportunity for paradigm shift in the methods of teaching Yoruba Language. It also opines that Yoruba language has the potential to transform economic fortune of Africa for sustainable development provided its teaching is taken beyond the brick and mortar classroom to the virtual classroom/global information super highway called internet or any other ICTs medium. It recommends that students and teachers of Yoruba language should be encouraged to acquire basic skills in computer and internet technology in order to enhance their ability to develop and retrieve electronic Yoruba language teaching materials.

Keywords: Africa, ICT, teaching method, Yoruba language

Procedia PDF Downloads 361
15673 Efficacy of Different Soil-Applied Fungicides to Manage Phytophthora Root Rot of Chili (Solanum annum) in Pakistan

Authors: Kiran Nawaz, Ahmad Ali Shahid, Sehrish Iftikhar, Waheed Anwar, Muhammad Nasir Subhani

Abstract:

Chili (Solanum annum L.) attacks by many fungal pathogens, including members of Oomycetes which are responsible for root rot in different chili growing areas of the world. Oomycetes pathogens cause economic losses in different regions of the Pakistan. Most of the plant tissues, including roots, crowns, fruit, and leaves, are vulnerable to Phytophthora capsici. It is very difficult to manage the Phytophthora root rot of chili as many commercial varieties are tremendously vulnerable to P. capsici. The causal agent of the disease was isolated on corn meal agar (CMA) and identified on a morphological basis by using available taxonomic keys. The pathogen was also confirmed on the molecular basis through internal transcribed spacer region and with other molecular markers.The Blastn results showed 100% homology with already reported sequences of P. capsici in NCBI database. Most of the farmers have conventionally relied on foliar fungicide applications to control Phytophthora root rot in spite of their incomplete effectiveness. In this study, in vitro plate assay, seed soaking and foliar applications of 6 fungicides were evaluated against root rot of chili. In vitro assay revealed that significant inhibition of linear growth was obtained with Triflumizole at 7.0%, followed by Thiophanate methyl (8.9%), Etridiazole (6.0%), Propamocarb (5.9%) and 7.5% with Mefenoxam and Iprodione for P. capsici. The promising treatments of in vitro plate bioassay were evaluated in pot experiments under controlled conditions in the greenhouse. All fungicides were applied after at 6-day intervals. Results of pot experiment showed that all treatments considerably inhibited the percentage of P. capsici root rot incidence. In addition, application of seed soaking with all six fungicides combined with the foliar spray of the same components showed the significant reduction in root rot incidence. The combine treatments of all fungicides as in vitro bioassay, seed soaking followed by foliar spray is considered non-harmful control methods which have advantages and limitation. Hence, these applications proved effective and harmless for the management of soil-borne plant pathogens.

Keywords: blastn, bioassay, corn meal agar(CMA), oomycetes

Procedia PDF Downloads 242
15672 Estimation of Stress Intensity Factors from near Crack Tip Field

Authors: Zhuang He, Andrei Kotousov

Abstract:

All current experimental methods for determination of stress intensity factors are based on the assumption that the state of stress near the crack tip is plane stress. Therefore, these methods rely on strain and displacement measurements made outside the near crack tip region affected by the three-dimensional effects or by process zone. In this paper, we develop and validate an experimental procedure for the evaluation of stress intensity factors from the measurements of the out-of-plane displacements in the surface area controlled by 3D effects. The evaluation of stress intensity factors is possible when the process zone is sufficiently small, and the displacement field generated by the 3D effects is fully encapsulated by K-dominance region.

Keywords: digital image correlation, stress intensity factors, three-dimensional effects, transverse displacement

Procedia PDF Downloads 615
15671 The Structure and Function Investigation and Analysis of the Automatic Spin Regulator (ASR) in the Powertrain System of Construction and Mining Machines with the Focus on Dump Trucks

Authors: Amir Mirzaei

Abstract:

The powertrain system is one of the most basic and essential components in a machine. The occurrence of motion is practically impossible without the presence of this system. When power is generated by the engine, it is transmitted by the powertrain system to the wheels, which are the last parts of the system. Powertrain system has different components according to the type of use and design. When the force generated by the engine reaches to the wheels, the amount of frictional force between the tire and the ground determines the amount of traction and non-slip or the amount of slip. At various levels, such as icy, muddy, and snow-covered ground, the amount of friction coefficient between the tire and the ground decreases dramatically and considerably, which in turn increases the amount of force loss and the vehicle traction decreases drastically. This condition is caused by the phenomenon of slipping, which, in addition to the waste of energy produced, causes the premature wear of driving tires. It also causes the temperature of the transmission oil to rise too much, as a result, causes a reduction in the quality and become dirty to oil and also reduces the useful life of the clutches disk and plates inside the transmission. this issue is much more important in road construction and mining machinery than passenger vehicles and is always one of the most important and significant issues in the design discussion, in order to overcome. One of these methods is the automatic spin regulator system which is abbreviated as ASR. The importance of this method and its structure and function have solved one of the biggest challenges of the powertrain system in the field of construction and mining machinery. That this research is examined.

Keywords: automatic spin regulator, ASR, methods of reducing slipping, methods of preventing the reduction of the useful life of clutches disk and plate, methods of preventing the premature dirtiness of transmission oil, method of preventing the reduction of the useful life of tires

Procedia PDF Downloads 79
15670 Linear Study of Electrostatic Ion Temperature Gradient Mode with Entropy Gradient Drift and Sheared Ion Flows

Authors: M. Yaqub Khan, Usman Shabbir

Abstract:

History of plasma reveals that continuous struggle of experimentalists and theorists are not fruitful for confinement up to now. It needs a change to bring the research through entropy. Approximately, all the quantities like number density, temperature, electrostatic potential, etc. are connected to entropy. Therefore, it is better to change the way of research. In ion temperature gradient mode with the help of Braginskii model, Boltzmannian electrons, effect of velocity shear is studied inculcating entropy in the magnetoplasma. New dispersion relation is derived for ion temperature gradient mode, and dependence on entropy gradient drift is seen. It is also seen velocity shear enhances the instability but in anomalous transport, its role is not seen significantly but entropy. This work will be helpful to the next step of tokamak and space plasmas.

Keywords: entropy, velocity shear, ion temperature gradient mode, drift

Procedia PDF Downloads 386
15669 Optimization of Proton Exchange Membrane Fuel Cell Parameters Based on Modified Particle Swarm Algorithms

Authors: M. Dezvarei, S. Morovati

Abstract:

In recent years, increasing usage of electrical energy provides a widespread field for investigating new methods to produce clean electricity with high reliability and cost management. Fuel cells are new clean generations to make electricity and thermal energy together with high performance and no environmental pollution. According to the expansion of fuel cell usage in different industrial networks, the identification and optimization of its parameters is really significant. This paper presents optimization of a proton exchange membrane fuel cell (PEMFC) parameters based on modified particle swarm optimization with real valued mutation (RVM) and clonal algorithms. Mathematical equations of this type of fuel cell are presented as the main model structure in the optimization process. Optimized parameters based on clonal and RVM algorithms are compared with the desired values in the presence and absence of measurement noise. This paper shows that these methods can improve the performance of traditional optimization methods. Simulation results are employed to analyze and compare the performance of these methodologies in order to optimize the proton exchange membrane fuel cell parameters.

Keywords: clonal algorithm, proton exchange membrane fuel cell (PEMFC), particle swarm optimization (PSO), real-valued mutation (RVM)

Procedia PDF Downloads 351
15668 Practice of Applying MIDI Technology to Train Creative Teaching Skills

Authors: Yang Zhuo

Abstract:

This study explores the integration of MIDI technology as one of the important digital technologies in music teaching, from the perspective of teaching practice, into the process of cultivating students' teaching skills. At the same time, the framework elements of the learning environment for music education students are divided into four aspects: digital technology supported learning space, new knowledge learning, teaching methods, and teaching evaluation. In teaching activities, more attention should be paid to students' subjectivity and interaction between them so as to enhance their emotional experience in teaching practice simulation. In the process of independent exploration and cooperative interaction, problems should be discovered and solved, and basic knowledge of music and teaching methods should be exercised in practice.

Keywords: music education, educational technology, MIDI, teacher training

Procedia PDF Downloads 84
15667 Recommendations Using Online Water Quality Sensors for Chlorinated Drinking Water Monitoring at Drinking Water Distribution Systems Exposed to Glyphosate

Authors: Angela Maria Fasnacht

Abstract:

Detection of anomalies due to contaminants’ presence, also known as early detection systems in water treatment plants, has become a critical point that deserves an in-depth study for their improvement and adaptation to current requirements. The design of these systems requires a detailed analysis and processing of the data in real-time, so it is necessary to apply various statistical methods appropriate to the data generated, such as Spearman’s Correlation, Factor Analysis, Cross-Correlation, and k-fold Cross-validation. Statistical analysis and methods allow the evaluation of large data sets to model the behavior of variables; in this sense, statistical treatment or analysis could be considered a vital step to be able to develop advanced models focused on machine learning that allows optimized data management in real-time, applied to early detection systems in water treatment processes. These techniques facilitate the development of new technologies used in advanced sensors. In this work, these methods were applied to identify the possible correlations between the measured parameters and the presence of the glyphosate contaminant in the single-pass system. The interaction between the initial concentration of glyphosate and the location of the sensors on the reading of the reported parameters was studied.

Keywords: glyphosate, emergent contaminants, machine learning, probes, sensors, predictive

Procedia PDF Downloads 121
15666 Comparative Study between Classical P-Q Method and Modern Fuzzy Controller Method to Improve the Power Quality of an Electrical Network

Authors: A. Morsli, A. Tlemçani, N. Ould Cherchali, M. S. Boucherit

Abstract:

This article presents two methods for the compensation of harmonics generated by a nonlinear load. The first is the classic method P-Q. The second is the controller by modern method of artificial intelligence specifically fuzzy logic. Both methods are applied to an Active Power Filter shunt (APFs) based on a three-phase voltage converter at five levels NPC topology. In calculating the harmonic currents of reference, we use the algorithm P-Q and pulse generation, we use the intersective PWM. For flexibility and dynamics, we use fuzzy logic. The results give us clear that the rate of Harmonic Distortion issued by fuzzy logic is better than P-Q.

Keywords: fuzzy logic controller, P-Q method, pulse width modulation (PWM), shunt active power filter (sAPF), total harmonic distortion (THD)

Procedia PDF Downloads 548
15665 Piezoelectric Micro-generator Characterization for Energy Harvesting Application

Authors: José E. Q. Souza, Marcio Fontana, Antonio C. C. Lima

Abstract:

This paper presents analysis and characterization of a piezoelectric micro-generator for energy harvesting application. A low-cost experimental prototype was designed to operate as piezoelectric micro-generator in the laboratory. An input acceleration of 9.8m/s2 using a sine signal (peak-to-peak voltage: 1V, offset voltage: 0V) at frequencies ranging from 10Hz to 160Hz generated a maximum average power of 432.4μW (linear mass position = 25mm) and an average power of 543.3μW (angular mass position = 35°). These promising results show that the prototype can be considered for low consumption load application as an energy harvesting micro-generator.

Keywords: piezoelectric, micro-generator, energy harvesting, cantilever beam

Procedia PDF Downloads 465
15664 Estimation of Population Mean under Random Non-Response in Two-Phase Successive Sampling

Authors: M. Khalid, G. N. Singh

Abstract:

In this paper, we have considered the problem of estimation for population mean, on current (second) occasion in the presence of random non response in two-occasion successive sampling under two phase set-up. Modified exponential type estimators have been proposed, and their properties are studied under the assumptions that numbers of sampling units follow a distribution due to random non response situations. The performances of the proposed estimators are compared with linear combinations of two estimators, (a) sample mean estimator for fresh sample and (b) ratio estimator for matched sample under the complete response situations. Results are demonstrated through empirical studies which present the effectiveness of the proposed estimators. Suitable recommendations have been made to the survey practitioners.

Keywords: successive sampling, random non-response, auxiliary variable, bias, mean square error

Procedia PDF Downloads 521
15663 A Differential Scanning Calorimetric Study of Frozen Liquid Egg Yolk Thawed by Different Thawing Methods

Authors: Karina I. Hidas, Csaba Németh, Anna Visy, Judit Csonka, László Friedrich, Ildikó Cs. Nyulas-Zeke

Abstract:

Egg yolk is a popular ingredient in the food industry due to its gelling, emulsifying, colouring, and coagulating properties. Because of the heat sensitivity of proteins, egg yolk can only be heat treated at low temperatures, so its shelf life, even with the addition of a preservative, is only a few weeks. Freezing can increase the shelf life of liquid egg yolk up to 1 year, but it undergoes gelling below -6 ° C, which is an irreversible phenomenon. The degree of gelation depends on the time and temperature of freezing and is influenced by the process of thawing. Therefore, in our experiment, we examined egg yolks thawed in different ways. In this study, unpasteurized, industrially broken, separated, and homogenized liquid egg yolk was used. Freshly produced samples were frozen in plastic containers at -18°C in a laboratory freezer. Frozen storage was performed for 90 days. Samples were analysed at day zero (unfrozen) and after frozen storage for 1, 7, 14, 30, 60 and 90 days. Samples were thawed in two ways (at 5°C for 24 hours and 30°C for 3 hours) before testing. Calorimetric properties were examined by differential scanning calorimetry, where heat flow curves were recorded. Denaturation enthalpy values were calculated by fitting a linear baseline, and denaturation temperature values were evaluated. Besides, dry matter content of samples was measured by the oven method with drying at 105°C to constant weight. For statistical analysis two-way ANOVA (α = 0.05) was employed, where thawing mode and freezing time were the fixed factors. Denaturation enthalpy values decreased from 1.1 to 0.47 at the end of the storage experiment, which represents a reduction of about 60%. The effect of freezing time was significant on these values, already the enthalpy of samples stored frozen for 1 day was significantly reduced. However, the mode of thawing did not significantly affect the denaturation enthalpy of the samples, and no interaction was seen between the two factors. The denaturation temperature and dry matter content did not change significantly either during the freezing period or during the defrosting mode. Results of our study show that slow freezing and frozen storage at -18°C greatly reduces the amount of protein that can be denatured in egg yolk, indicating that the proteins have been subjected to aggregation, denaturation or other protein conversions regardless of how they were thawed.

Keywords: denaturation enthalpy, differential scanning calorimetry, liquid egg yolk, slow freezing

Procedia PDF Downloads 129
15662 Modeling a Closed Loop Supply Chain with Continuous Price Decrease and Dynamic Deterministic Demand

Authors: H. R. Kamali, A. Sadegheih, M. A. Vahdat-Zad, H. Khademi-Zare

Abstract:

In this paper, a single product, multi-echelon, multi-period closed loop supply chain is surveyed, including a variety of costs, time conditions, and capacities, to plan and determine the values and time of the components procurement, production, distribution, recycling and disposal specially for high-tech products that undergo a decreasing production cost and sale price over time. For this purpose, the mathematic model of the problem that is a kind of mixed integer linear programming is presented, and it is finally proved that the problem belongs to the category of NP-hard problems.

Keywords: closed loop supply chain, continuous price decrease, NP-hard, planning

Procedia PDF Downloads 364
15661 Unsupervised Classification of DNA Barcodes Species Using Multi-Library Wavelet Networks

Authors: Abdesselem Dakhli, Wajdi Bellil, Chokri Ben Amar

Abstract:

DNA Barcode, a short mitochondrial DNA fragment, made up of three subunits; a phosphate group, sugar and nucleic bases (A, T, C, and G). They provide good sources of information needed to classify living species. Such intuition has been confirmed by many experimental results. Species classification with DNA Barcode sequences has been studied by several researchers. The classification problem assigns unknown species to known ones by analyzing their Barcode. This task has to be supported with reliable methods and algorithms. To analyze species regions or entire genomes, it becomes necessary to use similarity sequence methods. A large set of sequences can be simultaneously compared using Multiple Sequence Alignment which is known to be NP-complete. To make this type of analysis feasible, heuristics, like progressive alignment, have been developed. Another tool for similarity search against a database of sequences is BLAST, which outputs shorter regions of high similarity between a query sequence and matched sequences in the database. However, all these methods are still computationally very expensive and require significant computational infrastructure. Our goal is to build predictive models that are highly accurate and interpretable. This method permits to avoid the complex problem of form and structure in different classes of organisms. On empirical data and their classification performances are compared with other methods. Our system consists of three phases. The first is called transformation, which is composed of three steps; Electron-Ion Interaction Pseudopotential (EIIP) for the codification of DNA Barcodes, Fourier Transform and Power Spectrum Signal Processing. The second is called approximation, which is empowered by the use of Multi Llibrary Wavelet Neural Networks (MLWNN).The third is called the classification of DNA Barcodes, which is realized by applying the algorithm of hierarchical classification.

Keywords: DNA barcode, electron-ion interaction pseudopotential, Multi Library Wavelet Neural Networks (MLWNN)

Procedia PDF Downloads 318
15660 Literature Review: Application of Artificial Intelligence in EOR

Authors: Masoumeh Mofarrah, Amir NahanMoghadam

Abstract:

Higher oil prices and increasing oil demand are main reasons for great attention to Enhanced Oil Recovery (EOR). Comprehensive researches have been accomplished to develop, appraise and improve EOR methods and their application. Recently Artificial Intelligence (AI) gained popularity in petroleum industry that can help petroleum engineers to solve some fundamental petroleum engineering problems such as reservoir simulation, EOR project risk analysis, well log interpretation and well test model selection. This study presents a historical overview of most popular AI tools including neural networks, genetic algorithms, fuzzy logic and expert systems in petroleum industry and discusses two case studies to represent the application of two mentioned AI methods for selecting an appropriate EOR method based on reservoir characterization in feasible and effective way.

Keywords: artificial intelligence, EOR, neural networks, expert systems

Procedia PDF Downloads 408
15659 Biostabilisation of Sediments for the Protection of Marine Infrastructure from Scour

Authors: Rob Schindler

Abstract:

Industry-standard methods of mitigating erosion of seabed sediments rely on ‘hard engineering’ approaches which have numerous environmental shortcomings: (1) direct loss of habitat by smothering of benthic species, (2) disruption of sediment transport processes, damaging geomorphic and ecosystem functionality (3) generation of secondary erosion problems, (4) introduction of material that may propagate non-local species, and (5) provision of pathways for the spread of invasive species. Recent studies have also revealed the importance of biological cohesion, the result of naturally occurring extra-cellular polymeric substances (EPS), in stabilizing natural sediments. Mimicking the strong bonding kinetics through the deliberate addition of EPS to sediments – henceforth termed ‘biostabilisation’ - offers a means in which to mitigate against erosion induced by structures or episodic increases in hydrodynamic forcing (e.g. storms and floods) whilst avoiding, or reducing, hard engineering. Here we present unique experiments that systematically examine how biostabilisation reduces scour around a monopile in a current, a first step to realizing the potential of this new method of scouring reduction for a wide range of engineering purposes in aquatic substrates. Experiments were performed in Plymouth University’s recirculating sediment flume which includes a recessed scour pit. The model monopile was 0.048 m in diameter, D. Assuming a prototype monopile diameter of 2.0 m yields a geometric ratio of 41.67. When applied to a 10 m prototype water depth this yields a model depth, d, of 0.24 m. The sediment pit containing the monopile was filled with different biostabilised substrata prepared using a mixture of fine sand (D50 = 230 μm) and EPS (Xanthan gum). Nine sand-EPS mixtures were examined spanning EPS contents of 0.0% < b0 < 0.50%. Scour development was measured using a laser point gauge along a 530 mm centreline at 10 mm increments at regular periods over 5 h. Maximum scour depth and excavated area were determined at different time steps and plotted against time to yield equilibrium values. After 5 hours the current was stopped and a detailed scan of the final scour morphology was taken. Results show that increasing EPS content causes a progressive reduction in the equilibrium depth and lateral extent of scour, and hence excavated material. Very small amounts equating to natural communities (< 0.1% by mass) reduce scour rate, depth and extent of scour around monopiles. Furthermore, the strong linear relationships between EPS content, equilibrium scour depth, excavation area and timescales of scouring offer a simple index on which to modify existing scour prediction methods. We conclude that the biostabilisation of sediments with EPS may offer a simple, cost-effective and ecologically sensitive means of reducing scour in a range of contexts including OWFs, bridge piers, pipeline installation, and void filling in rock armour. Biostabilisation may also reduce economic costs through (1) Use of existing site sediments, or waste dredged sediments (2) Reduced fabrication of materials, (3) Lower transport costs, (4) Less dependence on specialist vessels and precise sub-sea assembly. Further, its potential environmental credentials may allow sensitive use of the seabed in marine protection zones across the globe.

Keywords: biostabilisation, EPS, marine, scour

Procedia PDF Downloads 166
15658 Time Delay Estimation Using Signal Envelopes for Synchronisation of Recordings

Authors: Sergei Aleinik, Mikhail Stolbov

Abstract:

In this work, a method of time delay estimation for dual-channel acoustic signals (speech, music, etc.) recorded under reverberant conditions is investigated. Standard methods based on cross-correlation of the signals show poor results in cases involving strong reverberation, large distances between microphones and asynchronous recordings. Under similar conditions, a method based on cross-correlation of temporal envelopes of the signals delivers a delay estimation of acceptable quality. This method and its properties are described and investigated in detail, including its limits of applicability. The method’s optimal parameter estimation and a comparison with other known methods of time delay estimation are also provided.

Keywords: cross-correlation, delay estimation, signal envelope, signal processing

Procedia PDF Downloads 485
15657 Methodology for Temporary Analysis of Production and Logistic Systems on the Basis of Distance Data

Authors: M. Mueller, M. Kuehn, M. Voelker

Abstract:

In small and medium-sized enterprises (SMEs), the challenge is to create a well-grounded and reliable basis for process analysis, optimization and planning due to a lack of data. SMEs have limited access to methods with which they can effectively and efficiently analyse processes and identify cause-and-effect relationships in order to generate the necessary database and derive optimization potential from it. The implementation of digitalization within the framework of Industry 4.0 thus becomes a particular necessity for SMEs. For these reasons, the abstract presents an analysis methodology that is subject to the objective of developing an SME-appropriate methodology for efficient, temporarily feasible data collection and evaluation in flexible production and logistics systems as a basis for process analysis and optimization. The overall methodology focuses on retrospective, event-based tracing and analysis of material flow objects. The technological basis consists of Bluetooth low energy (BLE)-based transmitters, so-called beacons, and smart mobile devices (SMD), e.g. smartphones as receivers, between which distance data can be measured and derived motion profiles. The distance is determined using the Received Signal Strength Indicator (RSSI), which is a measure of signal field strength between transmitter and receiver. The focus is the development of a software-based methodology for interpretation of relative movements of transmitters and receivers based on distance data. The main research is on selection and implementation of pattern recognition methods for automatic process recognition as well as methods for the visualization of relative distance data. Due to an existing categorization of the database regarding process types, classification methods (e.g. Support Vector Machine) from the field of supervised learning are used. The necessary data quality requires selection of suitable methods as well as filters for smoothing occurring signal variations of the RSSI, the integration of methods for determination of correction factors depending on possible signal interference sources (columns, pallets) as well as the configuration of the used technology. The parameter settings on which respective algorithms are based have a further significant influence on result quality of the classification methods, correction models and methods for visualizing the position profiles used. The accuracy of classification algorithms can be improved up to 30% by selected parameter variation; this has already been proven in studies. Similar potentials can be observed with parameter variation of methods and filters for signal smoothing. Thus, there is increased interest in obtaining detailed results on the influence of parameter and factor combinations on data quality in this area. The overall methodology is realized with a modular software architecture consisting of independently modules for data acquisition, data preparation and data storage. The demonstrator for initialization and data acquisition is available as mobile Java-based application. The data preparation, including methods for signal smoothing, are Python-based with the possibility to vary parameter settings and to store them in the database (SQLite). The evaluation is divided into two separate software modules with database connection: the achievement of an automated assignment of defined process classes to distance data using selected classification algorithms and the visualization as well as reporting in terms of a graphical user interface (GUI).

Keywords: event-based tracing, machine learning, process classification, parameter settings, RSSI, signal smoothing

Procedia PDF Downloads 131
15656 A Development of a Simulation Tool for Production Planning with Capacity-Booking at Specialty Store Retailer of Private Label Apparel Firms

Authors: Erika Yamaguchi, Sirawadee Arunyanrt, Shunichi Ohmori, Kazuho Yoshimoto

Abstract:

In this paper, we suggest a simulation tool to make a decision of monthly production planning for maximizing a profit of Specialty store retailer of Private label Apparel (SPA) firms. Most of SPA firms are fabless and make outsourcing deals for productions with factories of their subcontractors. Every month, SPA firms make a booking for production lines and manpower in the factories. The booking is conducted a few months in advance based on a demand prediction and a monthly production planning at that time. However, the demand prediction is updated month by month, and the monthly production planning would change to meet the latest demand prediction. Then, SPA firms have to change the capacities initially booked within a certain range to suit to the monthly production planning. The booking system is called “capacity-booking”. These days, though it is an issue for SPA firms to make precise monthly production planning, many firms are still conducting the production planning by empirical rules. In addition, it is also a challenge for SPA firms to match their products and factories with considering their demand predictabilities and regulation abilities. In this paper, we suggest a model for considering these two issues. An objective is to maximize a total profit of certain periods, which is sales minus costs of production, inventory, and capacity-booking penalty. To make a better monthly production planning at SPA firms, these points should be considered: demand predictabilities by random trends, previous and next month’s production planning of the target month, and regulation abilities of the capacity-booking. To decide matching products and factories for outsourcing, it is important to consider seasonality, volume, and predictability of each product, production possibility, size, and regulation ability of each factory. SPA firms have to consider these constructions and decide orders with several factories per one product. We modeled these issues as a linear programming. To validate the model, an example of several computational experiments with a SPA firm is presented. We suppose four typical product groups: basic, seasonal (Spring / Summer), seasonal (Fall / Winter), and spot product. As a result of the experiments, a monthly production planning was provided. In the planning, demand predictabilities from random trend are reduced by producing products which are different product types. Moreover, priorities to produce are given to high-margin products. In conclusion, we developed a simulation tool to make a decision of monthly production planning which is useful when the production planning is set every month. We considered the features of capacity-booking, and matching of products and factories which have different features and conditions.

Keywords: capacity-booking, SPA, monthly production planning, linear programming

Procedia PDF Downloads 519
15655 Production of High-Content Fructo-Oligosaccharides

Authors: C. Nobre, C. C. Castro, A.-L. Hantson, J. A. Teixeira, L. R. Rodrigues, G. De Weireld

Abstract:

Fructo-oligosaccharides (FOS) are produced from sucrose by Aureobasidium pullulans in yields between 40-60% (w/w). To increase the amount of FOS it is necessary to remove the small, non-prebiotic sugars, present. Two methods for producing high-purity FOS have been developed: the use of microorganisms able to consume small saccharides; and the use of continuous chromatography to separate sugars: simulated moving bed (SMB). It is herein proposed the combination of both methods. The aim of this study is to optimize the composition of the fermentative broth (in terms of salts and sugars) that will be further purified by SMB. A yield of 0.63 gFOS.g Sucrose-1 was obtained with A. pullulans using low amounts of salts in the initial fermentative broth. By removing the small sugars, Saccharomyces cerevisiae and Zymomonas mobilis increased the percentage of FOS from around 56.0% to 83% (w/w) in average, losing only 10% (w/w) of FOS during the recovery process.

Keywords: fructo-oligosaccharides, microbial treatment, Saccharomyces cerevisiae, Zymomonas mobilis

Procedia PDF Downloads 308
15654 Object Detection in Digital Images under Non-Standardized Conditions Using Illumination and Shadow Filtering

Authors: Waqqas-ur-Rehman Butt, Martin Servin, Marion Pause

Abstract:

In recent years, object detection has gained much attention and very encouraging research area in the field of computer vision. The robust object boundaries detection in an image is demanded in numerous applications of human computer interaction and automated surveillance systems. Many methods and approaches have been developed for automatic object detection in various fields, such as automotive, quality control management and environmental services. Inappropriately, to the best of our knowledge, object detection under illumination with shadow consideration has not been well solved yet. Furthermore, this problem is also one of the major hurdles to keeping an object detection method from the practical applications. This paper presents an approach to automatic object detection in images under non-standardized environmental conditions. A key challenge is how to detect the object, particularly under uneven illumination conditions. Image capturing conditions the algorithms need to consider a variety of possible environmental factors as the colour information, lightening and shadows varies from image to image. Existing methods mostly failed to produce the appropriate result due to variation in colour information, lightening effects, threshold specifications, histogram dependencies and colour ranges. To overcome these limitations we propose an object detection algorithm, with pre-processing methods, to reduce the interference caused by shadow and illumination effects without fixed parameters. We use the Y CrCb colour model without any specific colour ranges and predefined threshold values. The segmented object regions are further classified using morphological operations (Erosion and Dilation) and contours. Proposed approach applied on a large image data set acquired under various environmental conditions for wood stack detection. Experiments show the promising result of the proposed approach in comparison with existing methods.

Keywords: image processing, illumination equalization, shadow filtering, object detection

Procedia PDF Downloads 216
15653 Assessing the Effects of Entrepreneurship Education and Moderating Variables on Venture Creation Intention of Undergraduate Students in Ghana

Authors: Daniel K. Gameti

Abstract:

The paper explored the effects of active and passive entrepreneurship education methods on the venture creation intention of undergraduate students in Ghana. The study also examined the moderating effect of gender and negative personal characteristics (risk tolerance, stress tolerance and fear of failure) on students’ venture creation intention. Deductive approach was used in collecting quantitative data from 555 business students from one public university and one private university through self-administered questionnaires. Descriptive statistic was used to determine the dominant method of entrepreneurship education used in Ghana. Further, structural equation model was used to test four hypotheses. The results of the study show that the dominant method of education used in Ghana was lectures and the least method used was field trip. The study further revealed that passive methods of education are less effective compared to active methods which were statistically significant in venture creation intention among students. There was also statistical difference between male and female students’ venture creation intention but stronger among male students and finally, the only personal characteristics that influence students’ intention was stress tolerance because risk tolerance and fear of failure were statistically insignificant.

Keywords: entrepreneurship education, Ghana, moderating variables, venture creation intention, undergraduate students

Procedia PDF Downloads 453