Search results for: elliptic curve digital signature algorithm
5167 Analytical, Numerical, and Experimental Research Approaches to Influence of Vibrations on Hydroelastic Processes in Centrifugal Pumps
Authors: Dinara F. Gaynutdinova, Vladimir Ya Modorsky, Nikolay A. Shevelev
Abstract:
The problem under research is that of unpredictable modes occurring in two-stage centrifugal hydraulic pump as a result of hydraulic processes caused by vibrations of structural components. Numerical, analytical and experimental approaches are considered. A hypothesis was developed that the problem of unpredictable pressure decrease at the second stage of centrifugal pumps is caused by cavitation effects occurring upon vibration. The problem has been studied experimentally and theoretically as of today. The theoretical study was conducted numerically and analytically. Hydroelastic processes in dynamic “liquid – deformed structure” system were numerically modelled and analysed. Using ANSYS CFX program engineering analysis complex and computing capacity of a supercomputer the cavitation parameters were established to depend on vibration parameters. An influence domain of amplitudes and vibration frequencies on concentration of cavitation bubbles was formulated. The obtained numerical solution was verified using CFM program package developed in PNRPU. The package is based on a differential equation system in hyperbolic and elliptic partial derivatives. The system is solved by using one of finite-difference method options – the particle-in-cell method. The method defines the problem solution algorithm. The obtained numerical solution was verified analytically by model problem calculations with the use of known analytical solutions of in-pipe piston movement and cantilever rod end face impact. An infrastructure consisting of an experimental fast hydro-dynamic processes research installation and a supercomputer connected by a high-speed network, was created to verify the obtained numerical solutions. Physical experiments included measurement, record, processing and analysis of data for fast processes research by using National Instrument signals measurement system and Lab View software. The model chamber end face oscillated during physical experiments and, thus, loaded the hydraulic volume. The loading frequency varied from 0 to 5 kHz. The length of the operating chamber varied from 0.4 to 1.0 m. Additional loads weighed from 2 to 10 kg. The liquid column varied from 0.4 to 1 m high. Liquid pressure history was registered. The experiment showed dependence of forced system oscillation amplitude on loading frequency at various values: operating chamber geometrical dimensions, liquid column height and structure weight. Maximum pressure oscillation (in the basic variant) amplitudes were discovered at loading frequencies of approximately 1,5 kHz. These results match the analytical and numerical solutions in ANSYS and CFM.Keywords: computing experiment, hydroelasticity, physical experiment, vibration
Procedia PDF Downloads 2445166 Compressed Sensing of Fetal Electrocardiogram Signals Based on Joint Block Multi-Orthogonal Least Squares Algorithm
Authors: Xiang Jianhong, Wang Cong, Wang Linyu
Abstract:
With the rise of medical IoT technologies, Wireless body area networks (WBANs) can collect fetal electrocardiogram (FECG) signals to support telemedicine analysis. The compressed sensing (CS)-based WBANs system can avoid the sampling of a large amount of redundant information and reduce the complexity and computing time of data processing, but the existing algorithms have poor signal compression and reconstruction performance. In this paper, a Joint block multi-orthogonal least squares (JBMOLS) algorithm is proposed. We apply the FECG signal to the Joint block sparse model (JBSM), and a comparative study of sparse transformation and measurement matrices is carried out. A FECG signal compression transmission mode based on Rbio5.5 wavelet, Bernoulli measurement matrix, and JBMOLS algorithm is proposed to improve the compression and reconstruction performance of FECG signal by CS-based WBANs. Experimental results show that the compression ratio (CR) required for accurate reconstruction of this transmission mode is increased by nearly 10%, and the runtime is saved by about 30%.Keywords: telemedicine, fetal ECG, compressed sensing, joint sparse reconstruction, block sparse signal
Procedia PDF Downloads 1285165 Transforming Water-Energy-Gas Industry through Smart Metering and Blockchain Technology
Authors: Khoi A. Nguyen, Rodney A. Stewart, Hong Zhang
Abstract:
Advanced metering technologies coupled with informatics creates an opportunity to form digital multi-utility service providers. These providers will be able to concurrently collect a customers’ medium-high resolution water, electricity and gas demand data and provide user-friendly platforms to feed this information back to customers and supply/distribution utility organisations. With the emergence of blockchain technology, a new research area has been explored which helps bring this multi-utility service provider concept to a much higher level. This study aims at introducing a breakthrough system architecture where smart metering technology in water, energy, and gas (WEG) are combined with blockchain technology to provide customer a novel real-time consumption report and decentralized resource trading platform. A pilot study on 4 properties in Australia has been undertaken to demonstrate this system, where benefits for customers and utilities are undeniable.Keywords: blockchain, digital multi-utility, end use, demand forecasting
Procedia PDF Downloads 1715164 Design and Implementation of DC-DC Converter with Inc-Cond Algorithm
Authors: Mustafa Engin Başoğlu, Bekir Çakır
Abstract:
The most important component affecting the efficiency of photovoltaic power systems are solar panels. Efficiency of these systems are significantly affected because of being low efficiency of solar panel. Therefore, solar panels should be operated under maximum power point conditions through a power converter. In this study, design boost converter with maximum power point tracking (MPPT) operation has been designed and performed with Incremental Conductance (Inc-Cond) algorithm by using direct duty control. Furthermore, it is shown that performance of boost converter with MPPT operation fails under low load resistance connection.Keywords: boost converter, incremental conductance (Inc-Cond), MPPT, solar panel
Procedia PDF Downloads 10465163 Analysing the Variables That Affect Digital Game-Based L2 Vocabulary Learning
Authors: Jose Ramon Calvo-Ferrer
Abstract:
Video games have been extensively employed in educational contexts to teach contents and skills, upon the premise that they engage students and provide instant feedback, which makes them adequate tools in the field of education and training. Term frequency, along with metacognition and implicit corrective feedback, has often been identified as powerful variables in the learning of vocabulary in a foreign language. This study analyses the learning of L2 mobile operating system terminology by a group of students and uses the data collected by the video game The Conference Interpreter to identify the predictive strength of term frequency (times a term is shown), positive metacognition (times a right answer is provided), and negative metacognition (times a term is shown as wrong) regarding L2 vocabulary learning and perceived learning outcomes. The regression analysis shows that the factor ‘positive metacognition’ is a positive predictor of both dependent variables, whereas the other factors seem to have no statistical effect on any of them.Keywords: digital game-based learning, feedback, metacognition, frequency, video games
Procedia PDF Downloads 1565162 Another Beautiful Sounds: Building the Memory of Sound of Peddling in Beijing with Digital Technology
Authors: Dan Wang, Qing Ma, Xiaodan Wang, Tianjiao Qi
Abstract:
The sound of peddling in Beijing, also called “yo-heave-ho” or “cry of one's ware”, is a unique folk culture and usually found in Beijing hutong. For the civilians in Beijing, sound of peddling is part of their childhood. And for those who love the traditional culture of Beijing, it is an old song singing the local conditions and customs of the ancient city. For example, because of his great appreciation, the British poet Osbert Stewart once put sound of peddling which he had heard in Beijing as a street orchestra performance in the article named "Beijing's sound and color".This research aims to collect and integrate the voice/photo resources and historical materials of sound concerning peddling in Beijing by digital technology in order to protect the intangible cultural heritage and pass on the city memory. With the goal in mind, the next stage is to collect and record all the materials and resources based on the historical documents study and interviews with civilians or performers. Then set up a metadata scheme (which refers to the domestic and international standards such as "Audio Data Processing Standards in the National Library", DC, VRA, and CDWA, etc.) to describe, process and organize the sound of peddling into a database. In order to fully show the traditional culture of sound of peddling in Beijing, web design and GIS technology are utilized to establish a website and plan holding offline exhibitions and events for people to simulate and learn the sound of peddling by using VR/AR technology. All resources are opened to the public and civilians can share the digital memory through not only the offline experiential activities, but also the online interaction. With all the attempts, a multi-media narrative platform has been established to multi-dimensionally record the sound of peddling in old Beijing with text, images, audio, video and so on.Keywords: sound of peddling, GIS, metadata scheme, VR/AR technology
Procedia PDF Downloads 3045161 Troubleshooting Petroleum Equipment Based on Wireless Sensors Based on Bayesian Algorithm
Authors: Vahid Bayrami Rad
Abstract:
In this research, common methods and techniques have been investigated with a focus on intelligent fault finding and monitoring systems in the oil industry. In fact, remote and intelligent control methods are considered a necessity for implementing various operations in the oil industry, but benefiting from the knowledge extracted from countless data generated with the help of data mining algorithms. It is a avoid way to speed up the operational process for monitoring and troubleshooting in today's big oil companies. Therefore, by comparing data mining algorithms and checking the efficiency and structure and how these algorithms respond in different conditions, The proposed (Bayesian) algorithm using data clustering and their analysis and data evaluation using a colored Petri net has provided an applicable and dynamic model from the point of view of reliability and response time. Therefore, by using this method, it is possible to achieve a dynamic and consistent model of the remote control system and prevent the occurrence of leakage in oil pipelines and refineries and reduce costs and human and financial errors. Statistical data The data obtained from the evaluation process shows an increase in reliability, availability and high speed compared to other previous methods in this proposed method.Keywords: wireless sensors, petroleum equipment troubleshooting, Bayesian algorithm, colored Petri net, rapid miner, data mining-reliability
Procedia PDF Downloads 665160 Breast Cancer Risk is Predicted Using Fuzzy Logic in MATLAB Environment
Authors: S. Valarmathi, P. B. Harathi, R. Sridhar, S. Balasubramanian
Abstract:
Machine learning tools in medical diagnosis is increasing due to the improved effectiveness of classification and recognition systems to help medical experts in diagnosing breast cancer. In this study, ID3 chooses the splitting attribute with the highest gain in information, where gain is defined as the difference between before the split versus after the split. It is applied for age, location, taluk, stage, year, period, martial status, treatment, heredity, sex, and habitat against Very Serious (VS), Very Serious Moderate (VSM), Serious (S) and Not Serious (NS) to calculate the gain of information. The ranked histogram gives the gain of each field for the breast cancer data. The doctors use TNM staging which will decide the risk level of the breast cancer and play an important decision making field in fuzzy logic for perception based measurement. Spatial risk area (taluk) of the breast cancer is calculated. Result clearly states that Coimbatore (North and South) was found to be risk region to the breast cancer than other areas at 20% criteria. Weighted value of taluk was compared with criterion value and integrated with Map Object to visualize the results. ID3 algorithm shows the high breast cancer risk regions in the study area. The study has outlined, discussed and resolved the algorithms, techniques / methods adopted through soft computing methodology like ID3 algorithm for prognostic decision making in the seriousness of the breast cancer.Keywords: ID3 algorithm, breast cancer, fuzzy logic, MATLAB
Procedia PDF Downloads 5195159 Graphical User Interface for Presting Matlab Work for Reduction of Chromatic Disperion Using Digital Signal Processing for Optical Communication
Authors: Muhammad Faiz Liew Abdullah, Bhagwan Das, Nor Shahida, Abdul Fattah Chandio
Abstract:
This study presents the designed features of Graphical User Interface (GUI) for chromatic dispersion (CD) reduction using digital signal processing (DSP) techniques. GUI is specially designed for windows platform. The obtained simulation results from matlab are presented via this GUI. After importing results from matlab in GUI, It will present your work on any windows7 and onwards versions platforms without matlab software. First part of the GUI contains the research methodology block diagram and in the second part, output for each stage is shown in separate reserved area for the result display. Each stage of methodology has the captions to display the results. This GUI will be very helpful during presentations instead of making slides this GUI will present all your work easily in the absence of other software’s such as Matlab, Labview, MS PowerPoint. GUI is designed using C programming in MS Visio Studio.Keywords: Matlab simulation results, C programming, MS VISIO studio, chromatic dispersion
Procedia PDF Downloads 4625158 Urinary Exosome miR-30c-5p as a Biomarker for Early-Stage Clear Cell Renal Cell Carcinoma
Authors: Shangqing Song, Bin Xu, Yajun Cheng, Zhong Wang
Abstract:
miRNAs derived from exosomes exist in a body fluid such as urine were regarded as potential biomarkers for various human cancers diagnosis and prognosis, as mature miRNAs can be steadily preserved by exosomes. However, its potential value in clear cell renal cell carcinoma (ccRCC) diagnosis and prognosis remains unclear. In the present study, differentially expressed miRNAs from urinal exosomes were identified by next-generation sequencing (NGS) technology. The 16 differentially expressed miRNAs were identified between ccRCC patients and healthy donors. To explore the specific diagnosis biomarker of ccRCC, we validated these urinary exosomes from 70 early-stage renal cancer patients, 30 healthy people and other urinary system cancers, including 30 early-stage prostate cancer patients and 30 early-stage bladder cancer patients by qRT-PCR. The results showed that urinary exosome miR-30c-5p could be stably amplified and meanwhile the expression of miR-30c-5p has no significant difference between other urinary system cancers and healthy control, however, expression level of miR-30c-5p in urinary exosomal of ccRCC patients was lower than healthy people and receiver operation characterization (ROC) curve showed that the area under the curve (AUC) values was 0.8192 (95% confidence interval was 0.7388-0.8996, P= 0.0000). In addition, up-regulating miR-30c-5p expression could inhibit renal cell carcinoma cells growth. Lastly, HSP5A was found as a direct target gene of miR-30c-5p. HSP5A depletion reversed the promoting effect of ccRCC growth casued by miR-30c-5p inhibitor, respectively. In conclusion, this study demonstrated that urinary exosomal miR-30c-5p is readily accessible as diagnosis biomarker of early-stage ccRCC, and miR-30c-5p might modulate the expression of HSPA5, which correlated with the progression of ccRCC.Keywords: clear cell renal cell carcinoma, exosome, HSP5A, miR-30c-5p
Procedia PDF Downloads 2675157 Clinical Efficacy of Indigenous Software for Automatic Detection of Stages of Retinopathy of Prematurity (ROP)
Authors: Joshi Manisha, Shivaram, Anand Vinekar, Tanya Susan Mathews, Yeshaswini Nagaraj
Abstract:
Retinopathy of prematurity (ROP) is abnormal blood vessel development in the retina of the eye in a premature infant. The principal object of the invention is to provide a technique for detecting demarcation line and ridge detection for a given ROP image that facilitates early detection of ROP in stage 1 and stage 2. The demarcation line is an indicator of Stage 1 of the ROP and the ridge is the hallmark of typically Stage 2 ROP. Thirty Retcam images of Asian Indian infants obtained during routine ROP screening have been used for the analysis. A graphical user interface has been developed to detect demarcation line/ridge and to extract ground truth. This novel algorithm uses multilevel vessel enhancement to enhance tubular structures in the digital ROP images. It has been observed that the orientation of the demarcation line/ridge is normal to the direction of the blood vessels, which is used for the identification of the ridge/ demarcation line. Quantitative analysis has been presented based on gold standard images marked by expert ophthalmologist. Image based analysis has been based on the length and the position of the detected ridge. In image based evaluation, average sensitivity and positive predictive value was found to be 92.30% and 85.71% respectively. In pixel based evaluation, average sensitivity, specificity, positive predictive value and negative predictive value achieved were 60.38%, 99.66%, 52.77% and 99.75% respectively.Keywords: ROP, ridge, multilevel vessel enhancement, biomedical
Procedia PDF Downloads 4115156 Particle Filter Supported with the Neural Network for Aircraft Tracking Based on Kernel and Active Contour
Authors: Mohammad Izadkhah, Mojtaba Hoseini, Alireza Khalili Tehrani
Abstract:
In this paper we presented a new method for tracking flying targets in color video sequences based on contour and kernel. The aim of this work is to overcome the problem of losing target in changing light, large displacement, changing speed, and occlusion. The proposed method is made in three steps, estimate the target location by particle filter, segmentation target region using neural network and find the exact contours by greedy snake algorithm. In the proposed method we have used both region and contour information to create target candidate model and this model is dynamically updated during tracking. To avoid the accumulation of errors when updating, target region given to a perceptron neural network to separate the target from background. Then its output used for exact calculation of size and center of the target. Also it is used as the initial contour for the greedy snake algorithm to find the exact target's edge. The proposed algorithm has been tested on a database which contains a lot of challenges such as high speed and agility of aircrafts, background clutter, occlusions, camera movement, and so on. The experimental results show that the use of neural network increases the accuracy of tracking and segmentation.Keywords: video tracking, particle filter, greedy snake, neural network
Procedia PDF Downloads 3435155 Neural Network Based Fluctuation Frequency Control in PV-Diesel Hybrid Power System
Authors: Heri Suryoatmojo, Adi Kurniawan, Feby A. Pamuji, Nursalim, Syaffaruddin, Herbert Innah
Abstract:
Photovoltaic (PV) system hybrid with diesel system is utilized widely for electrification in remote area. PV output power fluctuates due to uncertainty condition of temperature and sun irradiance. When the penetration of PV power is large, the reliability of the power utility will be disturbed and seriously impact the unstable frequency of system. Therefore, designing a robust frequency controller in PV-diesel hybrid power system is very important. This paper proposes new method of frequency control application in hybrid PV-diesel system based on artificial neural network (ANN). This method can minimize the frequency deviation without smoothing PV output power that controlled by maximum power point tracking (MPPT) method. The neural network algorithm controller considers average irradiance, change of irradiance and frequency deviation. In order the show the effectiveness of proposed algorithm, the addition of battery as energy storage system is also presented. To validate the proposed method, the results of proposed system are compared with the results of similar system using MPPT only. The simulation results show that the proposed method able to suppress frequency deviation smaller compared to the results of system using MPPT only.Keywords: energy storage system, frequency deviation, hybrid power generation, neural network algorithm
Procedia PDF Downloads 5035154 Optimal Design of Submersible Permanent Magnet Linear Synchronous Motor Based Design of Experiment and Genetic Algorithm
Authors: Xiao Zhang, Wensheng Xiao, Junguo Cui, Hongmin Wang
Abstract:
Submersible permanent magnet linear synchronous motors (SPMLSMs) are electromagnetic devices, which can directly drive plunger pump to obtain the crude oil. Those motors have been gradually applied in oil fields due to high thrust force density and high efficiency. Since the force performance closely depends on the concrete structural parameters, the seven different structural parameters are investigated in detail. This paper presents an optimum design of an SPMLSM to minimize the detent force and maximize the thrust by using design of experiment (DOE) and genetic algorithm (GA). The three significant structural parameters (air-gap length, slot width, pole-arc coefficient) are separately screened using 27 1/16 fractional factorial design (FFD) to investigate the significant effect of seven parameters used in this research on the force performance. Response surface methodology (RSM) is well adapted to make analytical model of thrust and detent force with constraints of corresponding significant parameters and enable objective function to be easily created, respectively. GA is performed as a searching tool to search for the Pareto-optimal solutions. By finite element analysis, the proposed PMLSM shows merits in improving thrust and reducing the detent force dramatically.Keywords: optimization, force performance, design of experiment (DOE), genetic algorithm (GA)
Procedia PDF Downloads 2905153 Understanding the Impact of Ephemerality and Mobility on Social Media News: A Content Analysis of News on Snapchat
Authors: Chelsea Peterson-Salahuddin
Abstract:
Over the past decade, news outlets have increasingly used social media as a means to create and distribute news content to audiences. Ephemerality, the transitory nature of media, and mobility, media viewing on mobile technologies, are two increasingly salient attributes of social media content; yet little is known about how these features influence news selection practices of news outlets when distributing news via social media. To account for this gap, this study examines the influences of ephemerality and mobility on social media news content on the social media application Snapchat, in order to understand how these qualities of digital media influence and shape news content. Findings from this study suggest that understandings of ephemerality and mobility play a key role in influencing social media news. This paper suggests that as these factors become increasingly salient in our dominant news viewing environments, being able to understand how they manifest themselves in online news reporting practices is critical for both scholars and practitioners of news as they aim to understand what 'newsworthiness' means in the current, digital age. Findings from this study also enhance our current understandings of how the technological affordances of online and digital media platforms play a key role in shaping the kinds being produced and what information is being prioritized and highlighted in our contemporary news media environment. This is especially important in our current era where new mediums and technologies for news dissemination are continuously arising, and reorienting our understandings of what is considered ‘news'. As a key site of mass communication, discourse, and stories highlighted in the news do critical work in defining culture and ideology. Thus, better understanding the contours of news in our contemporary moment is critical in understanding cultural norms and meaning-making.Keywords: content analysis, ephemerality, mobile communication, social media news
Procedia PDF Downloads 1365152 Dissecting Big Trajectory Data to Analyse Road Network Travel Efficiency
Authors: Rania Alshikhe, Vinita Jindal
Abstract:
Digital innovation has played a crucial role in managing smart transportation. For this, big trajectory data collected from traveling vehicles, such as taxis through installed global positioning system (GPS)-enabled devices can be utilized. It offers an unprecedented opportunity to trace the movements of vehicles in fine spatiotemporal granularity. This paper aims to explore big trajectory data to measure the travel efficiency of road networks using the proposed statistical travel efficiency measure (STEM) across an entire city. Further, it identifies the cause of low travel efficiency by proposed least square approximation network-based causality exploration (LANCE). Finally, the resulting data analysis reveals the causes of low travel efficiency, along with the road segments that need to be optimized to improve the traffic conditions and thus minimize the average travel time from given point A to point B in the road network. Obtained results show that our proposed approach outperforms the baseline algorithms for measuring the travel efficiency of the road network.Keywords: GPS trajectory, road network, taxi trips, digital map, big data, STEM, LANCE
Procedia PDF Downloads 1575151 Wind Power Forecasting Using Echo State Networks Optimized by Big Bang-Big Crunch Algorithm
Authors: Amir Hossein Hejazi, Nima Amjady
Abstract:
In recent years, due to environmental issues traditional energy sources had been replaced by renewable ones. Wind energy as the fastest growing renewable energy shares a considerable percent of energy in power electricity markets. With this fast growth of wind energy worldwide, owners and operators of wind farms, transmission system operators, and energy traders need reliable and secure forecasts of wind energy production. In this paper, a new forecasting strategy is proposed for short-term wind power prediction based on Echo State Networks (ESN). The forecast engine utilizes state-of-the-art training process including dynamical reservoir with high capability to learn complex dynamics of wind power or wind vector signals. The study becomes more interesting by incorporating prediction of wind direction into forecast strategy. The Big Bang-Big Crunch (BB-BC) evolutionary optimization algorithm is adopted for adjusting free parameters of ESN-based forecaster. The proposed method is tested by real-world hourly data to show the efficiency of the forecasting engine for prediction of both wind vector and wind power output of aggregated wind power production.Keywords: wind power forecasting, echo state network, big bang-big crunch, evolutionary optimization algorithm
Procedia PDF Downloads 5725150 Filtering Intrusion Detection Alarms Using Ant Clustering Approach
Authors: Ghodhbani Salah, Jemili Farah
Abstract:
With the growth of cyber attacks, information safety has become an important issue all over the world. Many firms rely on security technologies such as intrusion detection systems (IDSs) to manage information technology security risks. IDSs are considered to be the last line of defense to secure a network and play a very important role in detecting large number of attacks. However the main problem with today’s most popular commercial IDSs is generating high volume of alerts and huge number of false positives. This drawback has become the main motivation for many research papers in IDS area. Hence, in this paper we present a data mining technique to assist network administrators to analyze and reduce false positive alarms that are produced by an IDS and increase detection accuracy. Our data mining technique is unsupervised clustering method based on hybrid ANT algorithm. This algorithm discovers clusters of intruders’ behavior without prior knowledge of a possible number of classes, then we apply K-means algorithm to improve the convergence of the ANT clustering. Experimental results on real dataset show that our proposed approach is efficient with high detection rate and low false alarm rate.Keywords: intrusion detection system, alarm filtering, ANT class, ant clustering, intruders’ behaviors, false alarms
Procedia PDF Downloads 4045149 Physical Modeling of Woodwind Ancient Greek Musical Instruments: The Case of Plagiaulos
Authors: Dimitra Marini, Konstantinos Bakogiannis, Spyros Polychronopoulos, Georgios Kouroupetroglou
Abstract:
Archaemusicology cannot entirely depend on the study of the excavated ancient musical instruments as most of the time their condition is not ideal (i.e., missing/eroded parts) and moreover, because of the concern damaging the originals during the experiments. Researchers, in order to overcome the above obstacles, build replicas. This technique is still the most popular one, although it is rather expensive and time-consuming. Throughout the last decades, the development of physical modeling techniques has provided tools that enable the study of musical instruments through their digitally simulated models. This is not only a more cost and time-efficient technique but also provides additional flexibility as the user can easily modify parameters such as their geometrical features and materials. This paper thoroughly describes the steps to create a physical model of a woodwind ancient Greek instrument, Plagiaulos. This instrument could be considered as the ancestor of the modern flute due to the common geometry and air-jet excitation mechanism. Plagiaulos is comprised of a single resonator with an open end and a number of tone holes. The combination of closed and open tone holes produces the pitch variations. In this work, the effects of all the instrument’s components are described by means of physics and then simulated based on digital waveguides. The synthesized sound of the proposed model complies with the theory, highlighting its validity. Further, the synthesized sound of the model simulating the Plagiaulos of Koile (2nd century BCE) was compared with its replica build in our laboratory by following the scientific methodologies of archeomusicology. The aforementioned results verify that robust dynamic digital tools can be introduced in the field of computational, experimental archaemusicology.Keywords: archaeomusicology, digital waveguides, musical acoustics, physical modeling
Procedia PDF Downloads 1135148 Filmmaking with a Smartphone and National Cinema of Pakistan
Authors: Ahmad Bilal
Abstract:
Digital and convergent media can be helpful in terms of acquiring film production skills and knowledge, and it has also reduced the cost of production. Thus, allowing filmmakers greater opportunities and access to the medium of film. Both these dimensions of new and convergent media have been challenging the established cinema of Pakistan, as traditionally, it has been controlled by the authorities through censorship policies. The use of the smartphone as a movie camera, editing machine, and a transmitter can further challenge the control in a postcolonial society. To explore the impact of new and convergent media on the art of filmmaking, a film 'Sohni Dharti: An untrue story' is produced. It is shot both on a smartphone and a Digital Single Lens Reflex Camera (DSLR), with almost zero budgets. It is distributed through Vimeo from Pakistan. This process reveals how the technologies that are available today, and the increased knowledge of film production that they bring, allow a more inclusive experience of the film production and distribution. At the same time, however, it also discloses the limitations that accompany new technologies within the context of a postcolonial society. This paper will investigate the role of technology to bring filmmaking at a level of pencil and paper.Keywords: convergent media, filmmaking, smartphone, Pakistan
Procedia PDF Downloads 2825147 Design of an Augmented Automatic Choosing Control with Constrained Input by Lyapunov Functions Using Gradient Optimization Automatic Choosing Functions
Authors: Toshinori Nawata
Abstract:
In this paper a nonlinear feedback control called augmented automatic choosing control (AACC) for a class of nonlinear systems with constrained input is presented. When designing the control, a constant term which arises from linearization of a given nonlinear system is treated as a coefficient of a stable zero dynamics. Parameters of the control are suboptimally selected by maximizing the stable region in the sense of Lyapunov with the aid of a genetic algorithm. This approach is applied to a field excitation control problem of power system to demonstrate the splendidness of the AACC. Simulation results show that the new controller can improve performance remarkably well.Keywords: augmented automatic choosing control, nonlinear control, genetic algorithm, zero dynamics
Procedia PDF Downloads 4785146 Digitalization, Supply Chain Integration and Financial Performance: Case of Tunisian Agro-industrial Sector
Authors: Rym Ghariani, Younes Boujelbene
Abstract:
In contemporary times, global technological advancements, particularly those in the realm of digital technology, have emerged as pivotal instruments for enterprises in fostering viable partnerships and forging meaningful alliances with other firms. The advent of these digital innovations is poised to revolutionize nearly every facet and operation within corporate entities. The primary objective of this study is to explore the correlation between digitization, integration of supply chains, and the financial efficacy of the agro-industrial sector in Tunisia. To accomplish this, data collection employed a questionnaire as the primary research instrument. Subsequently, the research queries were addressed, and hypotheses were examined by subjecting the gathered data to principal component analysis and linear regression modeling, facilitated by the utilization of SPSS26 software. The findings revealed that digitalization within the supply chain, along with external supply chain integration, exerted discernible impacts on the financial performance of the organization.Keywords: digitalization, supply chain integration, financial performance, Tunisian agro-industrial sector
Procedia PDF Downloads 495145 Automatic Threshold Search for Heat Map Based Feature Selection: A Cancer Dataset Analysis
Authors: Carlos Huertas, Reyes Juarez-Ramirez
Abstract:
Public health is one of the most critical issues today; therefore, there is great interest to improve technologies in the area of diseases detection. With machine learning and feature selection, it has been possible to aid the diagnosis of several diseases such as cancer. In this work, we present an extension to the Heat Map Based Feature Selection algorithm, this modification allows automatic threshold parameter selection that helps to improve the generalization performance of high dimensional data such as mass spectrometry. We have performed a comparison analysis using multiple cancer datasets and compare against the well known Recursive Feature Elimination algorithm and our original proposal, the results show improved classification performance that is very competitive against current techniques.Keywords: biomarker discovery, cancer, feature selection, mass spectrometry
Procedia PDF Downloads 3395144 Impact of Instructional Designing in Digital Game-Based Learning for Enhancing Students' Motivation
Authors: Shafaq Rubab
Abstract:
The primary reason for dropping out of school is associated with students’ lack of motivation in class, especially in mathematics. Digital game-based learning is an approach that is being actively explored; there are very few learning games based on proven instructional design models or frameworks due to which the effectiveness of the learning games suffers. The purpose of this research was twofold: first, developing an appropriate instructional design model and second, evaluating the impact of the instructional design model on students’ motivation. This research contributes significantly to the existing literature in terms of student motivation and the impact of instructional design model in digital game-based learning. The sample size for this study consists of two hundred out-of-school students between the age of 6 and 12 years. The research methodology used for this research was a quasi-experimental approach and data was analyzed by using the instructional material motivational survey questionnaire which is adapted from the Keller Arcs model. Control and experimental groups consisting of two hundred students were analyzed by utilizing instructional material motivational survey (IMMS), and comparison of result from both groups showed the difference in the level of motivation of the students. The result of the research showed that the motivational level of student in the experimental group who were taught by the game was higher than the student in control group (taught by conventional methodology). The mean score of the experimental group against all subscales (attention, relevance, confidence, and satisfaction) of IMMS survey was higher; however, no statistical significance was found between the motivational scores of control and experimental group. The positive impact of game-based learning on students’ level of motivation, as measured in this study, strengthens the case for the use of pedagogically sound instructional design models in the design of interactive learning applications. In addition, the present study suggests learning from interactive, immersive applications as an alternative solution for children, especially in Third World countries, who, for various reasons, do not attend school. The mean score of experimental group against all subscales of IMMS survey was higher; however, no statistical significance was found between motivational scores of control and experimental group.Keywords: digital game-based learning, students’ motivation, and instructional designing, instructional material motivational survey
Procedia PDF Downloads 4215143 Task Scheduling on Parallel System Using Genetic Algorithm
Authors: Jasbir Singh Gill, Baljit Singh
Abstract:
Scheduling and mapping the application task graph on multiprocessor parallel systems is considered as the most crucial and critical NP-complete problem. Many genetic algorithms have been proposed to solve such problems. In this paper, two genetic approach based algorithms have been designed and developed with or without task duplication. The proposed algorithms work on two fitness functions. The first fitness i.e. task fitness is used to minimize the total finish time of the schedule (schedule length) while the second fitness function i.e. process fitness is concerned with allocating the tasks to the available highly efficient processor from the list of available processors (load balance). Proposed genetic-based algorithms have been experimentally implemented and evaluated with other state-of-art popular and widely used algorithms.Keywords: parallel computing, task scheduling, task duplication, genetic algorithm
Procedia PDF Downloads 3495142 Fuzzy Time Series Forecasting Based on Fuzzy Logical Relationships, PSO Technique, and Automatic Clustering Algorithm
Authors: A. K. M. Kamrul Islam, Abdelhamid Bouchachia, Suang Cang, Hongnian Yu
Abstract:
Forecasting model has a great impact in terms of prediction and continues to do so into the future. Although many forecasting models have been studied in recent years, most researchers focus on different forecasting methods based on fuzzy time series to solve forecasting problems. The forecasted models accuracy fully depends on the two terms that are the length of the interval in the universe of discourse and the content of the forecast rules. Moreover, a hybrid forecasting method can be an effective and efficient way to improve forecasts rather than an individual forecasting model. There are different hybrids forecasting models which combined fuzzy time series with evolutionary algorithms, but the performances are not quite satisfactory. In this paper, we proposed a hybrid forecasting model which deals with the first order as well as high order fuzzy time series and particle swarm optimization to improve the forecasted accuracy. The proposed method used the historical enrollments of the University of Alabama as dataset in the forecasting process. Firstly, we considered an automatic clustering algorithm to calculate the appropriate interval for the historical enrollments. Then particle swarm optimization and fuzzy time series are combined that shows better forecasting accuracy than other existing forecasting models.Keywords: fuzzy time series (fts), particle swarm optimization, clustering algorithm, hybrid forecasting model
Procedia PDF Downloads 2505141 Palyno-Morphological Characteristics of Gymnosperm Flora of Pakistan and Its Taxonomic Implications with Light Microscope and Scanning Electron Microscopy Methods
Authors: Raees Khan, Sheikh Z. Ul Abidin, Abdul S. Mumtaz, Jie Liu
Abstract:
The present study is intended to assess gymnosperms pollen flora of Pakistan using Light Microscope (LM) and Scanning Electron Microscopy (SEM) for its taxonomic significance in identification of gymnosperms. Pollens of 35 gymnosperm species (12 genera and five families) were collected from its various distributional sites of gymnosperms in Pakistan. LM and SEM were used to investigate different palyno-morphological characteristics. Five pollen types (i.e., Inaperturate, Monolete, Monoporate, Vesiculate-bisaccate, and Polyplicate) were observed. In equatorial view seven types of pollens were observed, in which ten species were sub-angular, nine species were triangular, six species were perprolate, three species were rhomboidal, three species were semi-angular, two species were rectangular and two species were prolate. While five types of pollen were observed in polar view, in which ten species were spheroidal, nine species were angular, eight were interlobate, six species were circular, and two species were elliptic. Eighteen species have rugulate and 17 species has faveolate ornamentation. Eighteen species have verrucate and 17 have gemmate type sculpturing. The data was analysed through cluster analysis. The study showed that these palyno-morphological features have significance value in classification and identification of gymnosperms. Based on these different palyno-morphological features, a taxonomic key was proposed for the accurate and fast identifications of gymnosperms from Pakistan.Keywords: gymnosperms, palynology, Pakistan, taxonomy
Procedia PDF Downloads 2215140 Disrupted or Discounted Cash Flow: Impact of Digitisation on Business Valuation
Authors: Matthias Haerri, Tobias Huettche, Clemens Kustner
Abstract:
This article discusses the impact of digitization on business valuation. In order to become and remain ‘digital’, investments are necessary whose return on investment (ROI) often remains vague. This uncertainty is contradictory for a valuation, that rely on predictable cash flows, fixed capital structures and the steady state. However digitisation does not make a company valuation impossible, but traditional approaches must be reconsidered. The authors identify four areas that are to be changing: (1) Tools instead of intuition - In the future, company valuation will neither be art nor science, but craft. This does not require intuition, but experience and good tools. Digital evaluation tools beyond Excel will therefore gain in importance. (2) Real-time instead of deadline - At present, company valuations are always carried out on a case-by-case basis and on a specific key date. This will change with the digitalization and the introduction of web-based valuation tools. Company valuations can thus not only be carried out faster and more efficiently, but can also be offered more frequently. Instead of calculating the value for a previous key date, current and real-time valuations can be carried out. (3) Predictive planning instead of analysis of the past - Past data will also be needed in the future, but its use will not be limited to monovalent time series or key figure analyses. With pictures of ‘black swans’ and the ‘turkey illusion’ it was made clear to us that we build forecasts on too few data points of the past and underestimate the power of chance. Predictive planning can help here. (4) Convergence instead of residual value - Digital transformation shortens the lifespan of viable business models. If companies want to live forever, they have to change forever. For the company valuation, this means that the business model valid on the valuation date only has a limited service life.Keywords: business valuation, corporate finance, digitisation, disruption
Procedia PDF Downloads 1335139 An Exploratory Study to Appraise the Current Challenges and Limitations Faced in Applying and Integrating the Historic Building Information Modelling Concept for the Management of Historic Buildings
Authors: Oluwatosin Adewale
Abstract:
The sustainability of built heritage has become a relevant issue in recent years due to the social and economic values associated with these buildings. Heritage buildings provide a means for human perception of culture and represent a legacy of long-existing history; they define the local character of the social world and provide a vital connection to the past with their associated aesthetical and communal benefits. The identified values of heritage buildings have increased the importance of conservation and the lifecycle management of these buildings. The recent developments of digital design technology in engineering and the built environment have led to the adoption of Building Information Modelling (BIM) by the Architecture, Engineering, Construction, and Operations (AECO) industry. BIM provides a platform for the lifecycle management of a construction project through effective collaboration among stakeholders and the analysis of a digital information model. This growth in digital design technology has also made its way into the field of architectural heritage management in the form of Historic Building Information Modelling (HBIM). A reverse engineering process for digital documentation of heritage assets that draws upon similar information management processes as the BIM process. However, despite the several scientific and technical contributions made to the development of the HBIM process, it doesn't remain easy to integrate at the most practical level of heritage asset management. The main objective identified under the scope of the study is to review the limitations and challenges faced by heritage management professionals in adopting an HBIM-based asset management procedure for historic building projects. This paper uses an exploratory study in the form of semi-structured interviews to investigate the research problem. A purposive sample of heritage industry experts and professionals were selected to take part in a semi-structured interview to appraise some of the limitations and challenges they have faced with the integration of HBIM into their project workflows. The findings from this study will present the challenges and limitations faced in applying and integrating the HBIM concept for the management of historic buildings.Keywords: building information modelling, built heritage, heritage asset management, historic building information modelling, lifecycle management
Procedia PDF Downloads 985138 Evaluation of Hepatic Metabolite Changes for Differentiation Between Non-Alcoholic Steatohepatitis and Simple Hepatic Steatosis Using Long Echo-Time Proton Magnetic Resonance Spectroscopy
Authors: Tae-Hoon Kim, Kwon-Ha Yoon, Hong Young Jun, Ki-Jong Kim, Young Hwan Lee, Myeung Su Lee, Keum Ha Choi, Ki Jung Yun, Eun Young Cho, Yong-Yeon Jeong, Chung-Hwan Jun
Abstract:
Purpose: To assess the changes of hepatic metabolite for differentiation between non-alcoholic steatohepatitis (NASH) and simple steatosis on proton magnetic resonance spectroscopy (1H-MRS) in both humans and animal model. Methods: The local institutional review board approved this study and subjects gave written informed consent. 1H-MRS measurements were performed on a localized voxel of the liver using a point-resolved spectroscopy (PRESS) sequence and hepatic metabolites of alanine (Ala), lactate/triglyceride (Lac/TG), and TG were analyzed in NASH, simple steatosis and control groups. The group difference was tested with the ANOVA and Tukey’s post-hoc tests, and diagnostic accuracy was tested by calculating the area under the receiver operating characteristics (ROC) curve. The associations between metabolic concentration and pathologic grades or non-alcoholic fatty liver disease(NAFLD) activity scores were assessed by the Pearson’s correlation. Results: Patient with NASH showed the elevated Ala(p<0.001), Lac/TG(p < 0.001), TG(p < 0.05) concentration when compared with patients who had simple steatosis and healthy controls. The NASH patients were higher levels in Ala(mean±SEM, 52.5±8.3 vs 2.0±0.9; p < 0.001), Lac/TG(824.0±168.2 vs 394.1±89.8; p < 0.05) than simple steatosis. The area under the ROC curve to distinguish NASH from simple steatosis was 1.00 (95% confidence interval; 1.00, 1.00) with Ala and 0.782 (95% confidence interval; 0.61, 0.96) with Lac/TG. The Ala and Lac/TG levels were well correlated with steatosis grade, lobular inflammation, and NAFLD activity scores. The metabolic changes in human were reproducible to a mice model induced by streptozotocin injection and a high-fat diet. Conclusion: 1H-MRS would be useful for differentiation of patients with NASH and simple hepatic steatosis.Keywords: non-alcoholic fatty liver disease, non-alcoholic steatohepatitis, 1H MR spectroscopy, hepatic metabolites
Procedia PDF Downloads 326