Search results for: automatic classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2912

Search results for: automatic classification

692 Construction of a Dynamic Model of Cerebral Blood Circulation for Future Integrated Control of Brain State

Authors: Tomohiko Utsuki

Abstract:

Currently, brain resuscitation becomes increasingly important due to revising various clinical guidelines pertinent to emergency care. In brain resuscitation, the control of brain temperature (BT), intracranial pressure (ICP), and cerebral blood flow (CBF) is required for stabilizing physiological state of brain, and is described as the essential treatment points in many guidelines of disorder and/or disease such as brain injury, stroke, and encephalopathy. Thus, an integrated control system of BT, ICP, and CBF will greatly contribute to alleviating the burden on medical staff and improving treatment effect in brain resuscitation. In order to develop such a control system, models related to BT, ICP, and CBF are required for control simulation, because trial and error experiments using patients are not ethically allowed. A static model of cerebral blood circulation from intracranial arteries and vertebral artery to jugular veins has already constructed and verified. However, it is impossible to represent the pooling of blood in blood vessels, which is one cause of cerebral hypertension in this model. And, it is also impossible to represent the pulsing motion of blood vessels caused by blood pressure change which can have an affect on the change of cerebral tissue pressure. Thus, a dynamic model of cerebral blood circulation is constructed in consideration of the elasticity of the blood vessel and the inertia of the blood vessel wall. The constructed dynamic model was numerically analyzed using the normal data, in which each arterial blood flow in cerebral blood circulation, the distribution of blood pressure in the Circle of Willis, and the change of blood pressure along blood flow were calculated for verifying against physiological knowledge. As the result, because each calculated numerical value falling within the generally known normal range, this model has no problem in representing at least the normal physiological state of the brain. It is the next task to verify the accuracy of the present model in the case of disease or disorder. Currently, the construction of a migration model of extracellular fluid and a model of heat transfer in cerebral tissue are in progress for making them parts of an integrated model of brain physiological state, which is necessary for developing an future integrated control system of BT, ICP and CBF. The present model is applicable to constructing the integrated model representing at least the normal condition of brain physiological state by uniting with such models.

Keywords: dynamic model, cerebral blood circulation, brain resuscitation, automatic control

Procedia PDF Downloads 153
691 Cheiloscopy: A Study on Predominant Lip Print Patterns among the Gujarati Population

Authors: Pooja Ahuja, Tejal Bhutani, M. S. Dahiya

Abstract:

Cheiloscopy, the study of lip prints, is a tool in forensic investigation technique that deals with identification of individuals based on lips patterns. The objective of this study is to determine predominant lip print pattern found among the Gujarati population, to evaluate whether any sex difference exists and to study the permanence of the pattern over six months duration. The study comprised of 100 healthy individuals (50 males and 50 females), in the age group of 18 to 25 years of Gujarati population of the Gandhinagar region of the Gujarat state, India. By using Suzuki and Tsuchihashi classification, Lip prints were then divided into four quadrants and also classified on the basis of peripheral shape of the lips. Materials used to record the lip prints were dark brown colored lipstick, cellophane tape, and white bond paper. Lipstick was applied uniformly, and lip prints were taken on the glued portion of cellophane tape and then stuck on to a white bond paper. These lip prints were analyzed with magnifying lens and virtually with stereo microscope. On the analysis of the subject population, results showed Branched pattern Type II (29.57 percentage) to be most predominant in the Gujarati population. Branched pattern Type II (35.60 percentage) and long vertical Type I (28.28 percentage) were most prevalent in males and females respectively and large full lips were most predominantly present in both the sexes. The study concludes that lip prints in any form can be an effective tool for identification of an individual in a closed or open group forms.

Keywords: cheiloscopy, lip pattern, predomianant, Gujarati population

Procedia PDF Downloads 298
690 Investor Sentiment and Satisfaction in Automated Investment: A Sentimental Analysis of Robo-Advisor Platforms

Authors: Vertika Goswami, Gargi Sharma

Abstract:

The rapid evolution of fintech has led to the rise of robo-advisor platforms that utilize artificial intelligence (AI) and machine learning to offer personalized investment solutions efficiently and cost-effectively. This research paper conducts a comprehensive sentiment analysis of investor experiences with these platforms, employing natural language processing (NLP) and sentiment classification techniques. The study investigates investor perceptions, engagement, and satisfaction, identifying key drivers of positive sentiment such as clear communication, low fees, consistent returns, and robust security. Conversely, negative sentiment is linked to issues like inconsistent performance, hidden fees, poor customer support, and a lack of transparency. The analysis reveals that addressing these pain points—through improved transparency, enhanced customer service, and ongoing technological advancements—can significantly boost investor trust and satisfaction. This paper contributes valuable insights into the fields of behavioral finance and fintech innovation, offering actionable recommendations for stakeholders, practitioners, and policymakers. Future research should explore the long-term impact of these factors on investor loyalty, the role of emerging technologies, and the effects of ethical investment choices and regulatory compliance on investor sentiment.

Keywords: artificial intelligence in finance, automated investment, financial technology, investor satisfaction, investor sentiment, robo-advisors, sentimental analysis

Procedia PDF Downloads 17
689 Review of Research on Effectiveness Evaluation of Technology Innovation Policy

Authors: Xue Wang, Li-Wei Fan

Abstract:

The technology innovation has become the driving force of social and economic development and transformation. The guidance and support of public policies is an important condition to promote the realization of technology innovation goals. Policy effectiveness evaluation is instructive in policy learning and adjustment. This paper reviews existing studies and systematically evaluates the effectiveness of policy-driven technological innovation. We used 167 articles from WOS and CNKI databases as samples to clarify the measurement of technological innovation indicators and analyze the classification and application of policy evaluation methods. In general, technology innovation input and technological output are the two main aspects of technological innovation index design, among which technological patents are the focus of research, the number of patents reflects the scale of technological innovation, and the quality of patents reflects the value of innovation from multiple aspects. As for policy evaluation methods, statistical analysis methods are applied to the formulation, selection and evaluation of the after-effect of policies to analyze the effect of policy implementation qualitatively and quantitatively. The bibliometric methods are mainly based on the public policy texts, discriminating the inter-government relationship and the multi-dimensional value of the policy. Decision analysis focuses on the establishment and measurement of the comprehensive evaluation index system of public policy. The economic analysis methods focus on the performance and output of technological innovation to test the policy effect. Finally, this paper puts forward the prospect of the future research direction.

Keywords: technology innovation, index, policy effectiveness, evaluation of policy, bibliometric analysis

Procedia PDF Downloads 70
688 Multi-Temporal Mapping of Built-up Areas Using Daytime and Nighttime Satellite Images Based on Google Earth Engine Platform

Authors: S. Hutasavi, D. Chen

Abstract:

The built-up area is a significant proxy to measure regional economic growth and reflects the Gross Provincial Product (GPP). However, an up-to-date and reliable database of built-up areas is not always available, especially in developing countries. The cloud-based geospatial analysis platform such as Google Earth Engine (GEE) provides an opportunity with accessibility and computational power for those countries to generate the built-up data. Therefore, this study aims to extract the built-up areas in Eastern Economic Corridor (EEC), Thailand using day and nighttime satellite imagery based on GEE facilities. The normalized indices were generated from Landsat 8 surface reflectance dataset, including Normalized Difference Built-up Index (NDBI), Built-up Index (BUI), and Modified Built-up Index (MBUI). These indices were applied to identify built-up areas in EEC. The result shows that MBUI performs better than BUI and NDBI, with the highest accuracy of 0.85 and Kappa of 0.82. Moreover, the overall accuracy of classification was improved from 79% to 90%, and error of total built-up area was decreased from 29% to 0.7%, after night-time light data from the Visible and Infrared Imaging Suite (VIIRS) Day Night Band (DNB). The results suggest that MBUI with night-time light imagery is appropriate for built-up area extraction and be utilize for further study of socioeconomic impacts of regional development policy over the EEC region.

Keywords: built-up area extraction, google earth engine, adaptive thresholding method, rapid mapping

Procedia PDF Downloads 125
687 Voice Liveness Detection Using Kolmogorov Arnold Networks

Authors: Arth J. Shah, Madhu R. Kamble

Abstract:

Voice biometric liveness detection is customized to certify an authentication process of the voice data presented is genuine and not a recording or synthetic voice. With the rise of deepfakes and other equivalently sophisticated spoofing generation techniques, it’s becoming challenging to ensure that the person on the other end is a live speaker or not. Voice Liveness Detection (VLD) system is a group of security measures which detect and prevent voice spoofing attacks. Motivated by the recent development of the Kolmogorov-Arnold Network (KAN) based on the Kolmogorov-Arnold theorem, we proposed KAN for the VLD task. To date, multilayer perceptron (MLP) based classifiers have been used for the classification tasks. We aim to capture not only the compositional structure of the model but also to optimize the values of univariate functions. This study explains the mathematical as well as experimental analysis of KAN for VLD tasks, thereby opening a new perspective for scientists to work on speech and signal processing-based tasks. This study emerges as a combination of traditional signal processing tasks and new deep learning models, which further proved to be a better combination for VLD tasks. The experiments are performed on the POCO and ASVSpoof 2017 V2 database. We used Constant Q-transform, Mel, and short-time Fourier transform (STFT) based front-end features and used CNN, BiLSTM, and KAN as back-end classifiers. The best accuracy is 91.26 % on the POCO database using STFT features with the KAN classifier. In the ASVSpoof 2017 V2 database, the lowest EER we obtained was 26.42 %, using CQT features and KAN as a classifier.

Keywords: Kolmogorov Arnold networks, multilayer perceptron, pop noise, voice liveness detection

Procedia PDF Downloads 39
686 Internet-Of-Things and Ergonomics, Increasing Productivity and Reducing Waste: A Case Study

Authors: V. Jaime Contreras, S. Iliana Nunez, S. Mario Sanchez

Abstract:

Inside a manufacturing facility, we can find innumerable automatic and manual operations, all of which are relevant to the production process. Some of these processes add more value to the products more than others. Manual operations tend to add value to the product since they can be found in the final assembly area o final operations of the process. In this areas, where a mistake or accident can increase the cost of waste exponentially. To reduce or mitigate these costly mistakes, one approach is to rely on automation to eliminate the operator from the production line - requires a hefty investment and development of specialized machinery. In our approach, the center of the solution is the operator through sufficient and adequate instrumentation, real-time reporting and ergonomics. Efficiency and reduced cycle time can be achieved thorough the integration of Internet-of-Things (IoT) ready technologies into assembly operations to enhance the ergonomics of the workstations. Augmented reality visual aids, RFID triggered personalized workstation dimensions and real-time data transfer and reporting can help achieve these goals. In this case study, a standard work cell will be used for real-life data acquisition and a simulation software to extend the data points beyond the test cycle. Three comparison scenarios will run in the work cell. Each scenario will introduce a dimension of the ergonomics to measure its impact independently. Furthermore, the separate test will determine the limitations of the technology and provide a reference for operating costs and investment required. With the ability, to monitor costs, productivity, cycle time and scrap/waste in real-time the ROI (return on investment) can be determined at the different levels to integration. This case study will help to show that ergonomics in the assembly lines can make significant impact when IoT technologies are introduced. Ergonomics can effectively reduce waste and increase productivity with minimal investment if compared with setting up to custom machine.

Keywords: augmented reality visual aids, ergonomics, real-time data acquisition and reporting, RFID triggered workstation dimensions

Procedia PDF Downloads 214
685 Comparative Study on the Effect of Compaction Energy and Moisture Content on the Strength Properties of Lateritic Soil

Authors: Ahmad Idris, O.A. Uche, Ado Y Abdulfatah

Abstract:

Lateritic soils are found in abundance and are the most common types of soils used in construction of roads and embankments in Nigeria. Strength properties of the soils depend on the amount of compaction applied and the amount of water available in the soil at the time of compaction. In this study, the influence of the compactive effort and that of the amount of water in the soil in the determination of the shear strength properties of lateritic soil was investigated. Lateritic soil sample was collected from an existing borrow pit in Kano, Nigeria and its basic characteristics were determined and the soil was classified according to AASHTO classification method. The soil was then compacted under various compactive efforts and at wide range of moisture contents. The maximum dry density (MDD) and optimum moisture content (OMC) at each compactive effort was determined. Unconfined undrained triaxial test was carried out to determine the shear strength properties of the soil under various conditions of moisture and energy. Preliminary results obtained indicated that the soil is an A-7-5 soil. The final results obtained shows that as the compaction energy is increased, both the cohesion and friction angle increased irrespective of the moisture content used in the compaction. However, when the amount of water in the soil was increased and compaction effort kept constant, only the cohesion of the soil increases while the friction angle shows no any pattern of variation. It was also found that the highest values for cohesion and friction angle were obtained when the soil was compacted at the highest energy and at OMC.

Keywords: laterite, OMC, compaction energy, moisture content

Procedia PDF Downloads 407
684 Preliminary Analysis on Land Use-Land Cover Assessment of Post-Earthquake Geohazard: A Case Study in Kundasang, Sabah

Authors: Nur Afiqah Mohd Kamal, Khamarrul Azahari Razak

Abstract:

The earthquake aftermath has become a major concern, especially in high seismicity region. In Kundasang, Sabah, the earthquake on 5th June 2015 resulted in several catastrophes; landslides, rockfalls, mudflows and major slopes affected regardless of the series of the aftershocks. Certainly, the consequences of earthquake generate and induce the episodic disaster, not only life-threatening but it also affects infrastructure and economic development. Therefore, a need for investigating the change in land use and land cover (LULC) of post-earthquake geohazard is essential for identifying the extent of disastrous effects towards the development in Kundasang. With the advancement of remote sensing technology, post-earthquake geohazards (landslides, mudflows, rockfalls, debris flows) assessment can be evaluated by the employment of object-based image analysis in investigating the LULC change which consists of settlements, public infrastructure and vegetation cover. Therefore, this paper discusses the preliminary results on post-earthquakes geohazards distribution in Kundasang and evaluates the LULC classification effect upon the occurrences of geohazards event. The result of this preliminary analysis will provide an overview to determine the extent of geohazard impact on LULC. This research also provides beneficial input to the local authority in Kundasang about the risk of future structural development on the geohazard area.

Keywords: geohazard, land use land cover, object-based image analysis, remote sensing

Procedia PDF Downloads 245
683 The Formulation of R&D Strategy for Biofuel Technology: A Case Study of the Aviation Industry in Iran

Authors: Maryam Amiri, Ali Rajabzade, Gholam Reza Goudarzi, Reza Heidari

Abstract:

Growth of technology and environmental changes are so fast and therefore, companies and industries have much tendency to do activities of R&D for active participation in the market and achievement to a competitive advantages. Aviation industry and its subdivisions have high level technology and play a special role in economic and social development of countries. So, in the aviation industry for getting new technologies and competing with other countries aviation industry, there is a requirement for capability in R&D. Considering of appropriate R&D strategy is supportive that day technologies of the world can be achieved. Biofuel technology is one of the newest technologies that has allocated discussion of the world in aviation industry to itself. The purpose of this research has been formulation of R&D strategy of biofuel technology in aviation industry of Iran. After reviewing of the theoretical foundations of the methods and R&D strategies, finally we classified R&D strategies in four main categories as follows: internal R&D, collaboration R&D, out sourcing R&D and in-house R&D. After a review of R&D strategies, a model for formulation of R&D strategy with the aim of developing biofuel technology in aviation industry in Iran was offered. With regard to the requirements and aracteristics of industry and technology in the model, we presented an integrated approach to R&D. Based on the techniques of decision making and analyzing of structured expert opinion, 4 R&D strategies for different scenarios and with the aim of developing biofuel technology in aviation industry in Iran were recommended. In this research, based on the common features of the implementation process of R&D, a logical classification of these methods are presented as R&D strategies. Then, R&D strategies and their characteristics was developed according to the experts. In the end, we introduced a model to consider the role of aviation industry and biofuel technology in R&D strategies. And lastly, for conditions and various scenarios of the aviation industry, we have formulated a specific R&D strategy.

Keywords: aviation industry, biofuel technology, R&D, R&D strategy

Procedia PDF Downloads 579
682 Simulation of Glass Breakage Using Voronoi Random Field Tessellations

Authors: Michael A. Kraus, Navid Pourmoghaddam, Martin Botz, Jens Schneider, Geralt Siebert

Abstract:

Fragmentation analysis of tempered glass gives insight into the quality of the tempering process and defines a certain degree of safety as well. Different standard such as the European EN 12150-1 or the American ASTM C 1048/CPSC 16 CFR 1201 define a minimum number of fragments required for soda-lime safety glass on the basis of fragmentation test results for classification. This work presents an approach for the glass breakage pattern prediction using a Voronoi Tesselation over Random Fields. The random Voronoi tessellation is trained with and validated against data from several breakage patterns. The fragments in observation areas of 50 mm x 50 mm were used for training and validation. All glass specimen used in this study were commercially available soda-lime glasses at three different thicknesses levels of 4 mm, 8 mm and 12 mm. The results of this work form a Bayesian framework for the training and prediction of breakage patterns of tempered soda-lime glass using a Voronoi Random Field Tesselation. Uncertainties occurring in this process can be well quantified, and several statistical measures of the pattern can be preservation with this method. Within this work it was found, that different Random Fields as basis for the Voronoi Tesselation lead to differently well fitted statistical properties of the glass breakage patterns. As the methodology is derived and kept general, the framework could be also applied to other random tesselations and crack pattern modelling purposes.

Keywords: glass breakage predicition, Voronoi Random Field Tessellation, fragmentation analysis, Bayesian parameter identification

Procedia PDF Downloads 160
681 Developing Reading Methods of Industrial Education Students at King Mongkut’s Institute of Technology Ladkrabang

Authors: Rattana Sangchan, Pattaraporn Thampradit

Abstract:

Teaching students to use a variety of reading methods in developing reading is essential for Thai university students. However, there haven’t been a lot of studies concerned about developing reading methods that are used by Thai students in the industrial education field. Therefore, this study was carried out not only to investigate the developing reading methods of Industrial Education students at King Mongkut’s Institute of Technology Ladkrabang, but also to determine if the developing reading strategies differ among the students’ reading abilities and differ gender: male and female. The research instrument used in collecting the data consisted of fourteen statements which include either metacognitive strategies, cognitive strategies or social / affective strategies. Results of this study revealed that students could develop their reading methods in moderate level (mean=3.13). Furthermore, high reading ability students had different levels of using reading methods to develop their reading from those of mid reading ability students. In addition, high reading ability students could use either metacognitive reading methods or cognitive reading methods to develop their reading much better than mid reading ability students. Interestingly, male students could develop their reading methods in great levels while female students could develop their reading methods only in moderate level. Last but not least, male students could use either metacognitive reading methods or cognitive reading methods to develop their reading much better than female students. Thus, the results of this study could indicate that most students need to apply much more reading strategies to develop their reading. At the same time, suggestions on how to motivate and train their students to apply much more appropriate effective reading strategies to better comprehend their reading were also provided.

Keywords: developing reading methods, industrial education, reading abilities, reading method classification

Procedia PDF Downloads 285
680 Nanoparticle-Based Histidine-Rich Protein-2 Assay for the Detection of the Malaria Parasite Plasmodium Falciparum

Authors: Yagahira E. Castro-Sesquen, Chloe Kim, Robert H. Gilman, David J. Sullivan, Peter C. Searson

Abstract:

Diagnosis of severe malaria is particularly important in highly endemic regions since most patients are positive for parasitemia and treatment differs from non-severe malaria. Diagnosis can be challenging due to the prevalence of diseases with similar symptoms. Accurate diagnosis is increasingly important to avoid overprescribing antimalarial drugs, minimize drug resistance, and minimize costs. A nanoparticle-based assay for detection and quantification of Plasmodium falciparum histidine-rich protein 2 (HRP2) in urine and serum is reported. The assay uses magnetic beads conjugated with anti-HRP2 antibody for protein capture and concentration, and antibody-conjugated quantum dots for optical detection. Western Blot analysis demonstrated that magnetic beads allows the concentration of HRP2 protein in urine by 20-fold. The concentration effect was achieved because large volume of urine can be incubated with beads, and magnetic separation can be easily performed in minutes to isolate beads containing HRP2 protein. Magnetic beads and Quantum Dots 525 conjugated to anti-HRP2 antibodies allows the detection of low concentration of HRP2 protein (0.5 ng mL-1), and quantification in the range of 33 to 2,000 ng mL-1 corresponding to the range associated with non-severe to severe malaria. This assay can be easily adapted to a non-invasive point-of-care test for classification of severe malaria.

Keywords: HRP2 protein, malaria, magnetic beads, Quantum dots

Procedia PDF Downloads 333
679 Artificial Neural Network in Ultra-High Precision Grinding of Borosilicate-Crown Glass

Authors: Goodness Onwuka, Khaled Abou-El-Hossein

Abstract:

Borosilicate-crown (BK7) glass has found broad application in the optic and automotive industries and the growing demands for nanometric surface finishes is becoming a necessity in such applications. Thus, it has become paramount to optimize the parameters influencing the surface roughness of this precision lens. The research was carried out on a 4-axes Nanoform 250 precision lathe machine with an ultra-high precision grinding spindle. The experiment varied the machining parameters of feed rate, wheel speed and depth of cut at three levels for different combinations using Box Behnken design of experiment and the resulting surface roughness values were measured using a Taylor Hobson Dimension XL optical profiler. Acoustic emission monitoring technique was applied at a high sampling rate to monitor the machining process while further signal processing and feature extraction methods were implemented to generate the input to a neural network algorithm. This paper highlights the training and development of a back propagation neural network prediction algorithm through careful selection of parameters and the result show a better classification accuracy when compared to a previously developed response surface model with very similar machining parameters. Hence artificial neural network algorithms provide better surface roughness prediction accuracy in the ultra-high precision grinding of BK7 glass.

Keywords: acoustic emission technique, artificial neural network, surface roughness, ultra-high precision grinding

Procedia PDF Downloads 305
678 Features of Normative and Pathological Realizations of Sibilant Sounds for Computer-Aided Pronunciation Evaluation in Children

Authors: Zuzanna Miodonska, Michal Krecichwost, Pawel Badura

Abstract:

Sigmatism (lisping) is a speech disorder in which sibilant consonants are mispronounced. The diagnosis of this phenomenon is usually based on the auditory assessment. However, the progress in speech analysis techniques creates a possibility of developing computer-aided sigmatism diagnosis tools. The aim of the study is to statistically verify whether specific acoustic features of sibilant sounds may be related to pronunciation correctness. Such knowledge can be of great importance while implementing classifiers and designing novel tools for automatic sibilants pronunciation evaluation. The study covers analysis of various speech signal measures, including features proposed in the literature for the description of normative sibilants realization. Amplitudes and frequencies of three fricative formants (FF) are extracted based on local spectral maxima of the friction noise. Skewness, kurtosis, four normalized spectral moments (SM) and 13 mel-frequency cepstral coefficients (MFCC) with their 1st and 2nd derivatives (13 Delta and 13 Delta-Delta MFCC) are included in the analysis as well. The resulting feature vector contains 51 measures. The experiments are performed on the speech corpus containing words with selected sibilant sounds (/ʃ, ʒ/) pronounced by 60 preschool children with proper pronunciation or with natural pathologies. In total, 224 /ʃ/ segments and 191 /ʒ/ segments are employed in the study. The Mann-Whitney U test is employed for the analysis of stigmatism and normative pronunciation. Statistically, significant differences are obtained in most of the proposed features in children divided into these two groups at p < 0.05. All spectral moments and fricative formants appear to be distinctive between pathology and proper pronunciation. These metrics describe the friction noise characteristic for sibilants, which makes them particularly promising for the use in sibilants evaluation tools. Correspondences found between phoneme feature values and an expert evaluation of the pronunciation correctness encourage to involve speech analysis tools in diagnosis and therapy of sigmatism. Proposed feature extraction methods could be used in a computer-assisted stigmatism diagnosis or therapy systems.

Keywords: computer-aided pronunciation evaluation, sigmatism diagnosis, speech signal analysis, statistical verification

Procedia PDF Downloads 301
677 Iterative Segmentation and Application of Hausdorff Dilation Distance in Defect Detection

Authors: S. Shankar Bharathi

Abstract:

Inspection of surface defects on metallic components has always been challenging due to its specular property. Occurrences of defects such as scratches, rust, pitting are very common in metallic surfaces during the manufacturing process. These defects if unchecked can hamper the performance and reduce the life time of such component. Many of the conventional image processing algorithms in detecting the surface defects generally involve segmentation techniques, based on thresholding, edge detection, watershed segmentation and textural segmentation. They later employ other suitable algorithms based on morphology, region growing, shape analysis, neural networks for classification purpose. In this paper the work has been focused only towards detecting scratches. Global and other thresholding techniques were used to extract the defects, but it proved to be inaccurate in extracting the defects alone. However, this paper does not focus on comparison of different segmentation techniques, but rather describes a novel approach towards segmentation combined with hausdorff dilation distance. The proposed algorithm is based on the distribution of the intensity levels, that is, whether a certain gray level is concentrated or evenly distributed. The algorithm is based on extraction of such concentrated pixels. Defective images showed higher level of concentration of some gray level, whereas in non-defective image, there seemed to be no concentration, but were evenly distributed. This formed the basis in detecting the defects in the proposed algorithm. Hausdorff dilation distance based on mathematical morphology was used to strengthen the segmentation of the defects.

Keywords: metallic surface, scratches, segmentation, hausdorff dilation distance, machine vision

Procedia PDF Downloads 427
676 Convolutional Neural Networks versus Radiomic Analysis for Classification of Breast Mammogram

Authors: Mehwish Asghar

Abstract:

Breast Cancer (BC) is a common type of cancer among women. Its screening is usually performed using different imaging modalities such as magnetic resonance imaging, mammogram, X-ray, CT, etc. Among these modalities’ mammogram is considered a powerful tool for diagnosis and screening of breast cancer. Sophisticated machine learning approaches have shown promising results in complementing human diagnosis. Generally, machine learning methods can be divided into two major classes: one is Radiomics analysis (RA), where image features are extracted manually; and the other one is the concept of convolutional neural networks (CNN), in which the computer learns to recognize image features on its own. This research aims to improve the incidence of early detection, thus reducing the mortality rate caused by breast cancer through the latest advancements in computer science, in general, and machine learning, in particular. It has also been aimed to ease the burden of doctors by improving and automating the process of breast cancer detection. This research is related to a relative analysis of different techniques for the implementation of different models for detecting and classifying breast cancer. The main goal of this research is to provide a detailed view of results and performances between different techniques. The purpose of this paper is to explore the potential of a convolutional neural network (CNN) w.r.t feature extractor and as a classifier. Also, in this research, it has been aimed to add the module of Radiomics for comparison of its results with deep learning techniques.

Keywords: breast cancer (BC), machine learning (ML), convolutional neural network (CNN), radionics, magnetic resonance imaging, artificial intelligence

Procedia PDF Downloads 225
675 A Preliminary Literature Review of Digital Transformation Case Studies

Authors: Vesna Bosilj Vukšić, Lucija Ivančić, Dalia Suša Vugec

Abstract:

While struggling to succeed in today’s complex market environment and provide better customer experience and services, enterprises encompass digital transformation as a means for reaching competitiveness and foster value creation. A digital transformation process consists of information technology implementation projects, as well as organizational factors such as top management support, digital transformation strategy, and organizational changes. However, to the best of our knowledge, there is little evidence about digital transformation endeavors in organizations and how they perceive it – is it only about digital technologies adoption or a true organizational shift is needed? In order to address this issue and as the first step in our research project, a literature review is conducted. The analysis included case study papers from Scopus and Web of Science databases. The following attributes are considered for classification and analysis of papers: time component; country of case origin; case industry and; digital transformation concept comprehension, i.e. focus. Research showed that organizations – public, as well as private ones, are aware of change necessity and employ digital transformation projects. Also, the changes concerning digital transformation affect both manufacturing and service-based industries. Furthermore, we discovered that organizations understand that besides technologies implementation, organizational changes must also be adopted. However, with only 29 relevant papers identified, research positioned digital transformation as an unexplored and emerging phenomenon in information systems research. The scarcity of evidence-based papers calls for further examination of this topic on cases from practice.

Keywords: digital strategy, digital technologies, digital transformation, literature review

Procedia PDF Downloads 217
674 Landscape Classification in North of Jordan by Integrated Approach of Remote Sensing and Geographic Information Systems

Authors: Taleb Odeh, Nizar Abu-Jaber, Nour Khries

Abstract:

The southern part of Wadi Al Yarmouk catchment area covers north of Jordan. It locates within latitudes 32° 20’ to 32° 45’N and longitudes 35° 42’ to 36° 23’ E and has an area of about 1426 km2. However, it has high relief topography where the elevation varies between 50 to 1100 meter above sea level. The variations in the topography causes different units of landforms, climatic zones, land covers and plant species. As a results of these different landscapes units exists in that region. Spatial planning is a major challenge in such a vital area for Jordan which could not be achieved without determining landscape units. However, an integrated approach of remote sensing and geographic information Systems (GIS) is an optimized tool to investigate and map landscape units of such a complicated area. Remote sensing has the capability to collect different land surface data, of large landscape areas, accurately and in different time periods. GIS has the ability of storage these land surface data, analyzing them spatially and present them in form of professional maps. We generated a geo-land surface data that include land cover, rock units, soil units, plant species and digital elevation model using ASTER image and Google Earth while analyzing geo-data spatially were done by ArcGIS 10.2 software. We found that there are twenty two different landscape units in the study area which they have to be considered for any spatial planning in order to avoid and environmental problems.

Keywords: landscape, spatial planning, GIS, spatial analysis, remote sensing

Procedia PDF Downloads 528
673 Computer Countenanced Diagnosis of Skin Nodule Detection and Histogram Augmentation: Extracting System for Skin Cancer

Authors: S. Zith Dey Babu, S. Kour, S. Verma, C. Verma, V. Pathania, A. Agrawal, V. Chaudhary, A. Manoj Puthur, R. Goyal, A. Pal, T. Danti Dey, A. Kumar, K. Wadhwa, O. Ved

Abstract:

Background: Skin cancer is now is the buzzing button in the field of medical science. The cyst's pandemic is drastically calibrating the body and well-being of the global village. Methods: The extracted image of the skin tumor cannot be used in one way for diagnosis. The stored image contains anarchies like the center. This approach will locate the forepart of an extracted appearance of skin. Partitioning image models has been presented to sort out the disturbance in the picture. Results: After completing partitioning, feature extraction has been formed by using genetic algorithm and finally, classification can be performed between the trained and test data to evaluate a large scale of an image that helps the doctors for the right prediction. To bring the improvisation of the existing system, we have set our objectives with an analysis. The efficiency of the natural selection process and the enriching histogram is essential in that respect. To reduce the false-positive rate or output, GA is performed with its accuracy. Conclusions: The objective of this task is to bring improvisation of effectiveness. GA is accomplishing its task with perfection to bring down the invalid-positive rate or outcome. The paper's mergeable portion conflicts with the composition of deep learning and medical image processing, which provides superior accuracy. Proportional types of handling create the reusability without any errors.

Keywords: computer-aided system, detection, image segmentation, morphology

Procedia PDF Downloads 150
672 Investigation of Cold Atmospheric Plasma Exposure Protocol on Wound Healing in Diabetic Foot Ulcer

Authors: P. Akbartehrani, M. Khaledi Pour, M. Amini, M. Khani, M. Mohajeri Tehrani, E. Ghasemi, P. Charipoor, B. Shokri

Abstract:

A common problem between diabetic patients is foot ulcers which are chronic and require specialized treatment. Previous studies illustrate that Cold atmospheric plasma (CAP) has beneficial effects on wound healing and infection. Nevertheless, the comparison of different cap exposure protocols in diabetic ulcer wound healing remained to be studied. This study aims to determine the effect of two different exposure protocols on wound healing in diabetic ulcers. A prospective, randomized clinical trial was conducted at two clinics. Diabetic patients with G1 and G2 wanger classification diabetic foot ulcers were divided into two groups of study. One group was treated by the first protocol, which was treating wounds by argon-generated cold atmospheric plasma jet once a week for five weeks in a row. The other group was treated by the second protocol, which was treating wounds every three days for five weeks in a row. The wounds were treated for 40 seconds/cubic centimeter, while the nozzle tip was moved nonlocalized 1 cm above the wounds. A patient with one or more wounds could participate in different groups as wounds were separately randomized, which allow a participant to be treated several times during the study. The study's significant findings were two different reductions rate in wound size, microbial load, and two different healing speeds. This study concludes that CAP therapy by the second protocol yields more effective healing speeds, reduction in wound sizes, and microbial loads of foot ulcers in diabetic patients.

Keywords: wound healing, diabetic ulcers, cold atmospheric plasma, cold argon jet

Procedia PDF Downloads 217
671 Factors Associated with Weight Loss Maintenance after an Intervention Program

Authors: Filipa Cortez, Vanessa Pereira

Abstract:

Introduction: The main challenge of obesity treatment is long-term weight loss maintenance. The 3 phases method is a weight loss program that combines a low carb and moderately high-protein diet, food supplements and a weekly one-to-one consultation with a certified nutritionist. Sustained weight control is the ultimate goal of phase 3. Success criterion was the minimum loss of 10% of initial weight and its maintenance after 12 months. Objective: The aim of this study was to identify factors associated with successful weight loss maintenance after 12 months at the end of 3 phases method. Methods: The study included 199 subjects that achieved their weight loss goal (phase 3). Weight and body mass index (BMI) were obtained at the baseline and every week until the end of the program. Therapeutic adherence was measured weekly on a Likert scale from 1 to 5. Subjects were considered in compliance with nutritional recommendation and supplementation when their classification was ≥ 4. After 12 months of the method, the current weight and number of previous weight-loss attempts were collected by telephone interview. The statistical significance was assumed at p-values < 0.05. Statistical analyses were performed using SPSS TM software v.21. Results: 65.3% of subjects met the success criterion. The factors which displayed a significant weight loss maintenance prediction were: greater initial percentage weight loss (OR=1.44) during the weight loss intervention and a higher number of consultations in phase 3 (OR=1.10). Conclusion: These findings suggest that the percentage weight loss during the weight loss intervention and the number of consultations in phase 3 may facilitate maintenance of weight loss after the 3 phases method.

Keywords: obesity, weight maintenance, low-carbohydrate diet, dietary supplements

Procedia PDF Downloads 150
670 A Neuropsychological Investigation of the Relationship between Anxiety Levels and Loss of Inhibitory Cognitive Control in Ageing and Dementia

Authors: Nasreen Basoudan, Andrea Tales, Frederic Boy

Abstract:

Non-clinical anxiety may be comprised of state anxiety - temporarily experienced anxiety related to a specific situation, and trait anxiety - a longer lasting response or a general disposition to anxiety. While temporary and occasional anxiety whether as a mood state or personality dimension is normal, nonclinical anxiety may influence many more components of information processing than previously recognized. In ageing and dementia-related research, disease characterization now involves attempts to understand a much wider range of brain function such as loss of inhibitory control, as against the more common focus on memory and cognition. However, in many studies, the tendency has been to include individuals with clinical anxiety disorders while excluding persons with lower levels of state or trait anxiety. Loss of inhibitory cognitive control can lead to behaviors such as aggression, reduced sensitivity to others, sociopathic thoughts and actions. Anxiety has also been linked to inhibitory control, with research suggesting that people with anxiety are less capable of inhibiting their emotions than the average person. This study investigates the relationship between anxiety and loss of inhibitory control in younger and older adults, using a variety of questionnaires and computers-based tests. Based on the premise that irrespective of classification, anxiety is associated with a wide range of physical, affective, and cognitive responses, this study explores evidence indicative of the potential influence anxiety per se on loss of inhibitory control, in order to contribute to discussion and appropriate consideration of anxiety-related factors in methodological practice.

Keywords: anxiety, ageing, dementia, inhibitory control

Procedia PDF Downloads 240
669 Development of a Feedback Control System for a Lab-Scale Biomass Combustion System Using Programmable Logic Controller

Authors: Samuel O. Alamu, Seong W. Lee, Blaise Kalmia, Marc J. Louise Caballes, Xuejun Qian

Abstract:

The application of combustion technologies for thermal conversion of biomass and solid wastes to energy has been a major solution to the effective handling of wastes over a long period of time. Lab-scale biomass combustion systems have been observed to be economically viable and socially acceptable, but major concerns are the environmental impacts of the process and deviation of temperature distribution within the combustion chamber. Both high and low combustion chamber temperature may affect the overall combustion efficiency and gaseous emissions. Therefore, there is an urgent need to develop a control system which measures the deviations of chamber temperature from set target values, sends these deviations (which generates disturbances in the system) in the form of feedback signal (as input), and control operating conditions for correcting the errors. In this research study, major components of the feedback control system were determined, assembled, and tested. In addition, control algorithms were developed to actuate operating conditions (e.g., air velocity, fuel feeding rate) using ladder logic functions embedded in the Programmable Logic Controller (PLC). The developed control algorithm having chamber temperature as a feedback signal is integrated into the lab-scale swirling fluidized bed combustor (SFBC) to investigate the temperature distribution at different heights of the combustion chamber based on various operating conditions. The air blower rates and the fuel feeding rates obtained from automatic control operations were correlated with manual inputs. There was no observable difference in the correlated results, thus indicating that the written PLC program functions were adequate in designing the experimental study of the lab-scale SFBC. The experimental results were analyzed to study the effect of air velocity operating at 222-273 ft/min and fuel feeding rate of 60-90 rpm on the chamber temperature. The developed temperature-based feedback control system was shown to be adequate in controlling the airflow and the fuel feeding rate for the overall biomass combustion process as it helps to minimize the steady-state error.

Keywords: air flow, biomass combustion, feedback control signal, fuel feeding, ladder logic, programmable logic controller, temperature

Procedia PDF Downloads 129
668 Optimization of Economic Order Quantity of Multi-Item Inventory Control Problem through Nonlinear Programming Technique

Authors: Prabha Rohatgi

Abstract:

To obtain an efficient control over a huge amount of inventory of drugs in pharmacy department of any hospital, generally, the medicines are categorized on the basis of their cost ‘ABC’ (Always Better Control), first and then categorize on the basis of their criticality ‘VED’ (Vital, Essential, desirable) for prioritization. About one-third of the annual expenditure of a hospital is spent on medicines. To minimize the inventory investment, the hospital management may like to keep the medicines inventory low, as medicines are perishable items. The main aim of each and every hospital is to provide better services to the patients under certain limited resources. To achieve the satisfactory level of health care services to outdoor patients, a hospital has to keep eye on the wastage of medicines because expiry date of medicines causes a great loss of money though it was limited and allocated for a particular period of time. The objectives of this study are to identify the categories of medicines requiring incentive managerial control. In this paper, to minimize the total inventory cost and the cost associated with the wastage of money due to expiry of medicines, an inventory control model is used as an estimation tool and then nonlinear programming technique is used under limited budget and fixed number of orders to be placed in a limited time period. Numerical computations have been given and shown that by using scientific methods in hospital services, we can give more effective way of inventory management under limited resources and can provide better health care services. The secondary data has been collected from a hospital to give empirical evidence.

Keywords: ABC-VED inventory classification, multi item inventory problem, nonlinear programming technique, optimization of EOQ

Procedia PDF Downloads 255
667 Phosphate Bonded Hemp (Cannabis sativa) Fibre Composites

Authors: Stephen O. Amiandamhen, Martina Meinken, Luvuyo Tyhoda

Abstract:

The properties of Hemp (Cannabis sativa) in phosphate bonded composites were investigated in this research. Hemp hurds were collected from the Hemporium institute for research, South Africa. The hurds were air-dried and shredded using a hammer mill. The shives were screened into different particle sizes and were treated separately with 5% solution of acetic anhydride and sodium hydroxide. The binding matrix was prepared using a reactive magnesia, phosphoric acid, class S fly ash and unslaked lime. The treated and untreated hemp fibers were mixed thoroughly in different ratios with the inorganic matrix. Boric acid and excess water were used to retard and control the rate of the reaction and the setting of the binder. The Hemp composite was formed in a rectangular mold and compressed at room temperature at a pressure of 100KPa. After de-molding the composites, they were cured in a conditioning room for 96 h. Physical and mechanical tests were conducted to evaluate the properties of the composites. A central composite design (CCD) was used to determine the best conditions to optimize the performance of the composites. Thereafter, these combinations were applied in the production of the composites, and the properties were evaluated. Scanning electron microscopy (SEM) was used to carry out the advance examination of the behavior of the composites while X-ray diffractometry (XRD) was used to analyze the reaction pathway in the composites. The results revealed that all properties of phosphate bonded Hemp composites exceeded the LD-1 grade classification of particle boards. The proposed product can be used for ceiling, partitioning, wall claddings and underlayment.

Keywords: CCD, fly ash, magnesia, phosphate bonded hemp composites, phosphoric acid, unslaked lime

Procedia PDF Downloads 435
666 Prevalence of Workplace Bullying in Hong Kong: A Latent Class Analysis

Authors: Catalina Sau Man Ng

Abstract:

Workplace bullying is generally defined as a form of direct and indirect maltreatment at work including harassing, offending, socially isolating someone or negatively affecting someone’s work tasks. Workplace bullying is unfortunately commonplace around the world, which makes it a social phenomenon worth researching. However, the measurements and estimation methods of workplace bullying seem to be diverse in different studies, leading to dubious results. Hence, this paper attempts to examine the prevalence of workplace bullying in Hong Kong using the latent class analysis approach. It is often argued that the traditional classification of workplace bullying into the dichotomous 'victims' and 'non-victims' may not be able to fully represent the complex phenomenon of bullying. By treating workplace bullying as one latent variable and examining the potential categorical distribution within the latent variable, a more thorough understanding of workplace bullying in real-life situations may hence be provided. As a result, this study adopts a latent class analysis method, which was tested to demonstrate higher construct and higher predictive validity previously. In the present study, a representative sample of 2814 employees (Male: 54.7%, Female: 45.3%) in Hong Kong was recruited. The participants were asked to fill in a self-reported questionnaire which included measurements such as Chinese Workplace Bullying Scale (CWBS) and Chinese Version of Depression Anxiety Stress Scale (DASS). It is estimated that four latent classes will emerge: 'non-victims', 'seldom bullied', 'sometimes bullied', and 'victims'. The results of each latent class and implications of the study will also be discussed in this working paper.

Keywords: latent class analysis, prevalence, survey, workplace bullying

Procedia PDF Downloads 330
665 Research on the United Navigation Mechanism of Land, Sea and Air Targets under Multi-Sources Information Fusion

Authors: Rui Liu, Klaus Greve

Abstract:

The navigation information is a kind of dynamic geographic information, and the navigation information system is a kind of special geographic information system. At present, there are many researches on the application of centralized management and cross-integration application of basic geographic information. However, the idea of information integration and sharing is not deeply applied into the research of navigation information service. And the imperfection of navigation target coordination and navigation information sharing mechanism under certain navigation tasks has greatly affected the reliability and scientificity of navigation service such as path planning. Considering this, the project intends to study the multi-source information fusion and multi-objective united navigation information interaction mechanism: first of all, investigate the actual needs of navigation users in different areas, and establish the preliminary navigation information classification and importance level model; and then analyze the characteristics of the remote sensing and GIS vector data, and design the fusion algorithm from the aspect of improving the positioning accuracy and extracting the navigation environment data. At last, the project intends to analyze the feature of navigation information of the land, sea and air navigation targets, and design the united navigation data standard and navigation information sharing model under certain navigation tasks, and establish a test navigation system for united navigation simulation experiment. The aim of this study is to explore the theory of united navigation service and optimize the navigation information service model, which will lay the theory and technology foundation for the united navigation of land, sea and air targets.

Keywords: information fusion, united navigation, dynamic path planning, navigation information visualization

Procedia PDF Downloads 288
664 Determining G-γ Degradation Curve in Cohesive Soils by Dilatometer and in situ Seismic Tests

Authors: Ivandic Kreso, Spiranec Miljenko, Kavur Boris, Strelec Stjepan

Abstract:

This article discusses the possibility of using dilatometer tests (DMT) together with in situ seismic tests (MASW) in order to get the shape of G-g degradation curve in cohesive soils (clay, silty clay, silt, clayey silt and sandy silt). MASW test provides the small soil stiffness (Go from vs) at very small strains and DMT provides the stiffness of the soil at ‘work strains’ (MDMT). At different test locations, dilatometer shear stiffness of the soil has been determined by the theory of elasticity. Dilatometer shear stiffness has been compared with the theoretical G-g degradation curve in order to determine the typical range of shear deformation for different types of cohesive soil. The analysis also includes factors that influence the shape of the degradation curve (G-g) and dilatometer modulus (MDMT), such as the overconsolidation ratio (OCR), plasticity index (IP) and the vertical effective stress in the soil (svo'). Parametric study in this article defines the range of shear strain gDMT and GDMT/Go relation depending on the classification of a cohesive soil (clay, silty clay, clayey silt, silt and sandy silt), function of density (loose, medium dense and dense) and the stiffness of the soil (soft, medium hard and hard). The article illustrates the potential of using MASW and DMT to obtain G-g degradation curve in cohesive soils.

Keywords: dilatometer testing, MASW testing, shear wave, soil stiffness, stiffness reduction, shear strain

Procedia PDF Downloads 316
663 Applied of LAWA Classification for Assessment of the Water by Nutrients Elements: Case Oran Sebkha Basin

Authors: Boualla Nabila

Abstract:

The increasing demand on water, either for the drinkable water supply, or for the agricultural and industrial custom, requires a very thorough hydrochemical study to protect better and manage this resource. Oran is relatively a city with the worst quality of the water. Recently, the growing populations may put stress on natural waters by impairing the quality of the water. Campaign of water sampling of 55 points capturing different levels of the aquifer system was done for chemical analyzes of nutriments elements. The results allowed us to approach the problem of contamination based on the largely uniform nationwide approach LAWA (LänderarbeitsgruppeWasser), based on the EU CIS guidance, has been applied for the identification of pressures and impacts, allowing for easy comparison. Groundwater samples were analyzed, also, for physico-chemical parameters such as pH, sodium, potassium, calcium, magnesium, chloride, sulphate, carbonate and bicarbonate. The analytical results obtained in this hydrochemistry study were interpreted using Durov diagram. Based on these representations, the anomaly of high groundwater salinity observed in Oran Sebkha basin was explained by the high chloride concentration and to the presence of inverse cation exchange reaction. Durov diagram plot revealed that the groundwater has been evolved from Ca-HCO3 recharge water through mixing with the pre-existing groundwater to give mixed water of Mg-SO4 and Mg-Cl types that eventually reached a final stage of evolution represented by a Na-Cl water type.

Keywords: contamination, water quality, nutrients elements, approach LAWA, durov diagram

Procedia PDF Downloads 276