Search results for: motor intelligence
271 Environmental Catalysts for Refining Technology Application: Reduction of CO Emission and Gasoline Sulphur in Fluid Catalytic Cracking Unit
Authors: Loganathan Kumaresan, Velusamy Chidambaram, Arumugam Velayutham Karthikeyani, Alex Cheru Pulikottil, Madhusudan Sau, Gurpreet Singh Kapur, Sankara Sri Venkata Ramakumar
Abstract:
Environmentally driven regulations throughout the world stipulate dramatic improvements in the quality of transportation fuels and refining operations. The exhaust gases like CO, NOx, and SOx from stationary sources (e.g., refinery) and motor vehicles contribute to a large extent for air pollution. The refining industry is under constant environmental pressure to achieve more rigorous standards on sulphur content in the fuel used in the transportation sector and other off-gas emissions. Fluid catalytic cracking unit (FCCU) is a major secondary process in refinery for gasoline and diesel production. CO-combustion promoter additive and gasoline sulphur reduction (GSR) additive are catalytic systems used in FCCU to assist the combustion of CO to CO₂ in the regenerator and regulate sulphur in gasoline faction respectively along with main FCC catalyst. Effectiveness of these catalysts is governed by the active metal used, its dispersion, the type of base material employed, and retention characteristics of additive in FCCU such as attrition resistance and density. The challenge is to have a high-density microsphere catalyst support for its retention and high activity of the active metals as these catalyst additives are used in low concentration compare to the main FCC catalyst. The present paper discusses in the first part development of high dense microsphere of nanocrystalline alumina by hydro-thermal method for CO combustion promoter application. Performance evaluation of additive was conducted under simulated regenerator conditions and shows CO combustion efficiency above 90%. The second part discusses the efficacy of a co-precipitation method for the generation of the active crystalline spinels of Zn, Mg, and Cu with aluminium oxides as an additive. The characterization and micro activity test using heavy combined hydrocarbon feedstock at FCC unit conditions for evaluating gasoline sulphur reduction activity are studied. These additives were characterized by X-Ray Diffraction, NH₃-TPD & N₂ sorption analysis, TPR analysis to establish structure-activity relationship. The reaction of sulphur removal mechanisms involving hydrogen transfer reaction, aromatization and alkylation functionalities are established to rank GSR additives for their activity, selectivity, and gasoline sulphur removal efficiency. The sulphur shifting in other liquid products such as heavy naphtha, light cycle oil, and clarified oil were also studied. PIONA analysis of liquid product reveals 20-40% reduction of sulphur in gasoline without compromising research octane number (RON) of gasoline and olefins content.Keywords: hydrothermal, nanocrystalline, spinel, sulphur reduction
Procedia PDF Downloads 97270 Rethinking Classical Concerts in the Digital Era: Transforming Sound, Experience, and Engagement for the New Generation
Authors: Orit Wolf
Abstract:
Classical music confronts a crucial challenge: updating cherished concert traditions for the digital age. This paper is a journey, and a quest to make classical concerts resonate with a new generation. It's not just about asking questions; it's about exploring the future of classical concerts and their potential to captivate and connect with today's audience in an era defined by change. The younger generation, known for their love of diversity, interactive experiences, and multi-sensory immersion, cannot be overlooked. This paper explores innovative strategies that forge deep connections with audiences whose relationship with classical music differs from the past. The urgency of this challenge drives the transformation of classical concerts. Examining classical concerts is necessary to understand how they can harmonize with contemporary sensibilities. New dimensions in audiovisual experiences that enchant the emerging generation are sought. Classical music must embrace the technological era while staying open to fusion and cross-cultural collaboration possibilities. The role of technology and Artificial Intelligence (AI) in reshaping classical concerts is under research. The fusion of classical music with digital experiences and dynamic interdisciplinary collaborations breathes new life into the concert experience. It aligns classical music with the expectations of modern audiences, making it more relevant and engaging. Exploration extends to the structure of classical concerts. Conventions are challenged, and ways to make classical concerts more accessible and captivating are sought. Inspired by innovative artistic collaborations, musical genres and styles are redefined, transforming the relationship between performers and the audience. This paper, therefore, aims to be a catalyst for dialogue and a beacon of innovation. A set of critical inquiries integral to reshaping classical concerts for the digital age is presented. As the world embraces digital transformation, classical music seeks resonance with contemporary audiences, redefining the concert experience while remaining true to its roots and embracing revolutions in the digital age.Keywords: new concert formats, reception of classical music, interdiscplinary concerts, innovation in the new musical era, mash-up, cross culture, innovative concerts, engaging musical performances
Procedia PDF Downloads 64269 AI/ML Atmospheric Parameters Retrieval Using the “Atmospheric Retrievals conditional Generative Adversarial Network (ARcGAN)”
Authors: Thomas Monahan, Nicolas Gorius, Thanh Nguyen
Abstract:
Exoplanet atmospheric parameters retrieval is a complex, computationally intensive, inverse modeling problem in which an exoplanet’s atmospheric composition is extracted from an observed spectrum. Traditional Bayesian sampling methods require extensive time and computation, involving algorithms that compare large numbers of known atmospheric models to the input spectral data. Runtimes are directly proportional to the number of parameters under consideration. These increased power and runtime requirements are difficult to accommodate in space missions where model size, speed, and power consumption are of particular importance. The use of traditional Bayesian sampling methods, therefore, compromise model complexity or sampling accuracy. The Atmospheric Retrievals conditional Generative Adversarial Network (ARcGAN) is a deep convolutional generative adversarial network that improves on the previous model’s speed and accuracy. We demonstrate the efficacy of artificial intelligence to quickly and reliably predict atmospheric parameters and present it as a viable alternative to slow and computationally heavy Bayesian methods. In addition to its broad applicability across instruments and planetary types, ARcGAN has been designed to function on low power application-specific integrated circuits. The application of edge computing to atmospheric retrievals allows for real or near-real-time quantification of atmospheric constituents at the instrument level. Additionally, edge computing provides both high-performance and power-efficient computing for AI applications, both of which are critical for space missions. With the edge computing chip implementation, ArcGAN serves as a strong basis for the development of a similar machine-learning algorithm to reduce the downlinked data volume from the Compact Ultraviolet to Visible Imaging Spectrometer (CUVIS) onboard the DAVINCI mission to Venus.Keywords: deep learning, generative adversarial network, edge computing, atmospheric parameters retrieval
Procedia PDF Downloads 170268 Flood Simulation and Forecasting for Sustainable Planning of Response in Municipalities
Authors: Mariana Damova, Stanko Stankov, Emil Stoyanov, Hristo Hristov, Hermand Pessek, Plamen Chernev
Abstract:
We will present one of the first use cases on the DestinE platform, a joint initiative of the European Commission, European Space Agency and EUMETSAT, providing access to global earth observation, meteorological and statistical data, and emphasize the good practice of intergovernmental agencies acting in concert. Further, we will discuss the importance of space-bound disruptive solutions for improving the balance between the ever-increasing water-related disasters coming from climate change and minimizing their economic and societal impact. The use case focuses on forecasting floods and estimating the impact of flood events on the urban environment and the ecosystems in the affected areas with the purpose of helping municipal decision-makers to analyze and plan resource needs and to forge human-environment relationships by providing farmers with insightful information for improving their agricultural productivity. For the forecast, we will adopt an EO4AI method of our platform ISME-HYDRO, in which we employ a pipeline of neural networks applied to in-situ measurements and satellite data of meteorological factors influencing the hydrological and hydrodynamic status of rivers and dams, such as precipitations, soil moisture, vegetation index, snow cover to model flood events and their span. ISME-HYDRO platform is an e-infrastructure for water resources management based on linked data, extended with further intelligence that generates forecasts with the method described above, throws alerts, formulates queries, provides superior interactivity and drives communication with the users. It provides synchronized visualization of table views, graphviews and interactive maps. It will be federated with the DestinE platform.Keywords: flood simulation, AI, Earth observation, e-Infrastructure, flood forecasting, flood areas localization, response planning, resource estimation
Procedia PDF Downloads 21267 Quality Assurance in Translation Crowdsourcing: The TED Open Translation Project
Authors: Ya-Mei Chen
Abstract:
The participatory culture enabled by Web 2.0 technologies has led to the emergence of online translation crowdsourcing, which mainly relies on the collective intelligence of volunteer translators. Due to the fact that many volunteer translators do not have formal translator training, concerns have been raised about the quality of crowdsourced translations. Some empirical research has been done to examine the translation quality of for-profit crowdsourcing initiatives. However, quality assurance of non-profit translation crowdsourcing has rarely been explored in detail. Using the TED Open Translation Project as a case study, this paper investigates how the translation-review-approval method adopted by TED can (1) direct the volunteer translators’ use of translation strategies as well as the reviewers’ adoption of revising strategies and (2) shape the final translation products. To well examine the actual effect of TED’s translation-review-approval method, this paper will focus on its two major quality assurance mechanisms, that is, TED’s style guidelines and quality review. Based on an anonymous questionnaire, this research will first explore whether the volunteer translators and reviewers are aware of the style guidelines and whether their use of translation strategies is similar to that advised in the guidelines. The questionnaire, which will be posted online, will consist of two parts: demographic information and translation strategies. The invitations to complete it will then be distributed through TED Translator Facebook groups. With an aim to investigate if the style guidelines have any substantial impacts on actual subtitling practices, a comparison will be made between the original English subtitles of 20 TED talks (each around 5 to 7 minutes) and their Chinese subtitle translations to identify regularly adopted strategies. Concerning the function of the reviewing stage, a comparative study will be conducted between the drafts of Chinese subtitles for 10 short English talks and the revised versions of these drafts so as to examine the actual revising strategies and their effect on translation quality. According to the results obtained from the questionnaire and textual comparisons, this paper will provide in-depth analysis of quality assurance of the TED Open Translation Project. It is hoped that this research, through a detailed investigation of non-profit translation crowdsourcing, can enable translation researchers and practitioners to have a better understanding of quality control in translation crowdsourcing in the digital age.Keywords: quality assurance, TED, translation crowdsourcing, volunteer translators
Procedia PDF Downloads 231266 Hybrid Method for Smart Suggestions in Conversations for Online Marketplaces
Authors: Yasamin Rahimi, Ali Kamandi, Abbas Hoseini, Hesam Haddad
Abstract:
Online/offline chat is a convenient approach in the electronic markets of second-hand products in which potential customers would like to have more information about the products to fill the information gap between buyers and sellers. Online peer in peer market is trying to create artificial intelligence-based systems that help customers ask more informative questions in an easier way. In this article, we introduce a method for the question/answer system that we have developed for the top-ranked electronic market in Iran called Divar. When it comes to secondhand products, incomplete product information in a purchase will result in loss to the buyer. One way to balance buyer and seller information of a product is to help the buyer ask more informative questions when purchasing. Also, the short time to start and achieve the desired result of the conversation was one of our main goals, which was achieved according to A/B tests results. In this paper, we propose and evaluate a method for suggesting questions and answers in the messaging platform of the e-commerce website Divar. Creating such systems is to help users gather knowledge about the product easier and faster, All from the Divar database. We collected a dataset of around 2 million messages in Persian colloquial language, and for each category of product, we gathered 500K messages, of which only 2K were Tagged, and semi-supervised methods were used. In order to publish the proposed model to production, it is required to be fast enough to process 10 million messages daily on CPU processors. In order to reach that speed, in many subtasks, faster and simplistic models are preferred over deep neural models. The proposed method, which requires only a small amount of labeled data, is currently used in Divar production on CPU processors, and 15% of buyers and seller’s messages in conversations is directly chosen from our model output, and more than 27% of buyers have used this model suggestions in at least one daily conversation.Keywords: smart reply, spell checker, information retrieval, intent detection, question answering
Procedia PDF Downloads 187265 Career Guidance System Using Machine Learning
Authors: Mane Darbinyan, Lusine Hayrapetyan, Elen Matevosyan
Abstract:
Artificial Intelligence in Education (AIED) has been created to help students get ready for the workforce, and over the past 25 years, it has grown significantly, offering a variety of technologies to support academic, institutional, and administrative services. However, this is still challenging, especially considering the labor market's rapid change. While choosing a career, people face various obstacles because they do not take into consideration their own preferences, which might lead to many other problems like shifting jobs, work stress, occupational infirmity, reduced productivity, and manual error. Besides preferences, people should properly evaluate their technical and non-technical skills, as well as their personalities. Professional counseling has become a difficult undertaking for counselors due to the wide range of career choices brought on by changing technological trends. It is necessary to close this gap by utilizing technology that makes sophisticated predictions about a person's career goals based on their personality. Hence, there is a need to create an automated model that would help in decision-making based on user inputs. Improving career guidance can be achieved by embedding machine learning into the career consulting ecosystem. There are various systems of career guidance that work based on the same logic, such as the classification of applicants, matching applications with appropriate departments or jobs, making predictions, and providing suitable recommendations. Methodologies like KNN, Neural Networks, K-means clustering, D-Tree, and many other advanced algorithms are applied in the fields of data and compute some data, which is helpful to predict the right careers. Besides helping users with their career choice, these systems provide numerous opportunities which are very useful while making this hard decision. They help the candidate to recognize where he/she specifically lacks sufficient skills so that the candidate can improve those skills. They are also capable to offer an e-learning platform, taking into account the user's lack of knowledge. Furthermore, users can be provided with details on a particular job, such as the abilities required to excel in that industry.Keywords: career guidance system, machine learning, career prediction, predictive decision, data mining, technical and non-technical skills
Procedia PDF Downloads 80264 Classification of Forest Types Using Remote Sensing and Self-Organizing Maps
Authors: Wanderson Goncalves e Goncalves, José Alberto Silva de Sá
Abstract:
Human actions are a threat to the balance and conservation of the Amazon forest. Therefore the environmental monitoring services play an important role as the preservation and maintenance of this environment. This study classified forest types using data from a forest inventory provided by the 'Florestal e da Biodiversidade do Estado do Pará' (IDEFLOR-BIO), located between the municipalities of Santarém, Juruti and Aveiro, in the state of Pará, Brazil, covering an area approximately of 600,000 hectares, Bands 3, 4 and 5 of the TM-Landsat satellite image, and Self - Organizing Maps. The information from the satellite images was extracted using QGIS software 2.8.1 Wien and was used as a database for training the neural network. The midpoints of each sample of forest inventory have been linked to images. Later the Digital Numbers of the pixels have been extracted, composing the database that fed the training process and testing of the classifier. The neural network was trained to classify two forest types: Rain Forest of Lowland Emerging Canopy (Dbe) and Rain Forest of Lowland Emerging Canopy plus Open with palm trees (Dbe + Abp) in the Mamuru Arapiuns glebes of Pará State, and the number of examples in the training data set was 400, 200 examples for each class (Dbe and Dbe + Abp), and the size of the test data set was 100, with 50 examples for each class (Dbe and Dbe + Abp). Therefore, total mass of data consisted of 500 examples. The classifier was compiled in Orange Data Mining 2.7 Software and was evaluated in terms of the confusion matrix indicators. The results of the classifier were considered satisfactory, and being obtained values of the global accuracy equal to 89% and Kappa coefficient equal to 78% and F1 score equal to 0,88. It evaluated also the efficiency of the classifier by the ROC plot (receiver operating characteristics), obtaining results close to ideal ratings, showing it to be a very good classifier, and demonstrating the potential of this methodology to provide ecosystem services, particularly in anthropogenic areas in the Amazon.Keywords: artificial neural network, computational intelligence, pattern recognition, unsupervised learning
Procedia PDF Downloads 361263 Career Guidance System Using Machine Learning
Authors: Mane Darbinyan, Lusine Hayrapetyan, Elen Matevosyan
Abstract:
Artificial Intelligence in Education (AIED) has been created to help students get ready for the workforce, and over the past 25 years, it has grown significantly, offering a variety of technologies to support academic, institutional, and administrative services. However, this is still challenging, especially considering the labor market's rapid change. While choosing a career, people face various obstacles because they do not take into consideration their own preferences, which might lead to many other problems like shifting jobs, work stress, occupational infirmity, reduced productivity, and manual error. Besides preferences, people should evaluate properly their technical and non-technical skills, as well as their personalities. Professional counseling has become a difficult undertaking for counselors due to the wide range of career choices brought on by changing technological trends. It is necessary to close this gap by utilizing technology that makes sophisticated predictions about a person's career goals based on their personality. Hence, there is a need to create an automated model that would help in decision-making based on user inputs. Improving career guidance can be achieved by embedding machine learning into the career consulting ecosystem. There are various systems of career guidance that work based on the same logic, such as the classification of applicants, matching applications with appropriate departments or jobs, making predictions, and providing suitable recommendations. Methodologies like KNN, neural networks, K-means clustering, D-Tree, and many other advanced algorithms are applied in the fields of data and compute some data, which is helpful to predict the right careers. Besides helping users with their career choice, these systems provide numerous opportunities which are very useful while making this hard decision. They help the candidate to recognize where he/she specifically lacks sufficient skills so that the candidate can improve those skills. They are also capable of offering an e-learning platform, taking into account the user's lack of knowledge. Furthermore, users can be provided with details on a particular job, such as the abilities required to excel in that industry.Keywords: career guidance system, machine learning, career prediction, predictive decision, data mining, technical and non-technical skills
Procedia PDF Downloads 70262 Physics Informed Deep Residual Networks Based Type-A Aortic Dissection Prediction
Abstract:
Purpose: Acute Type A aortic dissection is a well-known cause of extremely high mortality rate. A highly accurate and cost-effective non-invasive predictor is critically needed so that the patient can be treated at earlier stage. Although various CFD approaches have been tried to establish some prediction frameworks, they are sensitive to uncertainty in both image segmentation and boundary conditions. Tedious pre-processing and demanding calibration procedures requirement further compound the issue, thus hampering their clinical applicability. Using the latest physics informed deep learning methods to establish an accurate and cost-effective predictor framework are amongst the main goals for a better Type A aortic dissection treatment. Methods: Via training a novel physics-informed deep residual network, with non-invasive 4D MRI displacement vectors as inputs, the trained model can cost-effectively calculate all these biomarkers: aortic blood pressure, WSS, and OSI, which are used to predict potential type A aortic dissection to avoid the high mortality events down the road. Results: The proposed deep learning method has been successfully trained and tested with both synthetic 3D aneurysm dataset and a clinical dataset in the aortic dissection context using Google colab environment. In both cases, the model has generated aortic blood pressure, WSS, and OSI results matching the expected patient’s health status. Conclusion: The proposed novel physics-informed deep residual network shows great potential to create a cost-effective, non-invasive predictor framework. Additional physics-based de-noising algorithm will be added to make the model more robust to clinical data noises. Further studies will be conducted in collaboration with big institutions such as Cleveland Clinic with more clinical samples to further improve the model’s clinical applicability.Keywords: type-a aortic dissection, deep residual networks, blood flow modeling, data-driven modeling, non-invasive diagnostics, deep learning, artificial intelligence.
Procedia PDF Downloads 89261 Using Serious Games to Integrate the Potential of Mass Customization into the Fuzzy Front-End of New Product Development
Authors: Michael N. O'Sullivan, Con Sheahan
Abstract:
Mass customization is the idea of offering custom products or services to satisfy the needs of each individual customer while maintaining the efficiency of mass production. Technologies like 3D printing and artificial intelligence have many start-ups hoping to capitalize on this dream of creating personalized products at an affordable price, and well established companies scrambling to innovate and maintain their market share. However, the majority of them are failing as they struggle to understand one key question – where does customization make sense? Customization and personalization only make sense where the value of the perceived benefit outweighs the cost to implement it. In other words, will people pay for it? Looking at the Kano Model makes it clear that it depends on the product. In products where customization is an inherent need, like prosthetics, mass customization technologies can be highly beneficial. However, for products that already sell as a standard, like headphones, offering customization is likely only an added bonus, and so the product development team must figure out if the customers’ perception of the added value of this feature will outweigh its premium price tag. This can be done through the use of a ‘serious game,’ whereby potential customers are given a limited budget to collaboratively buy and bid on potential features of the product before it is developed. If the group choose to buy customization over other features, then the product development team should implement it into their design. If not, the team should prioritize the features on which the customers have spent their budget. The level of customization purchased can also be translated to an appropriate production method, for example, the most expensive type of customization would likely be free-form design and could be achieved through digital fabrication, while a lower level could be achieved through short batch production. Twenty-five teams of final year students from design, engineering, construction and technology tested this methodology when bringing a product from concept through to production specification, and found that it allowed them to confidently decide what level of customization, if any, would be worth offering for their product, and what would be the best method of producing it. They also found that the discussion and negotiations between players during the game led to invaluable insights, and often decided to play a second game where they offered customers the option to buy the various customization ideas that had been discussed during the first game.Keywords: Kano model, mass customization, new product development, serious game
Procedia PDF Downloads 134260 A Preliminary Study on the Effects of Equestrian and Basketball Exercises in Children with Autism
Authors: Li Shuping, Shu Huaping, Yi Chaofan, Tao Jiang
Abstract:
Equestrian practice is often considered having a unique effect on improving symptoms in children with autism. This study evaluated and measured the changes in daily behavior, morphological, physical function, and fitness indexes of two group children with autism by means of 12 weeks of equestrian and basketball exercises. 19 clinically diagnosed children with moderate/mild autism were randomly divided into equestrian group (9 children, age=10.11±1.90y) and basketball group (10 children, age=10.70±2.16y). Both the equestrian and basketball groups practiced twice a week for 45 to 60 minutes each time. Three scales, the Autism Behavior Checklist (ABC), the Childhood Autism Rating Scale (CARS) and the Clancy Autism Behavior Scale (CABS) were used to assess their human behavior and psychology. Four morphological, seven physical function and fitness indicators were measured to evaluate the effects of the two exercises on the children’s body. The evaluations were taken by every four weeks ( pre-exercise, the 4th week, the 8th week and 12th week (post exercise). The result showed that the total scores of ABC, CARS and CABS, the dimension scores of ABC on the somatic motor, language and life self-care obtained after exercise were significantly lower than those obtained before 12 week exercises in both groups. The ABC feeling dimension scores of equestrian group and ABC communication dimension score of basketball group were significantly lower,and The upper arm circumference, sitting forward flexion, 40 second sit-up, 15s lateral jump, vital capacity, and single foot standing of both groups were significantly higher than that of before exercise.. The BMI of equestrian group was significantly reduced. The handgrip strength of basketball group was significantly increased. In conclusion, both types of exercises could improve daily behavior, morphological, physical function, and fitness indexes of the children with autism. However, the behavioral psychological scores, body morphology and function indicators and time points were different in the middle and back of the two interventions.But the indicators and the timing of the improvement were different. To the group of equestrian, the improvement of the flexibility occurred at week 4, the improvement of the sensory perception, control and use their own body, and promote the development of core strength endurance, coordination and cardiopulmonary function occurred at week 8,and the improvement of core strength endurance, coordination and cardiopulmonary function occurred at week 12. To the group of basketball, the improvement of the hand strength, balance, flexibility and cardiopulmonary function occurred at week 4, the improvement of the self-care ability and language expression ability, and core strength endurance and coordination occurred at week 8, the improvement of the control and use of their own body and social interaction ability occurred at week 12. In comparison of the exercise effects, the equestrian exercise improved the physical control and application ability appeared earlier than that of basketball group. Basketball exercise improved the language expression ability, self-care ability, balance ability and cardiopulmonary function of autistic children appeared earlier than that of equestrian group.Keywords: intervention, children with autism, equestrain, basketball
Procedia PDF Downloads 68259 The Effect of Artificial Intelligence on Petroleum Industry and Production
Authors: Mina Shokry Hanna Saleh Tadros
Abstract:
The centrality of the Petroleum Industry in the world energy is undoubted. The world economy almost runs and depends on petroleum. Petroleum industry is a multi-trillion industry; it turns otherwise poor and underdeveloped countries into wealthy nations and thrusts them at the center of international diplomacy. Although these developing nations lack the necessary technology to explore and exploit petroleum resources they are not without help as developed nations, represented by their multinational corporations are ready and willing to provide both the technical and managerial expertise necessary for the development of this natural resource. However, the exploration of these petroleum resources comes with, sometimes, grave, concomitant consequences. These consequences are especially pronounced with respect to the environment. From the British Petroleum Oil rig explosion and the resultant oil spillage and pollution in New Mexico, United States to the Mobil Oil spillage along Egyptian coast, the story and consequence is virtually the same. Egypt’s delta Region produces Nigeria’s petroleum which accounts for more than ninety-five percent of Nigeria’s foreign exchange earnings. Between 1999 and 2007, Egypt earned more than $400 billion from petroleum exports. Nevertheless, petroleum exploration and exploitation has devastated the Delta environment. From oil spillage which pollutes the rivers, farms and wetlands to gas flaring by the multi-national corporations; the consequences is similar-a region that has been devastated by petroleum exploitation. This paper thus seeks to examine the consequences and impact of petroleum pollution in the Egypt Delta with particular reference on the right of the people of Niger Delta to a healthy environment. The paper further seeks to examine the relevant international, regional instrument and Nigeria’s municipal laws that are meant to protect the result of the people of the Egypt Delta and their enforcement by the Nigerian State. It is quite worrisome that the Egypt Delta Region and its people have suffered and are still suffering grave violations of their right to a healthy environment as a result of petroleum exploitation in their region. The Egypt effort at best is half-hearted in its protection of the people’s right.Keywords: crude oil, fire, floating roof tank, lightning protection systemenvironment, exploration, petroleum, pollutionDuvernay petroleum system, oil generation, oil-source correlation, Re-Os
Procedia PDF Downloads 79258 Strategies for Synchronizing Chocolate Conching Data Using Dynamic Time Warping
Authors: Fernanda A. P. Peres, Thiago N. Peres, Flavio S. Fogliatto, Michel J. Anzanello
Abstract:
Batch processes are widely used in food industry and have an important role in the production of high added value products, such as chocolate. Process performance is usually described by variables that are monitored as the batch progresses. Data arising from these processes are likely to display a strong correlation-autocorrelation structure, and are usually monitored using control charts based on multiway principal components analysis (MPCA). Process control of a new batch is carried out comparing the trajectories of its relevant process variables with those in a reference set of batches that yielded products within specifications; it is clear that proper determination of the reference set is key for the success of a correct signalization of non-conforming batches in such quality control schemes. In chocolate manufacturing, misclassifications of non-conforming batches in the conching phase may lead to significant financial losses. In such context, the accuracy of process control grows in relevance. In addition to that, the main assumption in MPCA-based monitoring strategies is that all batches are synchronized in duration, both the new batch being monitored and those in the reference set. Such assumption is often not satisfied in chocolate manufacturing process. As a consequence, traditional techniques as MPCA-based charts are not suitable for process control and monitoring. To address that issue, the objective of this work is to compare the performance of three dynamic time warping (DTW) methods in the alignment and synchronization of chocolate conching process variables’ trajectories, aimed at properly determining the reference distribution for multivariate statistical process control. The power of classification of batches in two categories (conforming and non-conforming) was evaluated using the k-nearest neighbor (KNN) algorithm. Real data from a milk chocolate conching process was collected and the following variables were monitored over time: frequency of soybean lecithin dosage, rotation speed of the shovels, current of the main motor of the conche, and chocolate temperature. A set of 62 batches with durations between 495 and 1,170 minutes was considered; 53% of the batches were known to be conforming based on lab test results and experts’ evaluations. Results showed that all three DTW methods tested were able to align and synchronize the conching dataset. However, synchronized datasets obtained from these methods performed differently when inputted in the KNN classification algorithm. Kassidas, MacGregor and Taylor’s (named KMT) method was deemed the best DTW method for aligning and synchronizing a milk chocolate conching dataset, presenting 93.7% accuracy, 97.2% sensitivity and 90.3% specificity in batch classification, being considered the best option to determine the reference set for the milk chocolate dataset. Such method was recommended due to the lowest number of iterations required to achieve convergence and highest average accuracy in the testing portion using the KNN classification technique.Keywords: batch process monitoring, chocolate conching, dynamic time warping, reference set distribution, variable duration
Procedia PDF Downloads 167257 Price Prediction Line, Investment Signals and Limit Conditions Applied for the German Financial Market
Authors: Cristian Păuna
Abstract:
In the first decades of the 21st century, in the electronic trading environment, algorithmic capital investments became the primary tool to make a profit by speculations in financial markets. A significant number of traders, private or institutional investors are participating in the capital markets every day using automated algorithms. The autonomous trading software is today a considerable part in the business intelligence system of any modern financial activity. The trading decisions and orders are made automatically by computers using different mathematical models. This paper will present one of these models called Price Prediction Line. A mathematical algorithm will be revealed to build a reliable trend line, which is the base for limit conditions and automated investment signals, the core for a computerized investment system. The paper will guide how to apply these tools to generate entry and exit investment signals, limit conditions to build a mathematical filter for the investment opportunities, and the methodology to integrate all of these in automated investment software. The paper will also present trading results obtained for the leading German financial market index with the presented methods to analyze and to compare different automated investment algorithms. It was found that a specific mathematical algorithm can be optimized and integrated into an automated trading system with good and sustained results for the leading German Market. Investment results will be compared in order to qualify the presented model. In conclusion, a 1:6.12 risk was obtained to reward ratio applying the trigonometric method to the DAX Deutscher Aktienindex on 24 months investment. These results are superior to those obtained with other similar models as this paper reveal. The general idea sustained by this paper is that the Price Prediction Line model presented is a reliable capital investment methodology that can be successfully applied to build an automated investment system with excellent results.Keywords: algorithmic trading, automated trading systems, high-frequency trading, DAX Deutscher Aktienindex
Procedia PDF Downloads 130256 Text Mining Past Medical History in Electrophysiological Studies
Authors: Roni Ramon-Gonen, Amir Dori, Shahar Shelly
Abstract:
Background and objectives: Healthcare professionals produce abundant textual information in their daily clinical practice. The extraction of insights from all the gathered information, mainly unstructured and lacking in normalization, is one of the major challenges in computational medicine. In this respect, text mining assembles different techniques to derive valuable insights from unstructured textual data, so it has led to being especially relevant in Medicine. Neurological patient’s history allows the clinician to define the patient’s symptoms and along with the result of the nerve conduction study (NCS) and electromyography (EMG) test, assists in formulating a differential diagnosis. Past medical history (PMH) helps to direct the latter. In this study, we aimed to identify relevant PMH, understand which PMHs are common among patients in the referral cohort and documented by the medical staff, and examine the differences by sex and age in a large cohort based on textual format notes. Methods: We retrospectively identified all patients with abnormal NCS between May 2016 to February 2022. Age, gender, and all NCS attributes reports were recorded, including the summary text. All patients’ histories were extracted from the text report by a query. Basic text cleansing and data preparation were performed, as well as lemmatization. Very popular words (like ‘left’ and ‘right’) were deleted. Several words were replaced with their abbreviations. A bag of words approach was used to perform the analyses. Different visualizations which are common in text analysis, were created to easily grasp the results. Results: We identified 5282 unique patients. Three thousand and five (57%) patients had documented PMH. Of which 60.4% (n=1817) were males. The total median age was 62 years (range 0.12 – 97.2 years), and the majority of patients (83%) presented after the age of forty years. The top two documented medical histories were diabetes mellitus (DM) and surgery. DM was observed in 16.3% of the patients, and surgery at 15.4%. Other frequent patient histories (among the top 20) were fracture, cancer (ca), motor vehicle accident (MVA), leg, lumbar, discopathy, back and carpal tunnel release (CTR). When separating the data by sex, we can see that DM and MVA are more frequent among males, while cancer and CTR are less frequent. On the other hand, the top medical history in females was surgery and, after that, DM. Other frequent histories among females are breast cancer, fractures, and CTR. In the younger population (ages 18 to 26), the frequent PMH were surgery, fractures, trauma, and MVA. Discussion: By applying text mining approaches to unstructured data, we were able to better understand which medical histories are more relevant in these circumstances and, in addition, gain additional insights regarding sex and age differences. These insights might help to collect epidemiological demographical data as well as raise new hypotheses. One limitation of this work is that each clinician might use different words or abbreviations to describe the same condition, and therefore using a coding system can be beneficial.Keywords: abnormal studies, healthcare analytics, medical history, nerve conduction studies, text mining, textual analysis
Procedia PDF Downloads 96255 The Impact of Artificial Intelligence on Legislations and Laws
Authors: Keroles Akram Saed Ghatas
Abstract:
The near future will bring significant changes in modern organizations and management due to the growing role of intangible assets and knowledge workers. The area of copyright, intellectual property, digital (intangible) assets and media redistribution appears to be one of the greatest challenges facing business and society in general and management sciences and organizations in particular. The proposed article examines the views and perceptions of fairness in digital media sharing among Harvard Law School's LL.M.s. Students, based on 50 qualitative interviews and 100 surveys. The researcher took an ethnographic approach to her research and entered the Harvard LL.M. in 2016. at, a Face book group that allows people to connect naturally and attend in-person and private events more easily. After listening to numerous students, the researcher conducted a quantitative survey among 100 respondents to assess respondents' perceptions of fairness in digital file sharing in various contexts (based on media price, its availability, regional licenses, copyright holder status, etc.). to understand better . .). Based on the survey results, the researcher conducted long-term, open-ended and loosely structured ethnographic interviews (50 interviews) to further deepen the understanding of the results. The most important finding of the study is that Harvard lawyers generally support digital piracy in certain contexts, despite having the best possible legal and professional knowledge. Interestingly, they are also more accepting of working for the government than the private sector. The results of this study provide a better understanding of how “fairness” is perceived by the younger generation of lawyers and pave the way for a more rational application of licensing laws.Keywords: cognitive impairments, communication disorders, death penalty, executive function communication disorders, cognitive disorders, capital murder, executive function death penalty, egyptian law absence, justice, political cases piracy, digital sharing, perception of fairness, legal profession
Procedia PDF Downloads 64254 Talking Back to Hollywood: Museum Representation in Popular Culture as a Gateway to Understanding Public Perception
Authors: Jessica BrodeFrank, Beka Bryer, Lacey Wilson, Sierra Van Ryck deGroot
Abstract:
Museums are enjoying quite the moment in pop culture. From discussions of labor in Bob’s Burger to introducing cultural repatriation in The Black Panther, discussions of various museum issues are making their way to popular media. “Talking Back to Hollywood” analyzes the impact museums have on movies and television. The paper will highlight a series of cultural cameos and discuss what each reveals about critical themes in museums: repatriation, labor, obfuscated histories, institutional legacies, artificial intelligence, and holograms. Using a mixed methods approach to include surveys, descriptive research, thematic analysis, and context analysis, the authors of this paper will explore how we, as the museum staff, might begin to cite museums and movies together as texts. Drawing from their experience working in museums and public history, this contingent of mid-career professionals will highlight the impact museums have had on movies and television and the didactic lessons these portrayals can provide back to cultural heritage professionals. From tackling critical themes in museums such as repatriation, labor conditions/inequities, obfuscated histories, curatorial choice and control, institutional legacies, and more, this paper is grounded in the cultural zeitgeist of the 2000s and the message these media portrayals send to the public and the cultural heritage sector. In particular, the paper will examine how portrayals of AI, holograms, and more technology can be used as entry points for necessary discussions with the public on mistrust, misinformation, and emerging technologies. This paper will not only expose the legacy and cultural understanding of the museum field within popular culture but also will discuss actionable ways that public historians can use these portrayals as an entry point for discussions with the public, citing literature reviews and quantitative and qualitative analysis of survey results. As Hollywood is talking about museums, museums can use that to better connect to the audiences who feel comfortable at the cinema but are excluded from the museum.Keywords: museums, public memory, representation, popular culture
Procedia PDF Downloads 83253 Creating Energy Sustainability in an Enterprise
Authors: John Lamb, Robert Epstein, Vasundhara L. Bhupathi, Sanjeev Kumar Marimekala
Abstract:
As we enter the new era of Artificial Intelligence (AI) and Cloud Computing, we mostly rely on the Machine and Natural Language Processing capabilities of AI, and Energy Efficient Hardware and Software Devices in almost every industry sector. In these industry sectors, much emphasis is on developing new and innovative methods for producing and conserving energy and sustaining the depletion of natural resources. The core pillars of sustainability are economic, environmental, and social, which is also informally referred to as the 3 P's (People, Planet and Profits). The 3 P's play a vital role in creating a core Sustainability Model in the Enterprise. Natural resources are continually being depleted, so there is more focus and growing demand for renewable energy. With this growing demand, there is also a growing concern in many industries on how to reduce carbon emissions and conserve natural resources while adopting sustainability in corporate business models and policies. In our paper, we would like to discuss the driving forces such as Climate changes, Natural Disasters, Pandemic, Disruptive Technologies, Corporate Policies, Scaled Business Models and Emerging social media and AI platforms that influence the 3 main pillars of Sustainability (3P’s). Through this paper, we would like to bring an overall perspective on enterprise strategies and the primary focus on bringing cultural shifts in adapting energy-efficient operational models. Overall, many industries across the globe are incorporating core sustainability principles such as reducing energy costs, reducing greenhouse gas (GHG) emissions, reducing waste and increasing recycling, adopting advanced monitoring and metering infrastructure, reducing server footprint and compute resources (Shared IT services, Cloud computing, and Application Modernization) with the vision for a sustainable environment.Keywords: climate change, pandemic, disruptive technology, government policies, business model, machine learning and natural language processing, AI, social media platform, cloud computing, advanced monitoring, metering infrastructure
Procedia PDF Downloads 111252 Teachers’ Protective Factors of Resilience Scale: Factorial Structure, Validity and Reliability Issues
Authors: Athena Daniilidou, Maria Platsidou
Abstract:
Recently developed scales addressed -specifically- teachers’ resilience. Although they profited from the field, they do not include some of the critical protective factors of teachers’ resilience identified in the literature. To address this limitation, we aimed at designing a more comprehensive scale for measuring teachers' resilience which encompasses various personal and environmental protective factors. To this end, two studies were carried out. In Study 1, 407 primary school teachers were tested with the new scale, the Teachers’ Protective Factors of Resilience Scale (TPFRS). Similar scales, such as the Multidimensional Teachers’ Resilience Scale and the Teachers’ Resilience Scale), were used to test the convergent validity, while the Maslach Burnout Inventory and the Teachers’ Sense of Efficacy Scale was used to assess the discriminant validity of the new scale. The factorial structure of the TPFRS was checked with confirmatory factor analysis and a good fit of the model to the data was found. Next, item response theory analysis using a two-parameter model (2PL) was applied to check the items within each factor. It revealed that 9 items did not fit the corresponding factors well and they were removed. The final version of the TPFRS includes 29 items, which assess six protective factors of teachers’ resilience: values and beliefs (5 items, α=.88), emotional and behavioral adequacy (6 items, α=.74), physical well-being (3 items, α=.68), relationships within the school environment, (6 items, α=.73) relationships outside the school environment (5 items, α=.84), and the legislative framework of education (4 items, α=.83). Results show that it presents a satisfactory convergent and discriminant validity. Study 2, in which 964 primary and secondary school teachers were tested, confirmed the factorial structure of the TPFRS as well as its discriminant validity, which was tested with the Schutte Emotional Intelligence Scale-Short Form. In conclusion, our results confirmed that the TPFRS is a valid instrument for assessing teachers' protective factors of resilience and it can be safely used in future research and interventions in the teaching profession. In conclusion, our results showed that the TPFRS is a new multi-dimensional instrument valid for assessing teachers' protective factors of resilience and it can be safely used in future research and interventions in the teaching profession.Keywords: resilience, protective factors, teachers, item response theory
Procedia PDF Downloads 99251 Medical Dressing Induced Digital Ischemia in Patient with Congenital Insensitivity to Pain and Anhidrosis
Authors: Abdulwhab Alotaibi, Abdullah Alzahrani, Ziyad Bokhari, Abdulelah Alghamdi
Abstract:
First described in 1975 by Dr. Miller, Medical dressings are uncommon but possible cause of hand digital ischemia due the tourniquet-like effect. The incident of this complication has been reported across wide range of age-groups, yet it seems like that the pediatric population are specifically vulnerable. Multiple dressing types were reported to have caused ischemic injury, such as elastic wrap, tubular gauze, and self-adherent dressings. We present a case of medical dressing induced digital ischemia in patient with Congenital insensitivity to pain and anhidrosis (CIPA), which further challenge the discovery of the condition. An 8-year-old girl known case of CIPA. Brought by her mother to the ER after nail bed injury, which she managed by application of elastic wrap that was left for 24 hours. When the mother found out she immediately removed the elastic band, and noticed the fingertip was black and cold with tense bullae. The color then changed later when she arrived to the ER to dark purple with bluish discoloration on the tip. On examination there was well demarcated tense bullae on the distal right fifth finger. Neurovascular intact, pulse oximetry on distal digit 100%, capillary refill time was delayed. She was seen under Plastic surgery and conservative management recommended, and patient was discharged with safety netting. Two days later the patient came as follow-up visit at which her condition demonstrated significant improvement, the bullae has since ruptured leaving behind sloughed skin, capillary refill and pulse oximetry were both within normal limits, sensory function couldn’t be assessed but her motor function and ROM were normal, topical bacitracin and bandage dressings were applied for the eroded skin. Patient was scheduled for a follow-up in 2 weeks. Preventatively it’s advisable to avoid the commonly implicated dressings such as elastic, tubular gauze or self-adherent wraps in hand or digital injuries when possible, but in cases where the use of these dressings is of necessity the appropriate precautions must be taken, Dr. Makarewich proposed the following 5 measures to help minimize the incidence of the injury: 1-Unwrapping 12 inches of the dressing before rolling the injured finger. 2-Wrapping from distal to proximal with minimal tension to avoid vascular embarrassment. 3-The use of 5-25 inch to overlap the entire wrap. 4-Maintaining light pressure over the wrap to allow adherence of the dressing. 5-Minimization of the number of layers used to wrap the affected digit. Also assessing the capillary refill after the application can help in determining the patency of the supplying blood vessels. It’s also important to selectively determine if the patient is a candidate for conservative management, as tailored approach can help in maximizing the positive outcomes for our patients.Keywords: congenital insensitivity to pain, digital ischemia, medical dressing, conservative management
Procedia PDF Downloads 64250 Corpus-Based Neural Machine Translation: Empirical Study Multilingual Corpus for Machine Translation of Opaque Idioms - Cloud AutoML Platform
Authors: Khadija Refouh
Abstract:
Culture bound-expressions have been a bottleneck for Natural Language Processing (NLP) and comprehension, especially in the case of machine translation (MT). In the last decade, the field of machine translation has greatly advanced. Neural machine translation NMT has recently achieved considerable development in the quality of translation that outperformed previous traditional translation systems in many language pairs. Neural machine translation NMT is an Artificial Intelligence AI and deep neural networks applied to language processing. Despite this development, there remain some serious challenges that face neural machine translation NMT when translating culture bounded-expressions, especially for low resources language pairs such as Arabic-English and Arabic-French, which is not the case with well-established language pairs such as English-French. Machine translation of opaque idioms from English into French are likely to be more accurate than translating them from English into Arabic. For example, Google Translate Application translated the sentence “What a bad weather! It runs cats and dogs.” to “يا له من طقس سيء! تمطر القطط والكلاب” into the target language Arabic which is an inaccurate literal translation. The translation of the same sentence into the target language French was “Quel mauvais temps! Il pleut des cordes.” where Google Translate Application used the accurate French corresponding idioms. This paper aims to perform NMT experiments towards better translation of opaque idioms using high quality clean multilingual corpus. This Corpus will be collected analytically from human generated idiom translation. AutoML translation, a Google Neural Machine Translation Platform, is used as a custom translation model to improve the translation of opaque idioms. The automatic evaluation of the custom model will be compared to the Google NMT using Bilingual Evaluation Understudy Score BLEU. BLEU is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. Human evaluation is integrated to test the reliability of the Blue Score. The researcher will examine syntactical, lexical, and semantic features using Halliday's functional theory.Keywords: multilingual corpora, natural language processing (NLP), neural machine translation (NMT), opaque idioms
Procedia PDF Downloads 149249 External Business Environment and Sustainability of Micro, Small and Medium Enterprises in Jigawa State, Nigeria
Authors: Shehu Isyaku
Abstract:
The general objective of the study was to investigate ‘the relationship between the external business environment and the sustainability of micro, small and medium enterprises (MSMEs) in Jigawa state’, Nigeria. Specifically, the study was to examine the relationship between 1) the economic environment, 2) the social environment, 3) the technological environment, and 4) the political environment and the sustainability of MSMEs in Jigawa state, Nigeria. The study was drawn on Resource-Based View (RBV) Theory and Knowledge-Based View (KBV). The study employed a descriptive cross-sectional survey design. A researcher-made questionnaire was used to collect data from the 350 managers/owners who were selected using stratified, purposive and simple random sampling techniques. Data analysis was done using means and standard deviations, factor analysis, Correlation Coefficient, and Pearson Linear Regression analysis. The findings of the study revealed that the sustainability potentials of the managers/owners were rated as high potential (economic, environmental, and social sustainability using 5 5-point Likert scale. Mean ratings of effectiveness of the external business environment were; as highly effective. The results from the Pearson Linear Regression Analysis rejected the hypothesized non-significant effect of the external business environment on the sustainability of MSMEs. Specifically, there is a positive significant relationship between 1) economic environment and sustainability; 2) social environment and sustainability; 3) technological environment and sustainability and political environment and sustainability. The researcher concluded that MSME managers/owners have a high potential for economic, social and environmental sustainability and that all the constructs of the external business environment (economic environment, social environment, technological environment and political environment) have a positive significant relationship with the sustainability of MSMEs. Finally, the researcher recommended that 1) MSME managers/owners need to develop marketing strategies and intelligence systems to accumulate information about the competitors and customers' demands, 2) managers/owners should utilize the customers’ cultural and religious beliefs as an opportunity that should be utilized while formulating business strategies.Keywords: business environment, sustainability, small and medium enterprises, external business environment
Procedia PDF Downloads 53248 Comparative Study of Greenhouse Locations through Satellite Images and Geographic Information System: Methodological Evaluation in Venezuela
Authors: Maria A. Castillo H., Andrés R. Leandro C.
Abstract:
During the last decades, agricultural productivity in Latin America has increased with precision agriculture and more efficient agricultural technologies. The use of automated systems, satellite images, geographic information systems, and tools for data analysis, and artificial intelligence have contributed to making more effective strategic decisions. Twenty years ago, the state of Mérida, located in the Venezuelan Andes, reported the largest area covered by greenhouses in the country, where certified seeds of potatoes, vegetables, ornamentals, and flowers were produced for export and consumption in the central region of the country. In recent years, it is estimated that production under greenhouses has changed, and the area covered has decreased due to different factors, but there are few historical statistical data in sufficient quantity and quality to support this estimate or to be used for analysis and decision making. The objective of this study is to compare data collected about geoposition, use, and covered areas of the greenhouses in 2007 to data available in 2021, as support for the analysis of the current situation of horticultural production in the main municipalities of the state of Mérida. The document presents the development of the work in the diagnosis and integration of geographic coordinates in GIS and data analysis phases. As a result, an evaluation of the process is made, a dashboard is presented with the most relevant data along with the geographical coordinates integrated into GIS, and an analysis of the obtained information is made. Finally, some recommendations for actions are added, and works that expand the information obtained and its geographical traceability over time are proposed. This study contributes to granting greater certainty in the supporting data for the evaluation of social, environmental, and economic sustainability indicators and to make better decisions according to the sustainable development goals in the area under review. At the same time, the methodology provides improvements to the agricultural data collection process that can be extended to other study areas and crops.Keywords: greenhouses, geographic information system, protected agriculture, data analysis, Venezuela
Procedia PDF Downloads 93247 Advancing Aviation: A Multidisciplinary Approach to Innovation, Management, and Technology Integration in the 21st Century
Authors: Fatih Frank Alparslan
Abstract:
The aviation industry is at a crucial turning point due to modern technologies, environmental concerns, and changing ways of transporting people and goods globally. The paper examines these challenges and opportunities comprehensively. It emphasizes the role of innovative management and advanced technology in shaping the future of air travel. This study begins with an overview of the current state of the aviation industry, identifying key areas where innovation and technology could be highly beneficial. It explores the latest advancements in airplane design, propulsion, and materials. These technological advancements are shown to enhance aircraft performance and environmental sustainability. The paper also discusses the use of artificial intelligence and machine learning in improving air traffic control, enhancing safety, and making flight operations more efficient. The management of these technologies is critically important. Therefore, the research delves into necessary changes in organization, culture, and operations to support innovation. It proposes a management approach that aligns with these modern technologies, underlining the importance of forward-thinking leaders who collaborate across disciplines and embrace innovative ideas. The paper addresses challenges in adopting these innovations, such as regulatory barriers, the need for industry-wide standards, and the impact of technological changes on jobs and society. It recommends that governments, aviation businesses, and educational institutions collaborate to address these challenges effectively, paving the way for a more innovative and eco-friendly aviation industry. In conclusion, the paper argues that the future of aviation relies on integrating new management practices with innovative technologies. It urges a collective effort to push beyond current capabilities, envisioning an aviation industry that is safer, more efficient, and environmentally responsible. By adopting a broad approach, this research contributes to the ongoing discussion about resolving the complex issues facing today's aviation sector, offering insights and guidance to prepare for future advancements.Keywords: aviation innovation, technology integration, environmental sustainability, management strategies, multidisciplinary approach
Procedia PDF Downloads 48246 The Impact of Artificial Intelligence on Journalism and Mass Communication
Authors: Saad Zagloul Shokri Melika
Abstract:
The London College of Communication is one of the only universities in the world to offer a lifestyle journalism master’s degree. A hybrid originally constructed largely out of a generic journalism program crossed with numerous cultural studies approaches, the degree has developed into a leading lifestyle journalism education attracting students worldwide. This research project seeks to present a framework for structuring the degree as well as to understand how students in this emerging field of study value the program. While some researchers have addressed questions about journalism and higher education, none have looked specifically at the increasingly important genre of lifestyle journalism, which Folker Hanusch defines as including notions of consumerism and critique among other identifying traits. Lifestyle journalism, itself poorly researched by scholars, can relate to topics including travel, fitness, and entertainment, and as such, arguably a lifestyle journalism degree should prepare students to engage with these topics. This research uses the existing Masters of Arts and Lifestyle Journalism at the London College of Communications as a case study to examine the school’s approach. Furthering Hanusch’s original definition, this master’s program attempts to characterizes lifestyle journalism by a specific voice or approach, as reflected in the diversity of student’s final projects. This framework echoes the ethos and ideas of the university, which focuses on creativity, design, and experimentation. By analyzing the current degree as well as student feedback, this research aims to assist future educators in pursuing the often neglected field of lifestyle journalism. Through a discovery of the unique mix of practical coursework, theoretical lessons, and broad scope of student work presented in this degree program, researchers strive to develop a framework for lifestyle journalism education, referring to Mark Deuze’s ten questions for journalism education development. While Hanusch began the discussion to legitimize the study of lifestyle journalism, this project strives to go one step further and open up a discussion about teaching of lifestyle journalism at the university level.Keywords: Journalism, accountability, education, television, publicdearth, investigative, journalism, Nigeria, journalismeducation, lifestyle, university
Procedia PDF Downloads 44245 Russian ‘Active Measures’: An Applicable Supporting Tool for Russia`s Foreign Policy Objectives in the 21st Century
Authors: Håkon Riiber
Abstract:
This paper explores the extent to which Russian ‘Active Measures’ play a role in contemporary Russian foreign policy and in what way the legacy of the Soviet Union is still apparent in these practices. The analysis draws on a set of case studies from the 21st century to examine these aspects, showing which ‘Active Measures’ features are old and which are new in the post-Cold War era. The paper highlights that the topic has gained significant academic and political interest in recent years, largely due to the aggressive posture of the Russian Federation on the world stage, exemplified through interventions in Estonia, Georgia, and Ukraine and interference in several democratic elections in the West. However, the paper argues that the long-term impact of these measures may have unintended implications for Russia. While Russia is unlikely to stop using Active Measures, increased awareness of the exploitation of weaknesses, institutions, or other targets may lead to greater security measures and an ability to identify and defend against these activities. The paper contends that Soviet-style ‘Active Measures’ from the Cold War era have been modernized and are now utilized to create an advantageous atmosphere for further exploitation to support contemporary Russian foreign policy. It offers three key points to support this argument: the reenergized legacy of the Cold War era, the use of ‘Active Measures’ in a number of cases in the 21st century, and the applicability of AM to the Russian approach to foreign policy. The analysis reveals that while this is not a new Russian phenomenon, it is still oversimplified and inaccurately understood by the West, which may result in a decreased ability to defend against these activities and limit the unwarranted escalation of the ongoing security situation between the West and Russia. The paper concludes that the legacy of Soviet-era Active Measures continues to influence Russian foreign policy, and modern technological advances have only made them more applicable to the current political climate. Overall, this paper sheds light on the important issue of Russian ‘Active Measures’ and the role they play in contemporary Russian foreign policy. It emphasizes the need for increased awareness, understanding, and security measures to defend against these activities and prevent further escalation of the security situation between the West and Russia.Keywords: Russian espionage, active measures, disinformation, Russian intelligence
Procedia PDF Downloads 103244 Neuroevolution Based on Adaptive Ensembles of Biologically Inspired Optimization Algorithms Applied for Modeling a Chemical Engineering Process
Authors: Sabina-Adriana Floria, Marius Gavrilescu, Florin Leon, Silvia Curteanu, Costel Anton
Abstract:
Neuroevolution is a subfield of artificial intelligence used to solve various problems in different application areas. Specifically, neuroevolution is a technique that applies biologically inspired methods to generate neural network architectures and optimize their parameters automatically. In this paper, we use different biologically inspired optimization algorithms in an ensemble strategy with the aim of training multilayer perceptron neural networks, resulting in regression models used to simulate the industrial chemical process of obtaining bricks from silicone-based materials. Installations in the raw ceramics industry, i.e., bricks, are characterized by significant energy consumption and large quantities of emissions. In addition, the initial conditions that were taken into account during the design and commissioning of the installation can change over time, which leads to the need to add new mixes to adjust the operating conditions for the desired purpose, e.g., material properties and energy saving. The present approach follows the study by simulation of a process of obtaining bricks from silicone-based materials, i.e., the modeling and optimization of the process. Optimization aims to determine the working conditions that minimize the emissions represented by nitrogen monoxide. We first use a search procedure to find the best values for the parameters of various biologically inspired optimization algorithms. Then, we propose an adaptive ensemble strategy that uses only a subset of the best algorithms identified in the search stage. The adaptive ensemble strategy combines the results of selected algorithms and automatically assigns more processing capacity to the more efficient algorithms. Their efficiency may also vary at different stages of the optimization process. In a given ensemble iteration, the most efficient algorithms aim to maintain good convergence, while the less efficient algorithms can improve population diversity. The proposed adaptive ensemble strategy outperforms the individual optimizers and the non-adaptive ensemble strategy in convergence speed, and the obtained results provide lower error values.Keywords: optimization, biologically inspired algorithm, neuroevolution, ensembles, bricks, emission minimization
Procedia PDF Downloads 116243 Advancements in Mathematical Modeling and Optimization for Control, Signal Processing, and Energy Systems
Authors: Zahid Ullah, Atlas Khan
Abstract:
This abstract focuses on the advancements in mathematical modeling and optimization techniques that play a crucial role in enhancing the efficiency, reliability, and performance of these systems. In this era of rapidly evolving technology, mathematical modeling and optimization offer powerful tools to tackle the complex challenges faced by control, signal processing, and energy systems. This abstract presents the latest research and developments in mathematical methodologies, encompassing areas such as control theory, system identification, signal processing algorithms, and energy optimization. The abstract highlights the interdisciplinary nature of mathematical modeling and optimization, showcasing their applications in a wide range of domains, including power systems, communication networks, industrial automation, and renewable energy. It explores key mathematical techniques, such as linear and nonlinear programming, convex optimization, stochastic modeling, and numerical algorithms, that enable the design, analysis, and optimization of complex control and signal processing systems. Furthermore, the abstract emphasizes the importance of addressing real-world challenges in control, signal processing, and energy systems through innovative mathematical approaches. It discusses the integration of mathematical models with data-driven approaches, machine learning, and artificial intelligence to enhance system performance, adaptability, and decision-making capabilities. The abstract also underscores the significance of bridging the gap between theoretical advancements and practical applications. It recognizes the need for practical implementation of mathematical models and optimization algorithms in real-world systems, considering factors such as scalability, computational efficiency, and robustness. In summary, this abstract showcases the advancements in mathematical modeling and optimization techniques for control, signal processing, and energy systems. It highlights the interdisciplinary nature of these techniques, their applications across various domains, and their potential to address real-world challenges. The abstract emphasizes the importance of practical implementation and integration with emerging technologies to drive innovation and improve the performance of control, signal processing, and energy.Keywords: mathematical modeling, optimization, control systems, signal processing, energy systems, interdisciplinary applications, system identification, numerical algorithms
Procedia PDF Downloads 112242 Evaluation of the Self-Organizing Map and the Adaptive Neuro-Fuzzy Inference System Machine Learning Techniques for the Estimation of Crop Water Stress Index of Wheat under Varying Application of Irrigation Water Levels for Efficient Irrigation Scheduling
Authors: Aschalew C. Workneh, K. S. Hari Prasad, C. S. P. Ojha
Abstract:
The crop water stress index (CWSI) is a cost-effective, non-destructive, and simple technique for tracking the start of crop water stress. This study investigated the feasibility of CWSI derived from canopy temperature to detect the water status of wheat crops. Artificial intelligence (AI) techniques have become increasingly popular in recent years for determining CWSI. In this study, the performance of two AI techniques, adaptive neuro-fuzzy inference system (ANFIS) and self-organizing maps (SOM), are compared while determining the CWSI of paddy crops. Field experiments were conducted for varying irrigation water applications during two seasons in 2022 and 2023 at the irrigation field laboratory at the Civil Engineering Department, Indian Institute of Technology Roorkee, India. The ANFIS and SOM-simulated CWSI values were compared with the experimentally calculated CWSI (EP-CWSI). Multiple regression analysis was used to determine the upper and lower CWSI baselines. The upper CWSI baseline was found to be a function of crop height and wind speed, while the lower CWSI baseline was a function of crop height, air vapor pressure deficit, and wind speed. The performance of ANFIS and SOM were compared based on mean absolute error (MAE), mean bias error (MBE), root mean squared error (RMSE), index of agreement (d), Nash-Sutcliffe efficiency (NSE), and coefficient of correlation (R²). Both models successfully estimated the CWSI of the paddy crop with higher correlation coefficients and lower statistical errors. However, the ANFIS (R²=0.81, NSE=0.73, d=0.94, RMSE=0.04, MAE= 0.00-1.76 and MBE=-2.13-1.32) outperformed the SOM model (R²=0.77, NSE=0.68, d=0.90, RMSE=0.05, MAE= 0.00-2.13 and MBE=-2.29-1.45). Overall, the results suggest that ANFIS is a reliable tool for accurately determining CWSI in wheat crops compared to SOM.Keywords: adaptive neuro-fuzzy inference system, canopy temperature, crop water stress index, self-organizing map, wheat
Procedia PDF Downloads 55