Search results for: energy generation policies
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12931

Search results for: energy generation policies

10681 Numerical Study for Examination of Flow Characteristics in Fractured Gas Reservoirs

Authors: M. K. Kim, C. H. Shin, W. G. Park

Abstract:

Recently, natural gas resources are issued due to alternative and eco-friendly energy policies, and development of even unconventional gas resources including tight gas, coal bed methane and shale gas is being rapidly expanded from North America all over the world. For developing these gas reservoirs, it is necessary to investigate reservoir characteristics by using reservoir simulation. In reservoir simulation, calculation of permeability of fractured zone is very important to predict the gas production. However, it is difficult to accurately calculate the permeability by using conventional methods which use analytic solution for laminar flow. The flow in gas reservoirs exhibits complex flow behavior such as slip around the wall roughness effect and turbulence because the size of the apertures of fractures is ranged over various scales from nano-scale to centi-scale. Therefore, it is required to apply new reservoir flow analysis methods which can accurately consider complex gas flow owing to the geometric characteristics and distributions of various pores and flow paths within gas reservoirs. Hence, in this study, the flow characteristics and the relation between each characteristic variable was investigated and multi-effect was quantified when the fractures are compounded for devising a new calculation model of permeability of fractured zone in gas reservoirs by using CFD.

Keywords: fractured zone, gas reservoir, permeability, CFD

Procedia PDF Downloads 251
10680 Improvement a Lower Bound of Energy for Some Family of Graphs, Related to Determinant of Adjacency Matrix

Authors: Saieed Akbari, Yousef Bagheri, Amir Hossein Ghodrati, Sima Saadat Akhtar

Abstract:

Let G be a simple graph with the vertex set V (G) and with the adjacency matrix A (G). The energy E (G) of G is defined to be the sum of the absolute values of all eigenvalues of A (G). Also let n and m be number of edges and vertices of the graph respectively. A regular graph is a graph where each vertex has the same number of neighbours. Given a graph G, its line graph L(G) is a graph such that each vertex of L(G) represents an edge of G; and two vertices of L(G) are adjacent if and only if their corresponding edges share a common endpoint in G. In this paper we show that for every regular graphs and also for every line graphs such that (G) 3 we have, E(G) 2nm + n 1. Also at the other part of the paper we prove that 2 (G) E(G) for an arbitrary graph G.

Keywords: eigenvalues, energy, line graphs, matching number

Procedia PDF Downloads 232
10679 WEMax: Virtual Manned Assembly Line Generation

Authors: Won Kyung Ham, Kang Hoon Cho, Sang C. Park

Abstract:

Presented in this paper is a framework of a software ‘WEMax’. The WEMax is invented for analysis and simulation for manned assembly lines to sustain and improve performance of manufacturing systems. In a manufacturing system, performance, such as productivity, is a key of competitiveness for output products. However, the manned assembly lines are difficult to forecast performance, because human labors are not expectable factors by computer simulation models or mathematical models. Existing approaches to performance forecasting of the manned assembly lines are limited to matters of the human itself, such as ergonomic and workload design, and non-human-factor-relevant simulation. Consequently, an approach for the forecasting and improvement of manned assembly line performance is needed to research. As a solution of the current problem, this study proposes a framework that is for generation and simulation of virtual manned assembly lines, and the framework has been implemented as a software.

Keywords: performance forecasting, simulation, virtual manned assembly line, WEMax

Procedia PDF Downloads 326
10678 DC-to-DC Converters for Low-Voltage High-Power Renewable Energy Systems

Authors: Abdar Ali, Rizwan Ullah, Zahid Ullah

Abstract:

This paper focuses on the study of DC-to-DC converters, which are suitable for low-voltage high-power applications. The output voltages generated by renewable energy sources such as photovoltaic arrays and fuel cell stacks are generally low and required to be increased to high voltage levels. Development of DC-to-DC converters, which provide high step-up voltage conversion ratios with high efficiencies and low voltage stresses is one of the main issues in the development of renewable energy systems. A procedure for three converters-conventional DC-to-DC converter, interleaved boost converter, and isolated flyback based converter, is illustrated for a given set of specifications. The selection among the converters for the given application is based on the voltage conversion ratio, efficiency, and voltage stresses.

Keywords: flyback converter, interleaved boost, photovoltaic array, fuel cell, switch stress, voltage conversion ratio, renewable energy

Procedia PDF Downloads 597
10677 A Feasibility Study of Waste (d) Potential: Synergistic Effect Evaluation by Co-digesting Organic Wastes and Kinetics of Biogas Production

Authors: Kunwar Paritosh, Sanjay Mathur, Monika Yadav, Paras Gandhi, Subodh Kumar, Nidhi Pareek, Vivekanand Vivekanand

Abstract:

A significant fraction of energy is wasted every year managing the biodegradable organic waste inadequately as development and sustainability are the inherent enemies. The management of these waste is indispensable to boost its optimum utilization by converting it to renewable energy resource (here biogas) through anaerobic digestion and to mitigate greenhouse gas emission. Food and yard wastes may prove to be appropriate and potential feedstocks for anaerobic co-digestion for biogas production. The present study has been performed to explore the synergistic effect of co-digesting food waste and yard trimmings from MNIT campus for enhanced biogas production in different ratios in batch tests (37±10C, 90 rpm, 45 days). The results were overwhelming and showed that blending two different organic waste in proper ratio improved the biogas generation considerably, with the highest biogas yield (2044±24 mLg-1VS) that was achieved at 75:25 of food waste to yard waste ratio on volatile solids (VS) basis. The yield was 1.7 and 2.2 folds higher than the mono-digestion of food or yard waste (1172±34, 1016±36mLg-1VS) respectively. The increase in biogas production may be credited to optimum C/N ratio resulting in higher yield. Also Adding TiO2 nanoparticles showed virtually no effect on biogas production as sometimes nanoparticles enhance biogas production. ICP-MS, FTIR analysis was carried out to gain an insight of feedstocks. Modified Gompertz and logistics models were applied for the kinetic study of biogas production where modified Gompertz model showed goodness-of-fit (R2=0.9978) with the experimental results.

Keywords: anaerobic co-digestion, biogas, kinetics, nanoparticle, organic waste

Procedia PDF Downloads 389
10676 [Keynote Talk]: Applying p-Balanced Energy Technique to Solve Liouville-Type Problems in Calculus

Authors: Lina Wu, Ye Li, Jia Liu

Abstract:

We are interested in solving Liouville-type problems to explore constancy properties for maps or differential forms on Riemannian manifolds. Geometric structures on manifolds, the existence of constancy properties for maps or differential forms, and energy growth for maps or differential forms are intertwined. In this article, we concentrate on discovery of solutions to Liouville-type problems where manifolds are Euclidean spaces (i.e. flat Riemannian manifolds) and maps become real-valued functions. Liouville-type results of vanishing properties for functions are obtained. The original work in our research findings is to extend the q-energy for a function from finite in Lq space to infinite in non-Lq space by applying p-balanced technique where q = p = 2. Calculation skills such as Hölder's Inequality and Tests for Series have been used to evaluate limits and integrations for function energy. Calculation ideas and computational techniques for solving Liouville-type problems shown in this article, which are utilized in Euclidean spaces, can be universalized as a successful algorithm, which works for both maps and differential forms on Riemannian manifolds. This innovative algorithm has a far-reaching impact on research work of solving Liouville-type problems in the general settings involved with infinite energy. The p-balanced technique in this algorithm provides a clue to success on the road of q-energy extension from finite to infinite.

Keywords: differential forms, holder inequality, Liouville-type problems, p-balanced growth, p-harmonic maps, q-energy growth, tests for series

Procedia PDF Downloads 235
10675 The Fiscal and Macroeconomic Impacts of Reforming Energy Subsidy Policy in Malaysia

Authors: Nora Yusma Bte Mohamed Yusoff, Hussain Ali Bekhet

Abstract:

The rationalization of a gradual subsidies reforms plan has been set out by the Malaysian government to achieve the high-income nation target. This paper attempts to analyze the impacts of energy subsidy reform policy on fiscal deficit and macroeconomics variables in Malaysia. The Computable General Equilibrium (CGE) Model is employed. Three simulations based on different groups of scenarios have been developed. Importantly, the overall results indicate that removal of fuel subsidy has significantly improved the real GDP and reduced the government fiscal deficit. On the other hand, the removal of the fuel subsidy has increased most of the local commodity prices, especially energy commodities. The findings of the study could provide some imperative inputs for policy makers, especially to identify the right policy mechanism. This is especially ensures the subsidy savings from subsidy removal could be transferred back into the domestic economy in the form of infrastructure development, compensation and increases in others sector output contributions towards a sustainable economic growth.

Keywords: CGE, deficit, energy, reform, subsidy

Procedia PDF Downloads 265
10674 Safe and Efficient Deep Reinforcement Learning Control Model: A Hydroponics Case Study

Authors: Almutasim Billa A. Alanazi, Hal S. Tharp

Abstract:

Safe performance and efficient energy consumption are essential factors for designing a control system. This paper presents a reinforcement learning (RL) model that can be applied to control applications to improve safety and reduce energy consumption. As hardware constraints and environmental disturbances are imprecise and unpredictable, conventional control methods may not always be effective in optimizing control designs. However, RL has demonstrated its value in several artificial intelligence (AI) applications, especially in the field of control systems. The proposed model intelligently monitors a system's success by observing the rewards from the environment, with positive rewards counting as a success when the controlled reference is within the desired operating zone. Thus, the model can determine whether the system is safe to continue operating based on the designer/user specifications, which can be adjusted as needed. Additionally, the controller keeps track of energy consumption to improve energy efficiency by enabling the idle mode when the controlled reference is within the desired operating zone, thus reducing the system energy consumption during the controlling operation. Water temperature control for a hydroponic system is taken as a case study for the RL model, adjusting the variance of disturbances to show the model’s robustness and efficiency. On average, the model showed safety improvement by up to 15% and energy efficiency improvements by 35%- 40% compared to a traditional RL model.

Keywords: control system, hydroponics, machine learning, reinforcement learning

Procedia PDF Downloads 185
10673 Designing a Low Power Consumption Mote in Wireless Sensor Network

Authors: Saidi Nabiha, Khaled Zaatouri, Walid Fajraoui, Tahar Ezzeddine

Abstract:

The market of Wireless Sensor Network WSN has a great potential and development opportunities. Researchers are focusing on optimization in many fields like efficient deployment and routing protocols. In this article, we will concentrate on energy efficiency for WSN because WSN nodes are habitually deployed in severe No Man’s Land with batteries are not rechargeable, so reducing energy consumption represents an important challenge to extend the life of the network. We will present the design of new WSN mote based on ultra low power STM32L microcontrollers and the ZIGBEE transceiver CC2520. We will compare it to existent motes and we will conclude that our mote is promising in energy consumption.

Keywords: component, WSN mote, power consumption, STM32L, sensors, CC2520

Procedia PDF Downloads 573
10672 Using Finite Element to Predict Failure of Light Weight Bridges Due to Vehicles Impact: Case Study

Authors: Amin H. Almasria, Rajai Z. Alrousanb, Al-Harith Manasrah

Abstract:

The collapse of a light weight pedestrian bridges due to vehicle collision is investigated and studied in detail using a dynamic nonlinear finite element analysis. Typical bridge widely used in Jordan is studied and modeled under truck collision using one dimensional beam finite element in order to minimize analysis time due to the dynamic nature of the problem. Truck collision with the bridge is simulated at different speeds and locations of collisions using dynamic explicit finite element scheme with material nonlinearity taken into account. Energy absorption of bridge is investigated through principle of energy conservation, where truck kinetic energy is assumed to be stored in the bridge as strain energy. Weak failure points in the bridges were identified, and modifications are proposed in order to strengthen the bridge structure and prevent total collapse. The proposed design modifications on bridge structure were successful in allowing the bridge to fail locally rather than globally and expected to help in saving lives.

Keywords: finite element method, dynamic impact, pedestrian bridges, strain energy, collapse failure

Procedia PDF Downloads 624
10671 Synthesis and Characterization of Un-Doped and Velvet Tamarind Doped ZnS Crystals, Using Sol Gel Method

Authors: Uchechukwu Vincent Okpala

Abstract:

Under the Sun, energy is a key factor for the sustenance of life and its environment. The need to protect the environment as energy is generated and consumed has called for renewable and green energy sources. To be part of this green revolution, we synthesized and characterized undoped and velvet tamarind doped zinc sulfide (ZnS) crystals using sol-gel methods. Velvet tamarind was whittled down using the top-down approach of nanotechnology. Sodium silicate, tartaric acid, zinc nitrate, and thiourea were used as precursors. The grown samples were annealed at 105°C. Structural, optical, and compositional analyses of the grown samples revealed crystalline structures with varied crystallite sizes influenced by doping. Energy-dispersive X-ray spectroscopy confirmed elemental compositions of Zn, S, C and O in the films. Atomic percentages of the elements varied with VT doping. FT-IR analysis indicated the presence of functional groups like O-H stretching (alcohol), C=C=C stretching (alkene group), C=C bending, C-H stretching (alkane), N-H stretching (aliphatic primary amine) and N=C=S stretching (isothiocyanate) constituent in the film. The transmittance of the samples increased from the visible region to the infrared region making the samples good for poultry and solar energy applications. The bandgap energy of the films decreased as the number of VT drops increased, from 2.4 to 2.2. They were wide band gap materials and were good for optoelectronic, photo-thermal, high temperature, high power and solar cell applications.

Keywords: doping, sol-gel, velvet tamarind, ZnS.

Procedia PDF Downloads 47
10670 Production of Low-Density Nanocellular Foam Based on PMMA/PEBAX Blends

Authors: Nigus Maregu Demewoz, Shu-Kai Yeh

Abstract:

Low-density nanocellular foam is a fascinating new-generation advanced material due to its mechanical strength and thermal insulation properties. In nanocellular foam, reducing the density increases the insulation ability. However, producing a nanocellular foam of densities less than 0.3 with a cell size of less than 100 nm is very challenging. In this study, poly (methyl methacrylate) (PMMA) was blended with Polyether block amide (PEBAX) to study the effects of PEBAX on the nanocellular foam structure of the PMMA matrix. We added 2 wt% of PEBAX in the PMMA matrix, and the PEBAX nanostructured domain size of 45 nm was well dispersed in the PMMA matrix. The foaming result produced a new generation special bouquet-like nanocellular foam of cell size less than 50 nm with a relative density of 0.24. Also, we were able to produce a nanocellular foam of a relative density of about 0.17. In addition to thermal insulation applications, bouquet-like nanocellular foam may be expected for filtration applications.

Keywords: nanocellular foam, low-density, cell size, relative density, PMMA/PEBAX

Procedia PDF Downloads 78
10669 India’s Deterrence Program: Defense or Development

Authors: Aneri Mehta, Krunal Mehta

Abstract:

A doctrine, any doctrine, incorporates a set of beliefs or principles held by a body of persons. A national nuclear doctrine represents, therefore, the collective set of beliefs or principles held by the nation in regard to the utility of its nuclear weapons. India’s foreign policy has been profoundly affected by the nuclear explosions conducted in May 1998. The departure from the professed peaceful nuclear policies has had several implications for India’s defense and foreign policies. The explosions in Pokhran have aggravated tensions in south Asia by disrupting diplomatic initiatives with Pak and China. Diplomacy has been reduced to damage control. The object of India’s nuclear deterrence is to persuade an adversary that the costs to him of seeking a military solution to his political problems with India will far outweigh the benefits. The paper focuses on India’s guidelines governing nuclear policy, development of nuclear materials for effective deterrence as well as civil development purpose. The paper finds that security concerns and technological capabilities are important determinants of whether India develops a nuclear weapons programs, while security concerns, economic capabilities, and domestic politics help to explain the possession of nuclear weapons.

Keywords: foreign policy, nuclear deterrence, nuclear policy, development

Procedia PDF Downloads 521
10668 Synthetic Data-Driven Prediction Using GANs and LSTMs for Smart Traffic Management

Authors: Srinivas Peri, Siva Abhishek Sirivella, Tejaswini Kallakuri, Uzair Ahmad

Abstract:

Smart cities and intelligent transportation systems rely heavily on effective traffic management and infrastructure planning. This research tackles the data scarcity challenge by generating realistically synthetic traffic data from the PeMS-Bay dataset, enhancing predictive modeling accuracy and reliability. Advanced techniques like TimeGAN and GaussianCopula are utilized to create synthetic data that mimics the statistical and structural characteristics of real-world traffic. The future integration of Spatial-Temporal Generative Adversarial Networks (ST-GAN) is anticipated to capture both spatial and temporal correlations, further improving data quality and realism. Each synthetic data generation model's performance is evaluated against real-world data to identify the most effective models for accurately replicating traffic patterns. Long Short-Term Memory (LSTM) networks are employed to model and predict complex temporal dependencies within traffic patterns. This holistic approach aims to identify areas with low vehicle counts, reveal underlying traffic issues, and guide targeted infrastructure interventions. By combining GAN-based synthetic data generation with LSTM-based traffic modeling, this study facilitates data-driven decision-making that improves urban mobility, safety, and the overall efficiency of city planning initiatives.

Keywords: GAN, long short-term memory (LSTM), synthetic data generation, traffic management

Procedia PDF Downloads 14
10667 An Experimental Study on the Effect of Operating Parameters during the Micro-Electro-Discharge Machining of Ni Based Alloy

Authors: Asma Perveen, M. P. Jahan

Abstract:

Ni alloys have managed to cover wide range of applications such as automotive industries, oil gas industries, and aerospace industries. However, these alloys impose challenges while using conventional machining technologies. On the other hand, Micro-Electro-Discharge machining (micro-EDM) is a non-conventional machining method that uses controlled sparks energy to remove material irrespective of the materials hardness. There has been always a huge interest from the industries for developing optimum methodology and parameters in order to enhance the productivity of micro-EDM in terms of reducing machining time and tool wear for different alloys. Therefore, the aims of this study are to investigate the effects of the micro-EDM process parameters, in order to find their optimal values. The input process parameters include voltage, capacitance, and electrode rotational speed, whereas the output parameters considered are machining time, entrance diameter of hole, overcut, tool wear, and crater size. The surface morphology and element characterization are also investigated with the use of SEM and EDX analysis. The experimental result indicates the reduction of machining time with the increment of discharge energy. Discharge energy also contributes to the enlargement of entrance diameter as well as overcut. In addition, tool wears show reduction with the increase of discharge energy. Moreover, crater size is found to be increased in size along with the increment of discharge energy.

Keywords: micro holes, micro EDM, Ni Alloy, discharge energy

Procedia PDF Downloads 274
10666 Pulse Method for Investigation of Zr-C Phase Diagram at High Carbon Content Domain under High Temperatures

Authors: Arseniy M. Kondratyev, Sergey V. Onufriev, Alexander I. Savvatimskiy

Abstract:

The microsecond electrical pulse heating technique which provides uniform energy input into an investigated specimen is considered. In the present study we investigated ZrC+C carbide specimens in a form of a thin layer (about 5 microns thick) that were produced using a method of magnetron sputtering on insulating substrates. Specimens contained (at. %): Zr–17.88; C–67.69; N–8.13; O–5.98. Current through the specimen, voltage drop across it and radiation at the wavelength of 856 nm were recorded in the experiments. It enabled us to calculate the input energy, specific heat (from 2300 to 4500 K) and resistivity (referred to the initial dimensions of a specimen). To obtain the true temperature a black body specimen was used. Temperature of the beginning and completion of a phase transition (solid–liquid) was measured.Temperature of the onset of melting was 3150 K at the input energy 2.65 kJ/g; temperature of the completion of melting was 3450 K at the input energy 5.2 kJ/g. The specific heat of the solid phase of investigated carbide calculated using our data on temperature and imparted energy, is close to 0.75 J/gК for temperature range 2100–2800 K. Our results are considered together with the equilibrium Zr-C phase diagram.

Keywords: pulse heating, zirconium carbide, high temperatures, melting

Procedia PDF Downloads 323
10665 GIS-Driven Analysis for Locating Suitable Areas for Renewable Energy

Authors: Saleh Nabiyev

Abstract:

Renewable energy is becoming increasingly important in today's world due to its significant impact on the green economy, ecology, environment, and climate change. Renewable energy sources, such as solar and wind, are clean and sustainable, making them an ideal solution to reduce carbon emissions and mitigate the effects of climate change. The Karabakh region is located in the South Caucasus and covers an area of approximately 11,500 km². The region has a mountainous terrain, which can affect the availability of wind and solar resources. The Karabakh region has significant wind power potential, particularly in its mountainous areas where wind speeds are typically higher. According to a study conducted by the European Commission Joint Research Centre, the average wind speed in the Karabakh region is between 4 and 6 meters per second (m/s) at a height of 50 meters above ground level (AGL). However, wind speeds can be higher in some areas, reaching up to 10 m/s in some mountainous areas. The region also has significant solar power potential, with an average of 2,000 to 2,200 hours of sunshine per year. The region's high altitude and clear skies make it particularly suitable for the development of solar power projects. In this research, the application of satellite images, solar radiation, wind speed and direction, as well as various other materials to determine suitable areas for alternative energy sources, is investigated. The methodology for selecting suitable locations for solar and wind energy consists of four main parts: identification of factors, evaluation of factors, data preparation, and application of suitability analysis. At the end of the research, the territory of the Kalbajar and Lachin districts is suitable for wind energy. The southern plain part of Karabakh is highly evaluated in terms of solar energy potential, especially Jabrayil district. Generally, outcomes taken from this research are essential data for increasing of rational using natural resources, as well as combating climate change.

Keywords: GIS, remote sensing, suitability analysis, solar energy, wind energy

Procedia PDF Downloads 31
10664 A Mutually Exclusive Task Generation Method Based on Data Augmentation

Authors: Haojie Wang, Xun Li, Rui Yin

Abstract:

In order to solve the memorization overfitting in the meta-learning MAML algorithm, a method of generating mutually exclusive tasks based on data augmentation is proposed. This method generates a mutex task by corresponding one feature of the data to multiple labels, so that the generated mutex task is inconsistent with the data distribution in the initial dataset. Because generating mutex tasks for all data will produce a large number of invalid data and, in the worst case, lead to exponential growth of computation, this paper also proposes a key data extraction method, that only extracts part of the data to generate the mutex task. The experiments show that the method of generating mutually exclusive tasks can effectively solve the memorization overfitting in the meta-learning MAML algorithm.

Keywords: data augmentation, mutex task generation, meta-learning, text classification.

Procedia PDF Downloads 94
10663 Effects of High-Protein, Low-Energy Diet on Body Composition in Overweight and Obese Adults: A Clinical Trial

Authors: Makan Cheraghpour, Seyed Ahmad Hosseini, Damoon Ashtary-Larky, Saeed Shirali, Matin Ghanavati, Meysam Alipour

Abstract:

Background: In addition to reducing body weight, the low-calorie diets can reduce the lean body mass. It is hypothesized that in addition to reducing the body weight, the low-calorie diets can maintain the lean body mass. So, the current study aimed at evaluating the effects of high-protein diet with calorie restriction on body composition in overweight and obese individuals. Methods: 36 obese and overweight subjects were divided randomly into two groups. The first group received a normal-protein, low-energy diet (RDA), and the second group received a high-protein, low-energy diet (2×RDA). The anthropometric indices including height, weight, body mass index, body fat mass, fat free mass, and body fat percentage were evaluated before and after the study. Results: A significant reduction was observed in anthropometric indices in both groups (high-protein, low-energy diets and normal-protein, low-energy diets). In addition, more reduction in fat free mass was observed in the normal-protein, low-energy diet group compared to the high -protein, low-energy diet group. In other the anthropometric indices, significant differences were not observed between the two groups. Conclusion: Independently of the type of diet, low-calorie diet can improve the anthropometric indices, but during a weight loss, high-protein diet can help the fat free mass to be maintained.

Keywords: diet, high-protein, body mass index, body fat percentage

Procedia PDF Downloads 308
10662 Synthesis and Characterization of Partially Oxidized Graphite Oxide for Solar Energy Storage Applications

Authors: Ghada Ben Hamad, Zohir Younsi, Fabien Salaun, Hassane Naji, Noureddine Lebaz

Abstract:

The graphene oxide (GO) material has attracted much attention for solar energy applications. This paper reports the synthesis and characterization of partially oxidized graphite oxide (GTO). GTO was obtained by modified Hummers method, which is based on the chemical oxidation of natural graphite. Several samples were prepared with different oxidation degree by an adjustment of the oxidizing agent’s amount. The effect of the oxidation degree on the chemical structure and on the morphology of GTO was determined by using Fourier transform infrared (FT-IR) spectroscopy, Energy Dispersive X-ray Spectroscopy (EDS), and scanning electronic microscope (SEM). The thermal stability of GTO was evaluated by using thermogravimetric analyzer (TGA) in Nitrogen atmosphere. The results indicate high degree oxidation of graphite oxide for each sample, proving that the process is efficient. The GTO synthesized by modified Hummers method shows promising characteristics. Graphene oxide (GO) obtained by exfoliation of GTO are recognized as a good candidate for thermal energy storage, and it will be used as solid shell material in the encapsulation of phase change materials (PCM).

Keywords: modified hummers method, graphite oxide, oxidation degree, solar energy storage

Procedia PDF Downloads 118
10661 Mitigating Climate Change Issues: International Students' Perceptions on Energy Conservation and Effective Transportation

Authors: Indrapriya Kularatne, Olufemi Omisakin

Abstract:

Climate change mitigation is one of the most complex challenges that humanity has ever faced in the context of global environmental protection. This a multifaceted challenge that needs immediate, targeted and concentrated actions at global, national and local levels. Individual actions play a crucial role in mitigating climate change. New Zealand attracts a significant number of international students annually for higher education. Therefore, it is critical to understand what international students are bringing into the country in terms of their practices for mitigating climate change challenges. This exploratory research aims to investigate international students' perceptions on mitigating climate change issues. The study focuses particularly on the areas of energy conservation and effective transportation. A specific questionnaire was developed covering the areas of energy conserving practices, use of energy efficient products, use of environmentally friendly transportation methods and practices to reduce vehicle usage. The quantitative data was collected from nearly 240 participants using the Qualtrics online system. The research findings provide valuable insights into international students' perceptions of sustainability and environmental protection actions, particularly in the areas of energy conservation and effective transportation. These insights can contribute to ongoing efforts to mitigate climate change issues and promote sustainable development practices in New Zealand.

Keywords: climate change, energy conservation, effective transportation, perceptions

Procedia PDF Downloads 66
10660 A Mathematical Model for Studying Landing Dynamics of a Typical Lunar Soft Lander

Authors: Johns Paul, Santhosh J. Nalluveettil, P. Purushothaman, M. Premdas

Abstract:

Lunar landing is one of the most critical phases of lunar mission. The lander is provided with a soft landing system to prevent structural damage of lunar module by absorbing the landing shock and also assure stability during landing. Presently available software are not capable to simulate the rigid body dynamics coupled with contact simulation and elastic/plastic deformation analysis. Hence a separate mathematical model has been generated for studying the dynamics of a typical lunar soft lander. Parameters used in the analysis includes lunar surface slope, coefficient of friction, initial touchdown velocity (vertical and horizontal), mass and moment of inertia of lander, crushing force due to energy absorbing material in the legs, number of legs and geometry of lander. The mathematical model is capable to simulate plastic and elastic deformation of honey comb, frictional force between landing leg and lunar soil, surface contact simulation, lunar gravitational force, rigid body dynamics and linkage dynamics of inverted tripod landing gear. The non linear differential equations generated for studying the dynamics of lunar lander is solved by numerical method. Matlab programme has been used as a computer tool for solving the numerical equations. The position of each kinematic joint is defined by mathematical equations for the generation of equation of motion. All hinged locations are defined by position vectors with respect to body fixed coordinate. The vehicle rigid body rotations and motions about body coordinate are only due to the external forces and moments arise from footpad reaction force due to impact, footpad frictional force and weight of vehicle. All these force are mathematically simulated for the generation of equation of motion. The validation of mathematical model is done by two different phases. First phase is the validation of plastic deformation of crushable elements by employing conservation of energy principle. The second phase is the validation of rigid body dynamics of model by simulating a lander model in ADAMS software after replacing the crushable elements to elastic spring element. Simulation of plastic deformation along with rigid body dynamics and contact force cannot be modeled in ADAMS. Hence plastic element of primary strut is replaced with a spring element and analysis is carried out in ADAMS software. The same analysis is also carried out using the mathematical model where the simulation of honeycomb crushing is replaced by elastic spring deformation and compared the results with ADAMS analysis. The rotational motion of linkages and 6 degree of freedom motion of lunar Lander about its CG can be validated by ADAMS software by replacing crushing element to spring element. The model is also validated by the drop test results of 4 leg lunar lander. This paper presents the details of mathematical model generated and its validation.

Keywords: honeycomb, landing leg tripod, lunar lander, primary link, secondary link

Procedia PDF Downloads 351
10659 Production of Low-Density Nanocellular Foam Based on PMMA/PEBAX Blends

Authors: Nigus Maregu Demewoz, Shu-Kai Yeh

Abstract:

Low-density nanocellular foam is a fascinating new-generation advanced material due to its mechanical strength and thermal insulation properties. In nanocellular foam, reducing the density increases the insulation ability. However, producing a nanocellular foam of densities less than 0.3 with a cell size of less than 100 nm is very challenging. In this study, poly (methyl methacrylate) (PMMA) was blended with Polyether block amide (PEBAX) to study the effects of PEBAX on the nanocellular foam structure of the PMMA matrix. We added 2 wt% of PEBAX in the PMMA matrix, and the PEBAX nanostructured domain size of 45 nm was well dispersed in the PMMA matrix. The foaming result produced a new generation special bouquet-like nanocellular foam of cell size less than 50 nm with a relative density of 0.24. Also, we were able to produce a nanocellular foam of a relative density of about 0.17. In addition to thermal insulation applications, bouquet-like nanocellular foam may be expected for filtration applications.

Keywords: nanocellular foam, low-density, cell size, relative density, PMMA/PEBAX blend

Procedia PDF Downloads 93
10658 Natural Gas Production Forecasts Using Diffusion Models

Authors: Md. Abud Darda

Abstract:

Different options for natural gas production in wide geographic areas may be described through diffusion of innovation models. This type of modeling approach provides an indirect estimate of an ultimately recoverable resource, URR, capture the quantitative effects of observed strategic interventions, and allow ex-ante assessments of future scenarios over time. In order to ensure a sustainable energy policy, it is important to forecast the availability of this natural resource. Considering a finite life cycle, in this paper we try to investigate the natural gas production of Myanmar and Algeria, two important natural gas provider in the world energy market. A number of homogeneous and heterogeneous diffusion models, with convenient extensions, have been used. Models validation has also been performed in terms of prediction capability.

Keywords: diffusion models, energy forecast, natural gas, nonlinear production

Procedia PDF Downloads 227
10657 Analysis of Engagement Methods in the College Classroom Post Pandemic

Authors: Marsha D. Loda

Abstract:

College enrollment is declining and generation Z, today’s college students, are struggling. Before the pandemic, researchers characterized this generational cohort as unique. Gen Z has been called the most achievement-oriented generation, as they enjoy greater economic status, are more racially and ethnically diverse, and better educated than any other generation. However, they are also the most likely generation to suffer from depression and anxiety. Gen Z has grown up largely with usually well-intentioned but overprotective parents who inadvertently kept them from learning life skills, likely impacting their ability to cope with and to effectively manage challenges. The unprecedented challenges resulting from the pandemic up ended their world and left them emotionally reeling. One of the ramifications of this for higher education is how to reengage current Gen Z students in the classroom. This research presents qualitative findings from 24 single-spaced pages of verbatim comments from college students. Research questions concerned what helps them learn and what they abhor, as well as how to engage them with the university outside of the classroom to aid in retention. Students leave little doubt about what they want to experience in the classroom. In order of mention, students want discussion, to engage with questions, to hear how a topic relates to real life and the real world, to feel connections with the professor and fellow students, and to have an opportunity to give their opinions. They prefer a classroom that involves conversation, with interesting topics and active learning. “professor talks instead of lecturing” “professor builds a connection with the classroom” “I am engaged because it feels like a respectful conversation” Similarly, students are direct about what they dislike in a classroom. In order of frequency, students dislike teachers unenthusiastically reading word or word from notes or presentations, repeating the text without adding examples, or addressing how to apply the information. “All lecture. I can read the book myself” “Not taught how to apply the skill or lesson” “Lectures the entire time. Lesson goes in one ear and out the other.” Pertaining to engagement outside the classroom, Gen Z challenges higher education to step outside the box. They don’t want to just hear from professionals in their field, they want to meet and interact with them. Perhaps because of their dependence on technology and pandemic isolation, they seem to reach out for assistance in forming social bonds. “I believe fun and social events are the best way to connect with students and get them involved. Cookouts, raffles, socials, or networking events would all most likely appeal to many students”. “Events… even if they aren’t directly related to learning. Maybe like movie nights… doing meet ups at restaurants”. Qualitative research suggests strategy. This research is rife with strategic implications to improve learning, increase engagement and reduce drop-out rates among Generation Z higher education students. It also compliments existing research on student engagement. With college enrollment declining by some 1.3 million students over the last two years, this research is both timely and important.

Keywords: college enrollment, generation Z, higher education, pandemic, student engagement

Procedia PDF Downloads 105
10656 Numerical Study of Natural Convection in Isothermal Open Cavities

Authors: Gaurav Prabhudesai, Gaetan Brill

Abstract:

The sun's energy source comes from a hydrogen-to-helium thermonuclear reaction, generating a temperature of about 5760 K on its outer layer. On account of this high temperature, energy is radiated by the sun, a part of which reaches the earth. This sunlight, even after losing part of its energy en-route to scattering and absorption, provides a time and space averaged solar flux of 174.7 W/m^2 striking the earth’s surface. According to one study, the solar energy striking earth’s surface in one and a half hour is more than the energy consumption that was recorded in the year 2001 from all sources combined. Thus, technology for extraction of solar energy holds much promise for solving energy crisis. Of the many technologies developed in this regard, Concentrating Solar Power (CSP) plants with central solar tower and receiver system are very impressive because of their capability to provide a renewable energy that can be stored in the form of heat. One design of central receiver towers is an open cavity where sunlight is concentrated into by using mirrors (also called heliostats). This concentrated solar flux produces high temperature inside the cavity which can be utilized in an energy conversion process. The amount of energy captured is reduced by losses occurring at the cavity through all three modes viz., radiation to the atmosphere, conduction to the adjoining structure and convection. This study investigates the natural convection losses to the environment from the receiver. Computational fluid dynamics were used to simulate the fluid flow and heat transfer of the receiver; since no analytical solution can be obtained and no empirical correlations exist for the given geometry. The results provide guide lines for predicting natural convection losses for hexagonal and circular shaped open cavities. Additionally, correlations are given for various inclination angles and aspect ratios. These results provide methods to minimize natural convection through careful design of receiver geometry and modification of the inclination angle, and aspect ratio of the cavity.

Keywords: concentrated solar power (CSP), central receivers, natural convection, CFD, open cavities

Procedia PDF Downloads 288
10655 Anodic Stability of Li₆PS₅Cl/PEO Composite Polymer Electrolytes for All-Solid-State Lithium Batteries: A First-Principles Molecular Dynamics Study

Authors: Hao-Wen Chang, Santhanamoorthi Nachimuthu, Jyh-Chiang Jiang

Abstract:

All-solid-state lithium batteries (ASSLBs) are increasingly recognized as a safer and more reliable alternative to conventional lithium-ion batteries due to their non-flammable nature and enhanced safety performance. ASSLBs utilize a range of solid-state electrolytes, including solid polymer electrolytes (SPEs), inorganic solid electrolytes (ISEs), and composite polymer electrolytes (CPEs). SPEs are particularly valued for their flexibility, ease of processing, and excellent interfacial compatibility with electrodes, though their ionic conductivity remains a significant limitation. ISEs, on the other hand, provide high ionic conductivity, broad electrochemical windows, and strong mechanical properties but often face poor interfacial contact with electrodes, impeding performance. CPEs, which merge the strengths of SPEs and ISEs, represent a compelling solution for next-generation ASSLBs by addressing both electrochemical and mechanical challenges. Despite their potential, the mechanisms governing lithium-ion transport within these systems remain insufficiently understood. In this study, we designed CPEs based on argyrodite-type Li₆PS₅Cl (LPSC) combined with two distinct polymer matrices: poly(ethylene oxide) (PEO) with 24.5 wt% lithium bis(trifluoromethane)sulfonimide (LiTFSI) and polycaprolactone (PCL) with 25.7 wt% LiTFSI. Through density functional theory (DFT) calculations, we investigated the interfacial chemistry of these materials, revealing critical insights into their stability and interactions. Additionally, ab initio molecular dynamics (AIMD) simulations of lithium electrodes interfaced with LPSC layers containing polymers and LiTFSI demonstrated that the polymer matrix significantly mitigates LPSC decomposition, compared to systems with only a lithium electrode and LPSC layers. These findings underscore the pivotal role of CPEs in improving the performance and longevity of ASSLBs, offering a promising path forward for next-generation energy storage technologies.

Keywords: all-solid-state lithium-ion batteries, composite solid electrolytes, DFT calculations, Li-ion transport

Procedia PDF Downloads 20
10654 A quantitative Analysis of Impact of Potential Variables on the Energy Performance of Old and New Buildings in China

Authors: Yao Meng, Mahroo Eftekhari, Dennis Loveday

Abstract:

Currently, there are two types of heating systems in Chinese residential buildings, with respect to the controllability of the heating system, one is an old heating system without any possibility of controlling room temperature and another is a new heating system that provides temperature control of individual rooms. This paper is aiming to evaluate the impact of potential variables on the energy performance of old and new buildings respectively in China, and to explore how the use of individual room temperature control would change occupants’ heating behaviour and thermal comfort in Chinese residential buildings and its impact on the building energy performance. In the study, two types of residential buildings have been chosen, the new building install personal control on the heating system, together with ‘pay for what you use’ tariffs. The old building comprised uncontrolled heating with payment based on floor area. The studies were carried out in each building, with a longitudinal monitoring of indoor air temperature, outdoor air temperature, window position. The occupants’ behaviour and thermal sensation were evaluated by questionnaires. Finally, use the simulated analytic method to identify the impact of influence variables on energy use for both types of buildings.

Keywords: residential buildings, China, design parameters, energy efficiency, simulation analytics method

Procedia PDF Downloads 551
10653 CERD: Cost Effective Route Discovery in Mobile Ad Hoc Networks

Authors: Anuradha Banerjee

Abstract:

A mobile ad hoc network is an infrastructure less network, where nodes are free to move independently in any direction. The nodes have limited battery power; hence, we require energy efficient route discovery technique to enhance their lifetime and network performance. In this paper, we propose an energy-efficient route discovery technique CERD that greatly reduces the number of route requests flooded into the network and also gives priority to the route request packets sent from the routers that has communicated with the destination very recently, in single or multi-hop paths. This does not only enhance the lifetime of nodes but also decreases the delay in tracking the destination.

Keywords: ad hoc network, energy efficiency, flooding, node lifetime, route discovery

Procedia PDF Downloads 347
10652 Evaluation of Elements Impurities in Drugs According to Pharmacopoeia by use FESEM-EDS Technique

Authors: Rafid Doulab

Abstract:

Elemental Impurities in the Pharmaceuticals industryis are indispensable to ensure pharmaceuticalssafety for 24 elements. Although atomic absorption and inductively coupled plasma are used in the U.S Pharmacopeia and the European Pharmacopoeia, FESEM with energy dispersive spectrometers can be applied as an alternative analysis method for quantitative and qualitative results for a variety of elements without chemical pretreatment, unlike other techniques. This technique characterizes by shortest time, with more less contamination, no reagent consumption, and generation of minimal residue or waste, as well as sample preparations time limiting, with minimal analysis error. Simple dilution for powder or direct analysis for liquid, we analyzed the usefulness of EDS method in testing with field emission scanning electron microscopy (FESEM, SUPRA 55 Carl Zeiss Germany) with an X-ray energy dispersion (XFlash6l10 Bruker Germany). The samples analyzed directly without coating by applied 5µ of known concentrated diluted sample on carbon stub with accelerated voltage according to sample thickness, the result for this spot was in atomic percentage, and by Avogadro converted factor, the final result will be in microgram. Conclusion and recommendation: The conclusion of this study is application of FESEM-EDS in US pharmacopeia and ICH /Q3D guideline to reach a high-precision and accurate method in element impurities analysis of drugs or bulk materials to determine the permitted daily exposure PDE in liquid or solid specimens, and to obtain better results than other techniques, by the way it does not require complex methods or chemicals for digestion, which interfere with the final results with the possibility of to keep the sample at any time for re analysis. The recommendation is to use this technique in pharmacopeia as standard methods like inductively coupled plasma both ICP-AES, ICP-OES, and ICP-MS.

Keywords: pharmacopoeia, FESEM-EDS, element impurities, atomic concentration

Procedia PDF Downloads 116