Search results for: real-time data acquisition and reporting
23875 Risk Issues for Controlling Floods through Unsafe, Dual Purpose, Gated Dams
Authors: Gregory Michael McMahon
Abstract:
Risk management for the purposes of minimizing the damages from the operations of dams has met with opposition emerging from organisations and authorities, and their practitioners. It appears that the cause may be a misunderstanding of risk management arising from exchanges that mix deterministic thinking with risk-centric thinking and that do not separate uncertainty from reliability and accuracy from probability. This paper sets out those misunderstandings that arose from dam operations at Wivenhoe in 2011, using a comparison of outcomes that have been based on the methodology and its rules and those that have been operated by applying misunderstandings of the rules. The paper addresses the performance of one risk-centric Flood Manual for Wivenhoe Dam in achieving a risk management outcome. A mixture of engineering, administrative, and legal factors appear to have combined to reduce the outcomes from the risk approach. These are described. The findings are that a risk-centric Manual may need to assist administrations in the conduct of scenario training regimes, in responding to healthy audit reporting, and in the development of decision-support systems. The principal assistance needed from the Manual, however, is to assist engineering and the law to a good understanding of how risks are managed – do not assume that risk management is understood. The wider findings are that the critical profession for decision-making downstream of the meteorologist is not dam engineering or hydrology, or hydraulics; it is risk management. Risk management will provide the minimum flood damage outcome where actual rainfalls match or exceed forecasts of rainfalls, that therefore risk management will provide the best approach for the likely history of flooding in the life of a dam, and provisions made for worst cases may be state of the art in risk management. The principal conclusion is the need for training in both risk management as a discipline and also in the application of risk management rules to particular dam operational scenarios.Keywords: risk management, flood control, dam operations, deterministic thinking
Procedia PDF Downloads 8723874 High School Transgender Students in Brazil: The Difficulties of Staying in School and the Psychological Implications in a Hostile School Environment
Authors: Aline Giardin, Maria Rosa Chitolina
Abstract:
Our research conducted in 8 different schools in the city of Rio Grande do Sul, Brazil, we can clearly see that, even in modern times, where the search for equality between men and women is already over 60 years of struggle in this world where you show Much more than two genres and in this world that is proving that sex is not just biological, are confronted with sexist and phallocentric situations in our Schools, and among our students. The sample consisted of 503 students with a mean age between 13 and 21 years. 107 students identified themselves as gay, lesbian, bisexual or transgender. The remainder was identified as heterosexual or none at all. Compared to LGBT students, transgender students faced the school's more hostile climates, while non-transgender female students were less likely to experience anti-LGBT victimization. In addition, transgender students experienced more negative experiences at school compared to students whose gender expression adhered to traditional gender norms. Transgender students were more likely to feel insecure at school, with 80.0% of transgender students reporting that they felt insecure at school because of their gender identity. Female students in our research reported lower frequencies of victimization based on sexual orientation and gender identity and were less likely to feel insecure at school. In all indicators of discrimination in school, high school students have outperformed elementary school students and have had fewer resources and supports related to LGBT. High school students reported higher rates of victimization on sexual orientation and gender expression than elementary school students. For example, about one-third (35.5%) of high school students suffered regular physical Very often) based on their sexual orientation, compared to less than a quarter (21.4%) of primary school students. The whole premise here is to perceive the phallocentrism and sexism hidden in our schools. Opposition between the sexes is not reflexive or articulates a biological fact, but a social construction.Keywords: transgender students, school, psychological implications, discrimination
Procedia PDF Downloads 45823873 Exploring the Correlation between Population Distribution and Urban Heat Island under Urban Data: Taking Shenzhen Urban Heat Island as an Example
Authors: Wang Yang
Abstract:
Shenzhen is a modern city of China's reform and opening-up policy, the development of urban morphology has been established on the administration of the Chinese government. This city`s planning paradigm is primarily affected by the spatial structure and human behavior. The subjective urban agglomeration center is divided into several groups and centers. In comparisons of this effect, the city development law has better to be neglected. With the continuous development of the internet, extensive data technology has been introduced in China. Data mining and data analysis has become important tools in municipal research. Data mining has been utilized to improve data cleaning such as receiving business data, traffic data and population data. Prior to data mining, government data were collected by traditional means, then were analyzed using city-relationship research, delaying the timeliness of urban development, especially for the contemporary city. Data update speed is very fast and based on the Internet. The city's point of interest (POI) in the excavation serves as data source affecting the city design, while satellite remote sensing is used as a reference object, city analysis is conducted in both directions, the administrative paradigm of government is broken and urban research is restored. Therefore, the use of data mining in urban analysis is very important. The satellite remote sensing data of the Shenzhen city in July 2018 were measured by the satellite Modis sensor and can be utilized to perform land surface temperature inversion, and analyze city heat island distribution of Shenzhen. This article acquired and classified the data from Shenzhen by using Data crawler technology. Data of Shenzhen heat island and interest points were simulated and analyzed in the GIS platform to discover the main features of functional equivalent distribution influence. Shenzhen is located in the east-west area of China. The city’s main streets are also determined according to the direction of city development. Therefore, it is determined that the functional area of the city is also distributed in the east-west direction. The urban heat island can express the heat map according to the functional urban area. Regional POI has correspondence. The research result clearly explains that the distribution of the urban heat island and the distribution of urban POIs are one-to-one correspondence. Urban heat island is primarily influenced by the properties of the underlying surface, avoiding the impact of urban climate. Using urban POIs as analysis object, the distribution of municipal POIs and population aggregation are closely connected, so that the distribution of the population corresponded with the distribution of the urban heat island.Keywords: POI, satellite remote sensing, the population distribution, urban heat island thermal map
Procedia PDF Downloads 10423872 A Proposal of Ontology about Brazilian Government Transparency Portal
Authors: Estela Mayra de Moura Vianna, Thiago José Tavares Ávila, Bruno Morais Silva, Diego Henrique Bezerra, Paulo Henrique Gomes Silva, Alan Pedro da Silva
Abstract:
The Brazilian Federal Constitution defines the access to information as a crucial right of the citizen and the Law on Access to Public Information, which regulates this right. Accordingly, the Fiscal Responsibility Act, 2000, amended in 2009 by the “Law of Transparency”, began demanding a wider disclosure of public accounts for the society, including electronic media for public access. Thus, public entities began to create "Transparency Portals," which aim to gather a diversity of data and information. However, this information, in general, is still published in formats that do not simplify understanding of the data by citizens and that could be better especially available for audit purposes. In this context, a proposal of ontology about Brazilian Transparency Portal can play a key role in how these data will be better available. This study aims to identify and implement in ontology, the data model about Transparency Portal ecosystem, with emphasis in activities that use these data for some applications, like audits, press activities, social government control, and others.Keywords: audit, government transparency, ontology, public sector
Procedia PDF Downloads 50623871 Design and Development of Data Mining Application for Medical Centers in Remote Areas
Authors: Grace Omowunmi Soyebi
Abstract:
Data Mining is the extraction of information from a large database which helps in predicting a trend or behavior, thereby helping management make knowledge-driven decisions. One principal problem of most hospitals in rural areas is making use of the file management system for keeping records. A lot of time is wasted when a patient visits the hospital, probably in an emergency, and the nurse or attendant has to search through voluminous files before the patient's file can be retrieved; this may cause an unexpected to happen to the patient. This Data Mining application is to be designed using a Structured System Analysis and design method, which will help in a well-articulated analysis of the existing file management system, feasibility study, and proper documentation of the Design and Implementation of a Computerized medical record system. This Computerized system will replace the file management system and help to easily retrieve a patient's record with increased data security, access clinical records for decision-making, and reduce the time range at which a patient gets attended to.Keywords: data mining, medical record system, systems programming, computing
Procedia PDF Downloads 20923870 A Comprehensive Framework to Ensure Data Security in Cloud Computing: Analysis, Solutions, and Approaches
Authors: Loh Fu Quan, Fong Zi Heng, Burra Venkata Durga Kumar
Abstract:
Cloud computing has completely transformed the way many businesses operate. Traditionally, confidential data of a business is stored in computers located within the premise of the business. Therefore, a lot of business capital is put towards maintaining computing resources and hiring IT teams to manage them. The advent of cloud computing changes everything. Instead of purchasing and managing their infrastructure, many businesses have started to shift towards working with the cloud with the help of a cloud service provider (CSP), leading to cost savings. However, it also introduces security risks. This research paper focuses on the security risks that arise during data migration and user authentication in cloud computing. To overcome this problem, this paper provides a comprehensive framework that includes Transport Layer Security (TLS), user authentication, security tokens and multi-level data encryption. This framework aims to prevent authorized access to cloud resources and data leakage, ensuring the confidentiality of sensitive information. This framework can be used by cloud service providers to strengthen the security of their cloud and instil confidence in their users.Keywords: Cloud computing, Cloud security, Cloud security issues, Cloud security framework
Procedia PDF Downloads 12123869 A Methodology Based on Image Processing and Deep Learning for Automatic Characterization of Graphene Oxide
Authors: Rafael do Amaral Teodoro, Leandro Augusto da Silva
Abstract:
Originated from graphite, graphene is a two-dimensional (2D) material that promises to revolutionize technology in many different areas, such as energy, telecommunications, civil construction, aviation, textile, and medicine. This is possible because its structure, formed by carbon bonds, provides desirable optical, thermal, and mechanical characteristics that are interesting to multiple areas of the market. Thus, several research and development centers are studying different manufacturing methods and material applications of graphene, which are often compromised by the scarcity of more agile and accurate methodologies to characterize the material – that is to determine its composition, shape, size, and the number of layers and crystals. To engage in this search, this study proposes a computational methodology that applies deep learning to identify graphene oxide crystals in order to characterize samples by crystal sizes. To achieve this, a fully convolutional neural network called U-net has been trained to segment SEM graphene oxide images. The segmentation generated by the U-net is fine-tuned with a standard deviation technique by classes, which allows crystals to be distinguished with different labels through an object delimitation algorithm. As a next step, the characteristics of the position, area, perimeter, and lateral measures of each detected crystal are extracted from the images. This information generates a database with the dimensions of the crystals that compose the samples. Finally, graphs are automatically created showing the frequency distributions by area size and perimeter of the crystals. This methodological process resulted in a high capacity of segmentation of graphene oxide crystals, presenting accuracy and F-score equal to 95% and 94%, respectively, over the test set. Such performance demonstrates a high generalization capacity of the method in crystal segmentation, since its performance considers significant changes in image extraction quality. The measurement of non-overlapping crystals presented an average error of 6% for the different measurement metrics, thus suggesting that the model provides a high-performance measurement for non-overlapping segmentations. For overlapping crystals, however, a limitation of the model was identified. To overcome this limitation, it is important to ensure that the samples to be analyzed are properly prepared. This will minimize crystal overlap in the SEM image acquisition and guarantee a lower error in the measurements without greater efforts for data handling. All in all, the method developed is a time optimizer with a high measurement value, considering that it is capable of measuring hundreds of graphene oxide crystals in seconds, saving weeks of manual work.Keywords: characterization, graphene oxide, nanomaterials, U-net, deep learning
Procedia PDF Downloads 16023868 Using AI for Analysing Political Leaders
Authors: Shuai Zhao, Shalendra D. Sharma, Jin Xu
Abstract:
This research uses advanced machine learning models to learn a number of hypotheses regarding political executives. Specifically, it analyses the impact these powerful leaders have on economic growth by using leaders’ data from the Archigos database from 1835 to the end of 2015. The data is processed by the AutoGluon, which was developed by Amazon. Automated Machine Learning (AutoML) and AutoGluon can automatically extract features from the data and then use multiple classifiers to train the data. Use a linear regression model and classification model to establish the relationship between leaders and economic growth (GDP per capita growth), and to clarify the relationship between their characteristics and economic growth from a machine learning perspective. Our work may show as a model or signal for collaboration between the fields of statistics and artificial intelligence (AI) that can light up the way for political researchers and economists.Keywords: comparative politics, political executives, leaders’ characteristics, artificial intelligence
Procedia PDF Downloads 8623867 EFL Vocabulary Learning Strategies among Students in Greece, Their Preferences and Internet Technology
Authors: Theodorou Kyriaki, Ypsilantis George
Abstract:
Vocabulary learning has attracted a lot of attention in recent years, contrary to the neglected part of the past. Along with the interest in finding successful vocabulary teaching strategies, many scholars focused on locating learning strategies used by language learners. As a result, more and more studies in the area of language pedagogy have been investigating the use of strategies in vocabulary learning by different types of learners. A common instrument in this field is the questionnaire, a tool of work that was enriched by questions involving current technology, and it was further implemented to a sample of 300 Greek students whose age varied from 9 and 17 years. Strategies located were grouped into the three categories of memory, cognitive, and compensatory type and associations between these dependent variables were investigated. In addition, relations between dependent and independent variables (such as age, sex, type of school, cultural background, and grade in English) were pursued to investigate the impact on strategy selection. Finally, results were compared to findings of other studies in the same field to contribute to a hypothesis of ethnic differences in strategy selection. Results initially discuss preferred strategies of all participants and further indicate that: a) technology affects strategy selection while b) differences between ethnic groups are not statistically significant. A number of successful strategies are presented, resulting from correlations of strategy selection and final school grade in English.Keywords: acquisition of English, internet technology, research among Greek students, vocabulary learning strategies
Procedia PDF Downloads 51023866 Data Quality on Regular Immunization Programme at Birkod District: Somali Region, Ethiopia
Authors: Eyob Seife, Tesfalem Teshome, Bereket Seyoum, Behailu Getachew, Yohans Demis
Abstract:
Developing countries continue to face preventable communicable diseases, such as vaccine-preventable diseases. The Expanded Programme on Immunization (EPI) was established by the World Health Organization in 1974 to control these diseases. Health data use is crucial in decision-making, but ensuring data quality remains challenging. The study aimed to assess the accuracy ratio, timeliness, and quality index of regular immunization programme data in the Birkod district of the Somali Region, Ethiopia. For poor data quality, technical, contextual, behavioral, and organizational factors are among contributors. The study used a quantitative cross-sectional design conducted in September 2022GC using WHO-recommended data quality self-assessment tools. The accuracy ratio and timeliness of reports on regular immunization programmes were assessed for two health centers and three health posts in the district for one fiscal year. Moreover, the quality index assessment was conducted at the district level and health facilities by trained assessors. The study found poor data quality in the accuracy ratio and timeliness of reports at all health units, which includes zeros. Overreporting was observed for most facilities, particularly at the health post level. Health centers showed a relatively better accuracy ratio than health posts. The quality index assessment revealed poor quality at all levels. The study recommends that responsible bodies at different levels improve data quality using various approaches, such as the capacitation of health professionals and strengthening the quality index components. The study highlighted the need for attention to data quality in general, specifically at the health post level, and improving the quality index at all levels, which is essential.Keywords: Birkod District, data quality, quality index, regular immunization programme, Somali Region-Ethiopia
Procedia PDF Downloads 9023865 The Results of Longitudinal Water Quality Monitoring of the Brandywine River, Chester County, Pennsylvania by High School Students
Authors: Dina L. DiSantis
Abstract:
Strengthening a sense of responsibility while relating global sustainability concepts such as water quality and pollution to a local water system can be achieved by teaching students to conduct and interpret water quality monitoring tests. When students conduct their own research, they become better stewards of the environment. Providing outdoor learning and place-based opportunities for students helps connect them to the natural world. By conducting stream studies and collecting data, students are able to better understand how the natural environment is a place where everything is connected. Students have been collecting physical, chemical and biological data along the West and East Branches of the Brandywine River, in Pennsylvania for over ten years. The stream studies are part of the advanced placement environmental science and aquatic science courses that are offered as electives to juniors and seniors at the Downingtown High School West Campus in Downingtown, Pennsylvania. Physical data collected includes: temperature, turbidity, width, depth, velocity, and volume of flow or discharge. The chemical tests conducted are: dissolved oxygen, carbon dioxide, pH, nitrates, alkalinity and phosphates. Macroinvertebrates are collected with a kick net, identified and then released. Students collect the data from several locations while traveling by canoe. In the classroom, students prepare a water quality data analysis and interpretation report based on their collected data. The summary of the results from longitudinal water quality data collection by students, as well as the strengths and weaknesses of student data collection will be presented.Keywords: place-based, student data collection, sustainability, water quality monitoring
Procedia PDF Downloads 15623864 A Digital Clone of an Irrigation Network Based on Hardware/Software Simulation
Authors: Pierre-Andre Mudry, Jean Decaix, Jeremy Schmid, Cesar Papilloud, Cecile Munch-Alligne
Abstract:
In most of the Swiss Alpine regions, the availability of water resources is usually adequate even in times of drought, as evidenced by the 2003 and 2018 summers. Indeed, important natural stocks are for the moment available in the form of snow and ice, but the situation is likely to change in the future due to global and regional climate change. In addition, alpine mountain regions are areas where climate change will be felt very rapidly and with high intensity. For instance, the ice regime of these regions has already been affected in recent years with a modification of the monthly availability and extreme events of precipitations. The current research, focusing on the municipality of Val de Bagnes, located in the canton of Valais, Switzerland, is part of a project led by the Altis company and achieved in collaboration with WSL, BlueArk Entremont, and HES-SO Valais-Wallis. In this region, water occupies a key position notably for winter and summer tourism. Thus, multiple actors want to apprehend the future needs and availabilities of water, on both the 2050 and 2100 horizons, in order to plan the modifications to the water supply and distribution networks. For those changes to be salient and efficient, a good knowledge of the current water distribution networks is of most importance. In the current case, the water drinking network is well documented, but this is not the case for the irrigation one. Since the water consumption for irrigation is ten times higher than for drinking water, data acquisition on the irrigation network is a major point to determine future scenarios. This paper first presents the instrumentation and simulation of the irrigation network using custom-designed IoT devices, which are coupled with a digital clone simulated to reduce the number of measuring locations. The developed IoT ad-hoc devices are energy-autonomous and can measure flows and pressures using industrial sensors such as calorimetric water flow meters. Measurements are periodically transmitted using the LoRaWAN protocol over a dedicated infrastructure deployed in the municipality. The gathered values can then be visualized in real-time on a dashboard, which also provides historical data for analysis. In a second phase, a digital clone of the irrigation network was modeled using EPANET, a software for water distribution systems that performs extended-period simulations of flows and pressures in pressurized networks composed of reservoirs, pipes, junctions, and sinks. As a preliminary work, only a part of the irrigation network was modelled and validated by comparisons with the measurements. The simulations are carried out by imposing the consumption of water at several locations. The validation is performed by comparing the simulated pressures are different nodes with the measured ones. An accuracy of +/- 15% is observed on most of the nodes, which is acceptable for the operator of the network and demonstrates the validity of the approach. Future steps will focus on the deployment of the measurement devices on the whole network and the complete modelling of the network. Then, scenarios of future consumption will be investigated. Acknowledgment— The authors would like to thank the Swiss Federal Office for Environment (FOEN), the Swiss Federal Office for Agriculture (OFAG) for their financial supports, and ALTIS for the technical support, this project being part of the Swiss Pilot program 'Adaptation aux changements climatiques'.Keywords: hydraulic digital clone, IoT water monitoring, LoRaWAN water measurements, EPANET, irrigation network
Procedia PDF Downloads 14523863 Visual Analytics of Higher Order Information for Trajectory Datasets
Authors: Ye Wang, Ickjai Lee
Abstract:
Due to the widespread of mobile sensing, there is a strong need to handle trails of moving objects, trajectories. This paper proposes three visual analytic approaches for higher order information of trajectory data sets based on the higher order Voronoi diagram data structure. Proposed approaches reveal geometrical information, topological, and directional information. Experimental results demonstrate the applicability and usefulness of proposed three approaches.Keywords: visual analytics, higher order information, trajectory datasets, spatio-temporal data
Procedia PDF Downloads 40223862 Multilingual Students Acting as Language Brokers in Italy: Their Points of View and Feelings towards This Activity
Authors: Federica Ceccoli
Abstract:
Italy is undergoing one of its largest migratory waves, and Italian schools are reporting the highest numbers of multilingual students coming from immigrant families and speaking minority languages. For these pupils, who have not perfectly acquired their mother tongue yet, learning a second language may represent a burden on their linguistic development and may have some repercussions on their school performances and relational skills. These are some of the reasons why they have turned out to be those who have the worst grades and the highest school drop-out rates. However, despite these negative outcomes, it has been demonstrated that multilingual immigrant students frequently act as translators or language brokers for their peers or family members who do not speak Italian fluently. This activity has been defined as Child Language Brokering (hereinafter CLB) and it has become a common practice especially in minority communities as immigrants’ children often learn the host language much more quickly than their parents, thus contributing to their family life by acting as language and cultural mediators. This presentation aims to analyse the data collected by a research carried out during the school year 2014-2015 in the province of Ravenna, in the Northern Italian region of Emilia-Romagna, among 126 immigrant students attending junior high schools. The purpose of the study was to analyse by means of a structured questionnaire whether multilingualism matched with language brokering experiences or not and to examine the perspectives of those students who reported having acted as translators using their linguistic knowledge to help people understand each other. The questionnaire consisted of 34 items roughly divided into 2 sections. The first section required multilingual students to provide personal details like their date and place of birth, as well as details about their families (number of siblings, parents’ jobs). In the second section, they were asked about the languages spoken in their families as well as their language brokering experience. The in-depth questionnaire sought to investigate a wide variety of brokering issues such as frequency and purpose of the activity, where, when and which documents young language brokers translate and how they feel about this practice. The results have demonstrated that CLB is a very common practice among immigrants’ children living in Ravenna and almost all students reported positive feelings when asked about their brokering experience with their families and also at school. In line with previous studies, responses to the questionnaire item regarding the people they brokered for revealed that the category ranking first is parents. Similarly, language-brokering activities tend to occur most often at home and the documents they translate the most (either orally or in writing) are notes from teachers. Such positive feelings towards this activity together with the evidence that it occurs very often in schools have laid the foundation for further projects on how this common practice may be valued and used to strengthen the linguistic skills of these multilingual immigrant students and thus their school performances.Keywords: immigration, language brokering, multilingualism, students' points of view
Procedia PDF Downloads 17923861 Self-Supervised Pretraining on Sequences of Functional Magnetic Resonance Imaging Data for Transfer Learning to Brain Decoding Tasks
Authors: Sean Paulsen, Michael Casey
Abstract:
In this work we present a self-supervised pretraining framework for transformers on functional Magnetic Resonance Imaging (fMRI) data. First, we pretrain our architecture on two self-supervised tasks simultaneously to teach the model a general understanding of the temporal and spatial dynamics of human auditory cortex during music listening. Our pretraining results are the first to suggest a synergistic effect of multitask training on fMRI data. Second, we finetune the pretrained models and train additional fresh models on a supervised fMRI classification task. We observe significantly improved accuracy on held-out runs with the finetuned models, which demonstrates the ability of our pretraining tasks to facilitate transfer learning. This work contributes to the growing body of literature on transformer architectures for pretraining and transfer learning with fMRI data, and serves as a proof of concept for our pretraining tasks and multitask pretraining on fMRI data.Keywords: transfer learning, fMRI, self-supervised, brain decoding, transformer, multitask training
Procedia PDF Downloads 9023860 Sign Language Recognition of Static Gestures Using Kinect™ and Convolutional Neural Networks
Authors: Rohit Semwal, Shivam Arora, Saurav, Sangita Roy
Abstract:
This work proposes a supervised framework with deep convolutional neural networks (CNNs) for vision-based sign language recognition of static gestures. Our approach addresses the acquisition and segmentation of correct inputs for the CNN-based classifier. Microsoft Kinect™ sensor, despite complex environmental conditions, can track hands efficiently. Skin Colour based segmentation is applied on cropped images of hands in different poses, used to depict different sign language gestures. The segmented hand images are used as an input for our classifier. The CNN classifier proposed in the paper is able to classify the input images with a high degree of accuracy. The system was trained and tested on 39 static sign language gestures, including 26 letters of the alphabet and 13 commonly used words. This paper includes a problem definition for building the proposed system, which acts as a sign language translator between deaf/mute and the rest of the society. It is then followed by a focus on reviewing existing knowledge in the area and work done by other researchers. It also describes the working principles behind different components of CNNs in brief. The architecture and system design specifications of the proposed system are discussed in the subsequent sections of the paper to give the reader a clear picture of the system in terms of the capability required. The design then gives the top-level details of how the proposed system meets the requirements.Keywords: sign language, CNN, HCI, segmentation
Procedia PDF Downloads 15723859 Lessons Learned from Ransomware-as-a-Service (RaaS) Organized Campaigns
Authors: Vitali Kremez
Abstract:
The researcher monitored an organized ransomware campaign in order to gain significant visibility into the tactics, techniques, and procedures employed by a campaign boss operating a ransomware scheme out of Russia. As the Russian hacking community lowered the access requirements for unsophisticated Russian cybercriminals to engage in ransomware campaigns, corporations and individuals face a commensurately greater challenge of effectively protecting their data and operations from being held ransom. This report discusses two notorious ransomware campaigns. Though the loss of data can be devastating, the findings demonstrate that sending ransom payments does not always help obtain data. Key learnings: 1. From the ransomware affiliate perspective, such campaigns have significantly lowered the barriers for entry for low-tier cybercriminals. 2. Ransomware revenue amounts are not as glamorous and fruitful as they are often publicly reported. Average ransomware crime bosses make only $90K per year on average. 3. Data gathered indicates that sending ransom payments does not always help obtain data. 4. The talk provides the complete payout structure and Bitcoin laundering operation related to the ransomware-as-a-service campaign.Keywords: bitcoin, cybercrime, ransomware, Russia
Procedia PDF Downloads 19523858 Analysis of Cross-Sectional and Retrograde Data on the Prevalence of Marginal Gingivitis
Authors: Ilma Robo, Saimir Heta, Nedja Hysi, Vera Ostreni
Abstract:
Introduction: Marginal gingivitis is a disease with considerable frequency among patients who present routinely for periodontal control and treatment. In fact, this disease may not have alarming symptoms in patients and may go unnoticed by themselves when personal hygiene conditions are optimal. The aim of this study was to collect retrograde data on the prevalence of marginal gingiva in the respective group of patients, evaluated according to specific periodontal diagnostic tools. Materials and methods: The study was conducted in two patient groups. The first group was with 34 patients, during December 2019-January 2020, and the second group was with 64 patients during 2010-2018 (each year in the mentioned monthly period). Bacterial plaque index, hemorrhage index, amount of gingival fluid, presence of xerostomia and candidiasis were recorded in patients. Results: Analysis of the collected data showed that susceptibility to marginal gingivitis shows higher values according to retrograde data, compared to cross-sectional ones. Susceptibility to candidiasis and the occurrence of xerostomia, even in the combination of both pathologies, as risk factors for the occurrence of marginal gingivitis, show higher values according to retrograde data. The female are presented with a reduced bacterial plaque index than the males, but more importantly, this index in the females is also associated with a reduced index of gingival hemorrhage, in contrast to the males. Conclusions: Cross-sectional data show that the prevalence of marginal gingivitis is more reduced, compared to retrograde data, based on the hemorrhage index and the bacterial plaque index together. Changes in production in the amount of gingival fluid show a higher prevalence of marginal gingivitis in cross-sectional data than in retrograde data; this is based on the sophistication of the way data are recorded, which evolves over time and also based on professional sensitivity to this phenomenon.Keywords: marginal gingivitis, cross-sectional, retrograde, prevalence
Procedia PDF Downloads 16123857 Why Do We Need Hierachical Linear Models?
Authors: Mustafa Aydın, Ali Murat Sunbul
Abstract:
Hierarchical or nested data structures usually are seen in many research areas. Especially, in the field of education, if we examine most of the studies, we can see the nested structures. Students in classes, classes in schools, schools in cities and cities in regions are similar nested structures. In a hierarchical structure, students being in the same class, sharing the same physical conditions and similar experiences and learning from the same teachers, they demonstrate similar behaviors between them rather than the students in other classes.Keywords: hierarchical linear modeling, nested data, hierarchical structure, data structure
Procedia PDF Downloads 65223856 Enhancing Reading in English through a Phonics-Based Approach and Interactive Whiteboards
Authors: Carmen Manuela Pereira Carneiro Lucas
Abstract:
Background: The milestones on first (L1) and second (L2) language acquisition have fascinated researchers and practitioners for decades. However, the findings from the available research do not always and instantly reflect on the classroom, specifically in Teaching English to Young Learners in Portuguese primary schools. Within this, it is worth highlighting, as per previous studies, the lack of uniformity in terms of syllabus design and implementation in the classroom. Moreover, more continuous professional development opportunities would be welcome. This paper is set out to gather the “best of both worlds”, with the aim of contributing to research-informed teaching, based in actual findings from the classroom, through and after the implementation of an action-research programme for nurturing the seeds in learning how to read in English. Therefore, the purpose of this study was to examine the effectiveness of read-aloud storybooks, associated with the use of interactive whiteboards, further anchored in a phonics-based approach to teach reading and writing to Young Learners of English. Methods: Participants were 80 (n=80) native Portuguese children, attending the second year of primary school, learning English as a Foreign Language (EFL) classes, aged 7 years old. Results and Conclusions: The findings suggest that through the use of storybooks, followed by watching the respective videos, together with follow-up phonics activities are effective strategies which Teachers of English to Young Learners can certainly use to “nurture the seeds” for English language learning.Keywords: teaching English to young learners, phonics-based approach, content for language and integrated learning, English across the curriculum, interactive whiteboards, teacher training
Procedia PDF Downloads 2323855 The Disposable Identities; Enabling Trust-by-Design to Build Sustainable Data-Driven Value
Authors: Lorna Goulden, Kai M. Hermsen, Jari Isohanni, Mirko Ross, Jef Vanbockryck
Abstract:
This article introduces disposable identities, with reference use cases and explores possible technical approaches. The proposed approach, when fully developed as an open-source toolkit, enables developers of mobile or web apps to employ a self-sovereign identity and data privacy framework, in order to rebuild trust in digital services by providing greater transparency, decentralized control, and GDPR compliance. With a user interface for the management of self-sovereign identity, digital authorizations, and associated data-driven transactions, the advantage of Disposable Identities is that they may also contain verifiable data such as the owner’s photograph, official or even biometric identifiers for more proactive prevention of identity abuse. These Disposable Identities designed for decentralized privacy management can also be time, purpose and context-bound through a secure digital contract; with verification functionalities based on tamper-proof technology.Keywords: dentity, trust, self-sovereign, disposable identity, privacy toolkit, decentralised identity, verifiable credential, cybersecurity, data driven business, PETs, GDPRdentity, trust, self-sovereign, disposable identity, privacy toolkit, decentralised identity, verifiable credential, cybersecurity, data driven business, PETs, GDPRI
Procedia PDF Downloads 21823854 Best Practices to Enhance Patient Security and Confidentiality When Using E-Health in South Africa
Authors: Lethola Tshikose, Munyaradzi Katurura
Abstract:
Information and Communication Technology (ICT) plays a critical role in improving daily healthcare processes. The South African healthcare organizations have adopted Information Systems to integrate their patient records. This has made it much easier for healthcare organizations because patient information can now be accessible at any time. The primary purpose of this research study was to investigate the best practices that can be applied to enhance patient security and confidentiality when using e-health systems in South Africa. Security and confidentiality are critical in healthcare organizations as they ensure safety in EHRs. The research study used an inductive research approach that included a thorough literature review; therefore, no data was collected. The research paper’s scope included patient data and possible security threats associated with healthcare systems. According to the study, South African healthcare organizations discovered various patient data security and confidentiality issues. The study also revealed that when it comes to handling patient data, health professionals sometimes make mistakes. Some may not be computer literate, which posed issues and caused data to be tempered with. The research paper recommends that healthcare organizations ensure that security measures are adequately supported and promoted by their IT department. This will ensure that adequate resources are distributed to keep patient data secure and confidential. Healthcare organizations must correctly use standards set up by IT specialists to solve patient data security and confidentiality issues. Healthcare organizations must make sure that their organizational structures are adaptable to improve security and confidentiality.Keywords: E-health, EHR, security, confidentiality, healthcare
Procedia PDF Downloads 5823853 The Latency-Amplitude Binomial of Waves Resulting from the Application of Evoked Potentials for the Diagnosis of Dyscalculia
Authors: Maria Isabel Garcia-Planas, Maria Victoria Garcia-Camba
Abstract:
Recent advances in cognitive neuroscience have allowed a step forward in perceiving the processes involved in learning from the point of view of the acquisition of new information or the modification of existing mental content. The evoked potentials technique reveals how basic brain processes interact to achieve adequate and flexible behaviours. The objective of this work, using evoked potentials, is to study if it is possible to distinguish if a patient suffers a specific type of learning disorder to decide the possible therapies to follow. The methodology used, is the analysis of the dynamics of different areas of the brain during a cognitive activity to find the relationships between the different areas analyzed in order to better understand the functioning of neural networks. Also, the latest advances in neuroscience have revealed the existence of different brain activity in the learning process that can be highlighted through the use of non-invasive, innocuous, low-cost and easy-access techniques such as, among others, the evoked potentials that can help to detect early possible neuro-developmental difficulties for their subsequent assessment and cure. From the study of the amplitudes and latencies of the evoked potentials, it is possible to detect brain alterations in the learning process specifically in dyscalculia, to achieve specific corrective measures for the application of personalized psycho pedagogical plans that allow obtaining an optimal integral development of the affected people.Keywords: dyscalculia, neurodevelopment, evoked potentials, Learning disabilities, neural networks
Procedia PDF Downloads 14023852 Smart Irrigation System for Applied Irrigation Management in Tomato Seedling Production
Authors: Catariny C. Aleman, Flavio B. Campos, Matheus A. Caliman, Everardo C. Mantovani
Abstract:
The seedling production stage is a critical point in the vegetable production system. Obtaining high-quality seedlings is a prerequisite for subsequent cropping to occur well and productivity optimization is required. The water management is an important step in agriculture production. The adequate water requirement in horticulture seedlings can provide higher quality and increase field production. The practice of irrigation is indispensable and requires a duly adjusted quality irrigation system, together with a specific water management plan to meet the water demand of the crop. Irrigation management in seedling management requires a great deal of specific information, especially when it involves the use of inputs such as hydrorentering polymers and automation technologies of the data acquisition and irrigation system. The experiment was conducted in a greenhouse at the Federal University of Viçosa, Viçosa - MG. Tomato seedlings (Lycopersicon esculentum Mill) were produced in plastic trays of 128 cells, suspended at 1.25 m from the ground. The seedlings were irrigated by 4 micro sprinklers of fixed jet 360º per tray, duly isolated by sideboards, following the methodology developed for this work. During Phase 1, in January / February 2017 (duration of 24 days), the cultivation coefficient (Kc) of seedlings cultured in the presence and absence of hydrogel was evaluated by weighing lysimeter. In Phase 2, September 2017 (duration of 25 days), the seedlings were submitted to 4 irrigation managements (Kc, timer, 0.50 ETo, and 1.00 ETo), in the presence and absence of hydrogel and then evaluated in relation to quality parameters. The microclimate inside the greenhouse was monitored with the use of air temperature, relative humidity and global radiation sensors connected to a microcontroller that performed hourly calculations of reference evapotranspiration by Penman-Monteith standard method FAO56 modified for the balance of long waves according to Walker, Aldrich, Short (1983), and conducted water balance and irrigation decision making for each experimental treatment. Kc of seedlings cultured on a substrate with hydrogel (1.55) was higher than Kc on a pure substrate (1.39). The use of the hydrogel was a differential for the production of earlier tomato seedlings, with higher final height, the larger diameter of the colon, greater accumulation of a dry mass of shoot, a larger area of crown projection and greater the rate of relative growth. The handling 1.00 ETo promoted higher relative growth rate.Keywords: automatic system; efficiency of water use; precision irrigation, micro sprinkler.
Procedia PDF Downloads 11623851 The Effect of Data Integration to the Smart City
Authors: Richard Byrne, Emma Mulliner
Abstract:
Smart cities are a vision for the future that is increasingly becoming a reality. While a key concept of the smart city is the ability to capture, communicate, and process data that has long been produced through day-to-day activities of the city, much of the assessment models in place neglect this fact to focus on ‘smartness’ concepts. Although it is true technology often provides the opportunity to capture and communicate data in more effective ways, there are also human processes involved that are just as important. The growing importance with regards to the use and ownership of data in society can be seen by all with companies such as Facebook and Google increasingly coming under the microscope, however, why is the same scrutiny not applied to cities? The research area is therefore of great importance to the future of our cities here and now, while the findings will be of just as great importance to our children in the future. This research aims to understand the influence data is having on organisations operating throughout the smart cities sector and employs a mixed-method research approach in order to best answer the following question: Would a data-based evaluation model for smart cities be more appropriate than a smart-based model in assessing the development of the smart city? A fully comprehensive literature review concluded that there was a requirement for a data-driven assessment model for smart cities. This was followed by a documentary analysis to understand the root source of data integration to the smart city. A content analysis of city data platforms enquired as to the alternative approaches employed by cities throughout the UK and draws on best practice from New York to compare and contrast. Grounded in theory, the research findings to this point formulated a qualitative analysis framework comprised of: the changing environment influenced by data, the value of data in the smart city, the data ecosystem of the smart city and organisational response to the data orientated environment. The framework was applied to analyse primary data collected through the form of interviews with both public and private organisations operating throughout the smart cities sector. The work to date represents the first stage of data collection that will be built upon by a quantitative research investigation into the feasibility of data network effects in the smart city. An analysis into the benefits of data interoperability supporting services to the smart city in the areas of health and transport will conclude the research to achieve the aim of inductively forming a framework that can be applied to future smart city policy. To conclude, the research recognises the influence of technological perspectives in the development of smart cities to date and highlights this as a challenge to introduce theory applied with a planning dimension. The primary researcher has utilised their experience working in the public sector throughout the investigation to reflect upon what is perceived as a gap in practice of where we are today, to where we need to be tomorrow.Keywords: data, planning, policy development, smart cities
Procedia PDF Downloads 31023850 Investigation of Delivery of Triple Play Service in GE-PON Fiber to the Home Network
Authors: Anurag Sharma, Dinesh Kumar, Rahul Malhotra, Manoj Kumar
Abstract:
Fiber based access networks can deliver performance that can support the increasing demands for high speed connections. One of the new technologies that have emerged in recent years is Passive Optical Networks. This paper is targeted to show the simultaneous delivery of triple play service (data, voice and video). The comparative investigation and suitability of various data rates is presented. It is demonstrated that as we increase the data rate, number of users to be accommodated decreases due to increase in bit error rate.Keywords: BER, PON, TDMPON, GPON, CWDM, OLT, ONT
Procedia PDF Downloads 73423849 Deep-Learning Based Approach to Facial Emotion Recognition through Convolutional Neural Network
Authors: Nouha Khediri, Mohammed Ben Ammar, Monji Kherallah
Abstract:
Recently, facial emotion recognition (FER) has become increasingly essential to understand the state of the human mind. Accurately classifying emotion from the face is a challenging task. In this paper, we present a facial emotion recognition approach named CV-FER, benefiting from deep learning, especially CNN and VGG16. First, the data is pre-processed with data cleaning and data rotation. Then, we augment the data and proceed to our FER model, which contains five convolutions layers and five pooling layers. Finally, a softmax classifier is used in the output layer to recognize emotions. Based on the above contents, this paper reviews the works of facial emotion recognition based on deep learning. Experiments show that our model outperforms the other methods using the same FER2013 database and yields a recognition rate of 92%. We also put forward some suggestions for future work.Keywords: CNN, deep-learning, facial emotion recognition, machine learning
Procedia PDF Downloads 9523848 Data and Biological Sharing Platforms in Community Health Programs: Partnership with Rural Clinical School, University of New South Wales and Public Health Foundation of India
Authors: Vivian Isaac, A. T. Joteeshwaran, Craig McLachlan
Abstract:
The University of New South Wales (UNSW) Rural Clinical School has a strategic collaborative focus on chronic disease and public health. Our objectives are to understand rural environmental and biological interactions in vulnerable community populations. The UNSW Rural Clinical School translational model is a spoke and hub network. This spoke and hub model connects rural data and biological specimens with city based collaborative public health research networks. Similar spoke and hub models are prevalent across research centers in India. The Australia-India Council grant was awarded so we could establish sustainable public health and community research collaborations. As part of the collaborative network we are developing strategies around data and biological sharing platforms between Indian Institute of Public Health, Public Health Foundation of India (PHFI), Hyderabad and Rural Clinical School UNSW. The key objective is to understand how research collaborations are conducted in India and also how data can shared and tracked with external collaborators such as ourselves. A framework to improve data sharing for research collaborations, including DNA was proposed as a project outcome. The complexities of sharing biological data has been investigated via a visit to India. A flagship sustainable project between Rural Clinical School UNSW and PHFI would illustrate a model of data sharing platforms.Keywords: data sharing, collaboration, public health research, chronic disease
Procedia PDF Downloads 45023847 Discrimination of Artificial Intelligence
Authors: Iman Abu-Rub
Abstract:
This research paper examines if Artificial Intelligence is, in fact, racist or not. Different studies from all around the world, and covering different communities were analyzed to further understand AI’s true implications over different communities. The black community, Asian community, and Muslim community were all analyzed and discussed in the paper to figure out if AI is biased or unbiased towards these specific communities. It was found that the biggest problem AI faces is the biased distribution of data collection. Most of the data inserted and coded into AI are of a white male, which significantly affects the other communities in terms of reliable cultural, political, or medical research. Nonetheless, there are various research was done that help increase awareness of this issue, but also solve it completely if done correctly. Governments and big corporations are able to implement different strategies into their AI inventions to avoid any racist results, which could cause hatred culturally but also unreliable data, medically, for example. Overall, Artificial Intelligence is not racist per se, but the data implementation and current racist culture online manipulate AI to become racist.Keywords: social media, artificial intelligence, racism, discrimination
Procedia PDF Downloads 11623846 A Neural Network Modelling Approach for Predicting Permeability from Well Logs Data
Authors: Chico Horacio Jose Sambo
Abstract:
Recently neural network has gained popularity when come to solve complex nonlinear problems. Permeability is one of fundamental reservoir characteristics system that are anisotropic distributed and non-linear manner. For this reason, permeability prediction from well log data is well suited by using neural networks and other computer-based techniques. The main goal of this paper is to predict reservoir permeability from well logs data by using neural network approach. A multi-layered perceptron trained by back propagation algorithm was used to build the predictive model. The performance of the model on net results was measured by correlation coefficient. The correlation coefficient from testing, training, validation and all data sets was evaluated. The results show that neural network was capable of reproducing permeability with accuracy in all cases, so that the calculated correlation coefficients for training, testing and validation permeability were 0.96273, 0.89991 and 0.87858, respectively. The generalization of the results to other field can be made after examining new data, and a regional study might be possible to study reservoir properties with cheap and very fast constructed models.Keywords: neural network, permeability, multilayer perceptron, well log
Procedia PDF Downloads 403