Search results for: neural smith predictor
247 Supervisory Controller with Three-State Energy Saving Mode for Induction Motor in Fluid Transportation
Authors: O. S. Ebrahim, K. O. Shawky, M. O. S. Ebrahim, P. K. Jain
Abstract:
Induction Motor (IM) driving pump is the main consumer of electricity in a typical fluid transportation system (FTS). It was illustrated that changing the connection of the stator windings from delta to star at no load could achieve noticeable active and reactive energy savings. This paper proposes a supervisory hysteresis liquid-level control with three-state energy saving mode (ESM) for IM in FTS including storage tank. The IM pump drive comprises modified star/delta switch and hydromantic coupler. Three-state ESM is defined, along with the normal running, and named analog to computer ESMs as follows: Sleeping mode in which the motor runs at no load with delta stator connection, hibernate mode in which the motor runs at no load with a star connection, and motor shutdown is the third energy saver mode. A logic flow-chart is synthesized to select the motor state at no-load for best energetic cost reduction, considering the motor thermal capacity used. An artificial neural network (ANN) state estimator, based on the recurrent architecture, is constructed and learned in order to provide fault-tolerant capability for the supervisory controller. Sequential test of Wald is used for sensor fault detection. Theoretical analysis, preliminary experimental testing and, computer simulations are performed to show the effectiveness of the proposed control in terms of reliability, power quality and energy/coenergy cost reduction with the suggestion of power factor correction.Keywords: ANN, ESM, IM, star/delta switch, supervisory control, FT, reliability, power quality
Procedia PDF Downloads 193246 The Effect of an Abnormal Prefrontal Cortex on the Symptoms of Attention Deficit/Hyperactivity Disorder
Authors: Irene M. Arora
Abstract:
Hypothesis: Attention Deficit Hyperactivity Disorder is the result of an underdeveloped prefrontal cortex which is the primary cause for the signs and symptoms seen as defining features of ADHD. Methods: Through ‘PubMed’, ‘Wiley’ and ‘Google Scholar’ studies published between 2011-2018 were evaluated, determining if a dysfunctional prefrontal cortex caused the characteristic symptoms associated with ADHD. The search terms "prefrontal cortex", "Attention-Deficit/Hyperactivity Disorder", "cognitive control", "frontostriatal tract" among others, were used to maximize the assortment of relevant studies. Excluded papers were systematic reviews, meta-analyses and publications published before 2010 to ensure clinical relevance. Results: Nine publications were analyzed in this review, all of which were non-randomized matched control studies. Three studies found a decrease in the functional integrity of the frontostriatal tract fibers in conjunction with four studies finding impaired frontal cortex stimulation. Prefrontal dysfunction, specifically medial and orbitofrontal areas, displayed abnormal functionality of reward processing in ADHD patients when compared to their normal counterparts. A total of 807 subjects were studied in this review, yielding that a little over half (54%) presented with remission of symptoms in adulthood. Conclusion: While the prefrontal cortex shows the highest consistency of impaired activity and thinner volumes in patients with ADHD, this is a heterogenous disorder implicating its pathophysiology to the dysfunction of other neural structures as well. However, remission of ADHD symptomatology in adulthood was found to be attributable to increased prefrontal functional connectivity and integration, suggesting a key role for the prefrontal cortex in the development of ADHD.Keywords: prefrontal cortex, ADHD, inattentive, impulsivity, reward processing
Procedia PDF Downloads 119245 Real Time Classification of Political Tendency of Twitter Spanish Users based on Sentiment Analysis
Authors: Marc Solé, Francesc Giné, Magda Valls, Nina Bijedic
Abstract:
What people say on social media has turned into a rich source of information to understand social behavior. Specifically, the growing use of Twitter social media for political communication has arisen high opportunities to know the opinion of large numbers of politically active individuals in real time and predict the global political tendencies of a specific country. It has led to an increasing body of research on this topic. The majority of these studies have been focused on polarized political contexts characterized by only two alternatives. Unlike them, this paper tackles the challenge of forecasting Spanish political trends, characterized by multiple political parties, by means of analyzing the Twitters Users political tendency. According to this, a new strategy, named Tweets Analysis Strategy (TAS), is proposed. This is based on analyzing the users tweets by means of discovering its sentiment (positive, negative or neutral) and classifying them according to the political party they support. From this individual political tendency, the global political prediction for each political party is calculated. In order to do this, two different strategies for analyzing the sentiment analysis are proposed: one is based on Positive and Negative words Matching (PNM) and the second one is based on a Neural Networks Strategy (NNS). The complete TAS strategy has been performed in a Big-Data environment. The experimental results presented in this paper reveal that NNS strategy performs much better than PNM strategy to analyze the tweet sentiment. In addition, this research analyzes the viability of the TAS strategy to obtain the global trend in a political context make up by multiple parties with an error lower than 23%.Keywords: political tendency, prediction, sentiment analysis, Twitter
Procedia PDF Downloads 238244 Innovative Predictive Modeling and Characterization of Composite Material Properties Using Machine Learning and Genetic Algorithms
Authors: Hamdi Beji, Toufik Kanit, Tanguy Messager
Abstract:
This study aims to construct a predictive model proficient in foreseeing the linear elastic and thermal characteristics of composite materials, drawing on a multitude of influencing parameters. These parameters encompass the shape of inclusions (circular, elliptical, square, triangle), their spatial coordinates within the matrix, orientation, volume fraction (ranging from 0.05 to 0.4), and variations in contrast (spanning from 10 to 200). A variety of machine learning techniques are deployed, including decision trees, random forests, support vector machines, k-nearest neighbors, and an artificial neural network (ANN), to facilitate this predictive model. Moreover, this research goes beyond the predictive aspect by delving into an inverse analysis using genetic algorithms. The intent is to unveil the intrinsic characteristics of composite materials by evaluating their thermomechanical responses. The foundation of this research lies in the establishment of a comprehensive database that accounts for the array of input parameters mentioned earlier. This database, enriched with this diversity of input variables, serves as a bedrock for the creation of machine learning and genetic algorithm-based models. These models are meticulously trained to not only predict but also elucidate the mechanical and thermal conduct of composite materials. Remarkably, the coupling of machine learning and genetic algorithms has proven highly effective, yielding predictions with remarkable accuracy, boasting scores ranging between 0.97 and 0.99. This achievement marks a significant breakthrough, demonstrating the potential of this innovative approach in the field of materials engineering.Keywords: machine learning, composite materials, genetic algorithms, mechanical and thermal proprieties
Procedia PDF Downloads 54243 Adaptive Motion Compensated Spatial Temporal Filter of Colonoscopy Video
Authors: Nidhal Azawi
Abstract:
Colonoscopy procedure is widely used in the world to detect an abnormality. Early diagnosis can help to heal many patients. Because of the unavoidable artifacts that exist in colon images, doctors cannot detect a colon surface precisely. The purpose of this work is to improve the visual quality of colonoscopy videos to provide better information for physicians by removing some artifacts. This work complements a series of work consisting of three previously published papers. In this paper, Optic flow is used for motion compensation, and then consecutive images are aligned/registered to integrate some information to create a new image that has or reveals more information than the original one. Colon images have been classified into informative and noninformative images by using a deep neural network. Then, two different strategies were used to treat informative and noninformative images. Informative images were treated by using Lucas Kanade (LK) with an adaptive temporal mean/median filter, whereas noninformative images are treated by using Lucas Kanade with a derivative of Gaussian (LKDOG) with adaptive temporal median images. A comparison result showed that this work achieved better results than that results in the state- of- the- art strategies for the same degraded colon images data set, which consists of 1000 images. The new proposed algorithm reduced the error alignment by about a factor of 0.3 with a 100% successfully image alignment ratio. In conclusion, this algorithm achieved better results than the state-of-the-art approaches in case of enhancing the informative images as shown in the results section; also, it succeeded to convert the non-informative images that have very few details/no details because of the blurriness/out of focus or because of the specular highlight dominate significant amount of an image to informative images.Keywords: optic flow, colonoscopy, artifacts, spatial temporal filter
Procedia PDF Downloads 113242 Author Profiling: Prediction of Learners’ Gender on a MOOC Platform Based on Learners’ Comments
Authors: Tahani Aljohani, Jialin Yu, Alexandra. I. Cristea
Abstract:
The more an educational system knows about a learner, the more personalised interaction it can provide, which leads to better learning. However, asking a learner directly is potentially disruptive, and often ignored by learners. Especially in the booming realm of MOOC Massive Online Learning platforms, only a very low percentage of users disclose demographic information about themselves. Thus, in this paper, we aim to predict learners’ demographic characteristics, by proposing an approach using linguistically motivated Deep Learning Architectures for Learner Profiling, particularly targeting gender prediction on a FutureLearn MOOC platform. Additionally, we tackle here the difficult problem of predicting the gender of learners based on their comments only – which are often available across MOOCs. The most common current approaches to text classification use the Long Short-Term Memory (LSTM) model, considering sentences as sequences. However, human language also has structures. In this research, rather than considering sentences as plain sequences, we hypothesise that higher semantic - and syntactic level sentence processing based on linguistics will render a richer representation. We thus evaluate, the traditional LSTM versus other bleeding edge models, which take into account syntactic structure, such as tree-structured LSTM, Stack-augmented Parser-Interpreter Neural Network (SPINN) and the Structure-Aware Tag Augmented model (SATA). Additionally, we explore using different word-level encoding functions. We have implemented these methods on Our MOOC dataset, which is the most performant one comparing with a public dataset on sentiment analysis that is further used as a cross-examining for the models' results.Keywords: deep learning, data mining, gender predication, MOOCs
Procedia PDF Downloads 147241 Enhancing Neural Connections through Music and tDCS: Insights from an fNIRS Study
Authors: Dileep G., Akash Singh, Dalchand Ahirwar, Arkadeep Ghosh, Ashutosh Purohit, Gaurav Guleria, Kshatriya Om Prashant, Pushkar Patel, Saksham Kumar, Vanshaj Nathani, Vikas Dangi, Shubhajit Roy Chowdhury, Varun Dutt
Abstract:
Transcranial direct current stimulation (tDCS) has shown promise as a novel approach to enhance cognitive performance and provide therapeutic benefits for various brain disorders. However, the exact underlying brain mechanisms are not fully understood. We conducted a study to examine the brain's functional changes when subjected to simultaneous tDCS and music (Indian classical raga). During the study, participants in the experimental group underwent a 20-minute session of tDCS at two mA while listening to music (raga) for a duration of seven days. In contrast, the control group received a sham stimulation for two minutes at two mA over the same seven-day period. The objective was to examine whether repetitive tDCS could lead to the formation of additional functional connections between the medial prefrontal cortex (the stimulated area) and the auditory cortex in comparison to a sham stimulation group. In this study, 26 participants (5 female) underwent pre- and post-intervention scans, where changes were compared after one week of either tDCS or sham stimulation in conjunction with music. The study revealed significant effects of tDCS on functional connectivity between the stimulated area and the auditory cortex. The combination of tDCS applied over the mPFC and music resulted in newly formed connections. Based on our findings, it can be inferred that applying anodal tDCS over the mPFC enhances functional connectivity between the stimulated area and the auditory cortex when compared to the effects observed with sham stimulation.Keywords: fNIRS, tDCS, neuroplasticity, music
Procedia PDF Downloads 71240 Mathematics Professional Development: Uptake and Impacts on Classroom Practice
Authors: Karen Koellner, Nanette Seago, Jennifer Jacobs, Helen Garnier
Abstract:
Although studies of teacher professional development (PD) are prevalent, surprisingly most have only produced incremental shifts in teachers’ learning and their impact on students. There is a critical need to understand what teachers take up and use in their classroom practice after attending PD and why we often do not see greater changes in learning and practice. This paper is based on a mixed methods efficacy study of the Learning and Teaching Geometry (LTG) video-based mathematics professional development materials. The extent to which the materials produce a beneficial impact on teachers’ mathematics knowledge, classroom practices, and their students’ knowledge in the domain of geometry through a group-randomized experimental design are considered. Included is a close-up examination of a small group of teachers to better understand their interpretations of the workshops and their classroom uptake. The participants included 103 secondary mathematics teachers serving grades 6-12 from two US states in different regions. Randomization was conducted at the school level, with 23 schools and 49 teachers assigned to the treatment group and 18 schools and 54 teachers assigned to the comparison group. The case study examination included twelve treatment teachers. PD workshops for treatment teachers began in Summer 2016. Nine full days of professional development were offered to teachers, beginning with the one-week institute (Summer 2016) and four days of PD throughout the academic year. The same facilitator-led all of the workshops, after completing a facilitator preparation process that included a multi-faceted assessment of fidelity. The overall impact of the LTG PD program was assessed from multiple sources: two teacher content assessments, two PD embedded assessments, pre-post-post videotaped classroom observations, and student assessments. Additional data were collected from the case study teachers including additional videotaped classroom observations and interviews. Repeated measures ANOVA analyses were used to detect patterns of change in the treatment teachers’ content knowledge before and after completion of the LTG PD, relative to the comparison group. No significant effects were found across the two groups of teachers on the two teacher content assessments. Teachers were rated on the quality of their mathematics instruction captured in videotaped classroom observations using the Math in Common Observation Protocol. On average, teachers who attended the LTG PD intervention improved their ability to engage students in mathematical reasoning and to provide accurate, coherent, and well-justified mathematical content. In addition, the LTG PD intervention and instruction that engaged students in mathematical practices both positively and significantly predicted greater student knowledge gains. Teacher knowledge was not a significant predictor. Twelve treatment teachers self-selected to serve as case study teachers to provide additional videotapes in which they felt they were using something from the PD they learned and experienced. Project staff analyzed the videos, compared them to previous videos and interviewed the teachers regarding their uptake of the PD related to content knowledge, pedagogical knowledge and resources used. The full paper will include the case study of Ana to illustrate the factors involved in what teachers take up and use from participating in the LTG PD.Keywords: geometry, mathematics professional development, pedagogical content knowledge, teacher learning
Procedia PDF Downloads 125239 Applications of Polyvagal Theory for Trauma in Clinical Practice: Auricular Acupuncture and Herbology
Authors: Aurora Sheehy, Caitlin Prince
Abstract:
Within current orthodox medical protocols, trauma and mental health issues are deemed to reside within the realm of cognitive or psychological therapists and are marginalised in these areas, in part due to limited drugs option available, mostly manipulating neurotransmitters or sedating patients to reduce symptoms. By contrast, this research presents examples from the clinical practice of how trauma can be assessed and treated physiologically. Adverse Childhood Experiences (ACEs) are a tally of different types of abuse and neglect. It has been used as a measurable and reliable predictor of the likelihood of the development of autoimmune disease. It is a direct way to demonstrate reliably the health impact of traumatic life experiences. A second assessment tool is Allostatic Load, which refers to the cumulative effects that chronic stress has on mental and physical health. It records the decline of an individual’s physiological capacity to cope with their experience. It uses a specific grouping of serum testing and physical measures. It includes an assessment of neuroendocrine, cardiovascular, immune and metabolic systems. Allostatic load demonstrates the health impact that trauma has throughout the body. It forms part of an initial intake assessment in clinical practice and could also be used in research to evaluate treatment. Examining medicinal plants for their physiological, neurological and somatic effects through the lens of Polyvagal theory offers new opportunities for trauma treatments. In situations where Polyvagal theory recommends activities and exercises to enable parasympathetic activation, many herbs that affect Effector Memory T (TEM) cells also enact these responses. Traditional or Indigenous European herbs show the potential to support the polyvagal tone, through multiple mechanisms. As the ventral vagal nerve reaches almost every major organ, plants that have actions on these tissues can be understood via their polyvagal actions, such as monoterpenes as agents to improve respiratory vagal tone, cyanogenic glycosides to reset polyvagal tone, volatile oils rich in phenyl methyl esters improve both sympathetic and parasympathetic tone, bitters activate gut function and can strongly promote parasympathetic regulation. Auricular Acupuncture uses a system of somatotopic mapping of the auricular surface overlaid with an image of an inverted foetus with each body organ and system featured. Given that the concha of the auricle is the only place on the body where the Vagus Nerve neurons reach the surface of the skin, several investigators have evaluated non-invasive, transcutaneous electrical nerve stimulation (TENS) at auricular points. Drawn from an interdisciplinary evidence base and developed through clinical practice, these assessment and treatment tools are examples of practitioners in the field innovating out of necessity for the best outcomes for patients. This paper draws on case studies to direct future research.Keywords: polyvagal, auricular acupuncture, trauma, herbs
Procedia PDF Downloads 91238 Sleep Disturbance in Indonesian School-Aged Children and Its Relationship to Nutritional Aspect
Authors: William Cheng, Rini Sekartini
Abstract:
Background: Sleep is essential for children because it provides enhancement for the neural system activities that give physiologic effects for the body to support growth and development. One of the modifiable factors that relates with sleep is nutrition, which includes nutritional status, iron intake, and magnesium intake. Nutritional status represents the balance between nutritional intake and expenditure, while iron and magnesium are micronutrients that are related to sleep regulation. The aim of this study is to identify prevalence of sleep disturbance among Indonesian children and to evaluate its relation with aspect to nutrition. Methods : A cross-sectional study involving children aged 5 to 7-years-old in an urban primary health care between 2012 and 2013 was carried out. Related data includes anthropometric status, iron intake, and magnesium intake. Iron and magnesium intake was obtained by 24-hours food recall procedure. Sleep Disturbance Scale for Children (SDSC) was used as the diagnostic tool for sleep disturbance, with score under 39 indicating presence of problem. Results: Out of 128 school-aged children included in this study, 28 (23,1%) of them were found to have sleep disturbance. The majority of children had good nutritional status, with only 15,7% that were severely underweight or underweight, and 12,4% that were identified as stunted. On the contrary, 99 children (81,8%) were identified to have inadequate magnesium intake and 56 children (46,3%) with inadequate iron intake. Our analysis showed there was no significant relation between all of the nutritional status indicators and sleep disturbance (p>0,05%). Moreover, inadequate iron and magnesium intake also failed to prove significant relation with sleep disturbance in this population. Conclusion: Almost fourth of school-aged children in Indonesia were found to have sleep disturbance and further study are needed to overcome this problem. According to our finding, there is no correlation between nutritional status, iron intake, magnesium intake, and sleep disturbance.Keywords: iron intake, magnesium intake, nutritional status, school-aged children, sleep disturbance
Procedia PDF Downloads 466237 Lucilia Sericata Netrin-A: Secreted by Salivary Gland Larvae as a Potential to Neuroregeneration
Authors: Hamzeh Alipour, Masoumeh Bagheri, Tahereh Karamzadeh, Abbasali Raz, Kourosh Azizi
Abstract:
Netrin-A, a protein identified for conducting commissural axons, has a similar role in angiogenesis. In addition, studies have shown that one of the netrin-A receptors is expressed in the growing cells of small capillaries. It will be interesting to study this new group of molecules because their role in wound healing will become clearer in the future due to angiogenesis. The greenbottle blowfly Luciliasericata (L. sericata) larvae are increasingly used in maggot therapy of chronic wounds. This aim of this was the identification of moleculareatures of Netrin-A in L. sericata larvae. Larvae were reared under standard maggotarium conditions. The nucleic acid sequence of L. sericataNetrin-A (LSN-A) was then identified using Rapid Amplification of cDNA Ends (RACE) and Rapid Amplification of Genomic Ends (RAGE). Parts of the Netrin-A gene, including the middle, 3′-, and 5′-ends were identified, TA cloned in pTG19 plasmid, and transferred into DH5ɑ Escherichia coli. Each part was sequenced and assembled using SeqMan software. This gene structure was further subjected to in silico analysis. The DNA of LSN-A was identified to be 2407 bp, while its mRNA sequence was recognized as 2115 bp by Oligo0.7 software. It translated the Netrin-A protein with 704 amino acid residues. Its molecular weight is estimated to be 78.6 kDa. The 3-D structure ofNetrin-A drawn by SWISS-MODEL revealed its similarity to the Netrin-1 of humans with 66.8% identity. The LSN-A protein conduces to repair the myelin membrane in neuronal cells. Ultimately, it can be an effective candidate in neural regeneration and wound healing. Furthermore, our next attempt is to deplore recombinant proteins for use in medical sciences.Keywords: maggot therapy, netrin-A, RACE, RAGE, lucilia sericata
Procedia PDF Downloads 109236 Flexible and Color Tunable Inorganic Light Emitting Diode Array for High Resolution Optogenetic Devices
Authors: Keundong Lee, Dongha Yoo, Youngbin Tchoe, Gyu-Chul Yi
Abstract:
Light emitting diode (LED) array is an ideal optical stimulation tool for optogenetics, which controls inhibition and excitation of specific neurons with light-sensitive ion channels or pumps. Although a fiber-optic cable with an external light source, either a laser or LED mechanically connected to the end of the fiber-optic cable has widely been used for illumination on neural tissue, a new approach to use micro LEDs (µLEDs) has recently been demonstrated. The LEDs can be placed directly either on the cortical surface or within the deep brain using a penetrating depth probe. Accordingly, this method would not need a permanent opening in the skull if the LEDs are integrated with miniature electrical power source and wireless communication. In addition, multiple color generation from single µLED cell would enable to excite and/or inhibit neurons in localized regions. Here, we demonstrate flexible and color tunable µLEDs for the optogenetic device applications. The flexible and color tunable LEDs was fabricated using multifaceted gallium nitride (GaN) nanorod arrays with GaN nanorods grown on InxGa1−xN/GaN single quantum well structures (SQW) anisotropically formed on the nanorod tips and sidewalls. For various electroluminescence (EL) colors, current injection paths were controlled through a continuous p-GaN layer depending on the applied bias voltage. The electric current was injected through different thickness and composition, thus changing the color of light from red to blue that the LED emits. We believe that the flexible and color tunable µLEDs enable us to control activities of the neuron by emitting various colors from the single µLED cell.Keywords: light emitting diode, optogenetics, graphene, flexible optoelectronics
Procedia PDF Downloads 211235 Academic Major, Gender, and Perceived Helpfulness Predict Help-Seeking Stigma
Authors: Tran Tran
Abstract:
Mental health issues are prevalent among Vietnamese undergraduate students, and they are greatly exacerbated during the COVID-19 pandemic for this population. While there is empirical evidence supporting the effectiveness and efficiency of therapy on mental health issues among college students, the rates of Vietnamese college students seeking professional mental health services were alarmingly low. Multiple factors can prevent those in need from finding support. The Internalized Stigma Model posits that public stigma directly affects intentions to seek psychological help via self-stigma and attitudes toward seeking help. However, little research has focused on what factors can predict public stigma toward seeking professional psychological support, especially among this population. A potential predictor is academic majors since academic majors can influence undergraduate students' perceptions, attitudes, and intentions. A study suggested that students who have completed two or more psychology courses have a more positive attitude toward seeking care for mental health issues and reduced stigma, which might be attributed to increased mental health literacy. In addition, research has shown that women are more likely to utilize mental health services and have lower stigma than men. Finally, studies have also suggested that experience of mental health services can increase endorsement of perceived need and lower stigma. Thus, it is expected that perceived helpfulness from past service uses can reduce stigma. This study aims to address this gap in the literature and investigate which factors can predict public stigma, specifically academic major, gender, and perceived helpfulness, potentially suggesting an avenue of prevention and ultimately improving the well-being of Vietnamese college students. The sample includes 408 undergraduate students (Mage = 20.44; 80.88% female) Hanoi city, Vietnam. Participants completed a pen-and-paper questionnaire. Students completed the Stigma Scale for Receiving Psychological Help, which yielded a mean public stigma score. Participants also completed a measurement assessing their perceived helpfulness of their university’s counseling center, which included eight subscales: future self-development, learning issues, career counseling, medical and health issues, mental health issues, conflicts between teachers and students, conflicts between parents and students, and interpersonal relationships. Items were summed to create a composite perceived helpfulness score. Finally, participants provided demographic information. This included gender, which was dichotomized between female and other. Additionally, it included academic major, which was also similarly dichotomized between psychology and other (e.g., natural science, social science, and pedagogy & social work). Linear relationships between public stigma and gender, academic major, and perceived helpfulness were analyzed individually with a regression model. Findings suggested that academic major, gender, and perceived counseling center's helpfulness predicted stigma against seeking professional psychological help. Specifically, being a psychology major predicted lower levels of public stigma (β = -.25, p < .001). Additionally, gender female predicted lower levels of public stigma (β = -.11, p < .05). Lastly, higher levels of perceived helpfulness of the counseling center also predicted lower levels of public stigma (β = -.16, p < .01). The study’s results offer potential intervention avenues to help reduce stigma and increase well-being for Vietnamese college students.Keywords: stigma, vietnamese college students, counseling services, help-seeking
Procedia PDF Downloads 88234 Infused Mesenchymal Stem Cells Ameliorate Organs Morphology in Cerebral Malaria Infection
Authors: Reva Sharan Thakur, Mrinalini Tiwari, Jyoti das
Abstract:
Cerebral malaria-associated over expression of pro-inflammatory cytokines and chemokines ultimately results in the up-regulation of adhesion molecules in the brain endothelium leading to sequestration of mature parasitized RBCs in the brain. The high-parasitic load subsequently results in increased mortality or development of neurological symptoms within a week of infection. Studies in the human and experimental cerebral malaria have implicated the breakdown of the integrity of blood-brain barrier during the lethal course of infection, cerebral dysfunction, and fatal organ pathologies that result in multi-organ failure. In the present study, using Plasmodium berghei Anka as a mouse model and in vitro conditions, we have investigated the effect of MSCs to attenuate cerebral malaria pathogenesis by diminishing the effect of inflammation altered organ morphology, reduced parasitemia, and increased survival of the mice. MSCs are also validated for their role in preventing BBB dysfunction and reducing malarial toxins. It was observed that administration of MSCs significantly reduced parasitemia and increased survival in Pb A infected mice. It was further demonstrated that MSCs play a significant role in reversing neurological complexities associated with cerebral malaria. Infusion of MSCs in infected mice decreased hemozoin deposition; oedema, and haemorrhagic lesions in vascular organs. MSCs administration also preserved the integrity of the blood-brain barrier and reduced neural inflammation. Taken together, our results demonstrate the potential of MSCs as an emerging anti-malarial candidate.Keywords: cerebral malaria, mesenchymal stem cells, erythropoesis, cell death
Procedia PDF Downloads 103233 Modeling Thermal Changes of Urban Blocks in Relation to the Landscape Structure and Configuration in Guilan Province
Authors: Roshanak Afrakhteh, Abdolrasoul Salman Mahini, Mahdi Motagh, Hamidreza Kamyab
Abstract:
Urban Heat Islands (UHIs) are distinctive urban areas characterized by densely populated central cores surrounded by less densely populated peripheral lands. These areas experience elevated temperatures, primarily due to impermeable surfaces and specific land use patterns. The consequences of these temperature variations are far-reaching, impacting the environment and society negatively, leading to increased energy consumption, air pollution, and public health concerns. This paper emphasizes the need for simplified approaches to comprehend UHI temperature dynamics and explains how urban development patterns contribute to land surface temperature variation. To illustrate this relationship, the study focuses on the Guilan Plain, utilizing techniques like principal component analysis and generalized additive models. The research centered on mapping land use and land surface temperature in the low-lying area of Guilan province. Satellite data from Landsat sensors for three different time periods (2002, 2012, and 2021) were employed. Using eCognition software, a spatial unit known as a "city block" was utilized through object-based analysis. The study also applied the normalized difference vegetation index (NDVI) method to estimate land surface radiance. Predictive variables for urban land surface temperature within residential city blocks were identified categorized as intrinsic (related to the block's structure) and neighboring (related to adjacent blocks) variables. Principal Component Analysis (PCA) was used to select significant variables, and a Generalized Additive Model (GAM) approach, implemented using R's mgcv package, modeled the relationship between urban land surface temperature and predictor variables.Notable findings included variations in urban temperature across different years attributed to environmental and climatic factors. Block size, shared boundary, mother polygon area, and perimeter-to-area ratio were identified as main variables for the generalized additive regression model. This model showed non-linear relationships, with block size, shared boundary, and mother polygon area positively correlated with temperature, while the perimeter-to-area ratio displayed a negative trend. The discussion highlights the challenges of predicting urban surface temperature and the significance of block size in determining urban temperature patterns. It also underscores the importance of spatial configuration and unit structure in shaping urban temperature patterns. In conclusion, this study contributes to the growing body of research on the connection between land use patterns and urban surface temperature. Block size, along with block dispersion and aggregation, emerged as key factors influencing urban surface temperature in residential areas. The proposed methodology enhances our understanding of parameter significance in shaping urban temperature patterns across various regions, particularly in Iran.Keywords: urban heat island, land surface temperature, LST modeling, GAM, Gilan province
Procedia PDF Downloads 73232 Multivariate Data Analysis for Automatic Atrial Fibrillation Detection
Authors: Zouhair Haddi, Stephane Delliaux, Jean-Francois Pons, Ismail Kechaf, Jean-Claude De Haro, Mustapha Ouladsine
Abstract:
Atrial fibrillation (AF) has been considered as the most common cardiac arrhythmia, and a major public health burden associated with significant morbidity and mortality. Nowadays, telemedical approaches targeting cardiac outpatients situate AF among the most challenged medical issues. The automatic, early, and fast AF detection is still a major concern for the healthcare professional. Several algorithms based on univariate analysis have been developed to detect atrial fibrillation. However, the published results do not show satisfactory classification accuracy. This work was aimed at resolving this shortcoming by proposing multivariate data analysis methods for automatic AF detection. Four publicly-accessible sets of clinical data (AF Termination Challenge Database, MIT-BIH AF, Normal Sinus Rhythm RR Interval Database, and MIT-BIH Normal Sinus Rhythm Databases) were used for assessment. All time series were segmented in 1 min RR intervals window and then four specific features were calculated. Two pattern recognition methods, i.e., Principal Component Analysis (PCA) and Learning Vector Quantization (LVQ) neural network were used to develop classification models. PCA, as a feature reduction method, was employed to find important features to discriminate between AF and Normal Sinus Rhythm. Despite its very simple structure, the results show that the LVQ model performs better on the analyzed databases than do existing algorithms, with high sensitivity and specificity (99.19% and 99.39%, respectively). The proposed AF detection holds several interesting properties, and can be implemented with just a few arithmetical operations which make it a suitable choice for telecare applications.Keywords: atrial fibrillation, multivariate data analysis, automatic detection, telemedicine
Procedia PDF Downloads 267231 Functional Traits and Agroecosystem Multifunctionality in Summer Cover Crop Mixtures and Monocultures
Authors: Etienne Herrick
Abstract:
As an economically and ecologically feasible method for farmers to introduce greater diversity into their crop rotations, cover cropping presents a valuable opportunity for improving the sustainability of food production. Planted in-between cash crop growing seasons, cover crops serve to enhance agroecosystem functioning, rather than being destined for sale or consumption. In fact, cover crops may hold the capacity to deliver multiple ecosystem functions or services simultaneously (multifunctionality). Building upon this line of research will not only benefit society at present, but also support its continued survival through its potential for restoring depleted soils and reducing the need for energy-intensive and harmful external inputs like fertilizers and pesticides. This study utilizes a trait-based approach to explore the influence of inter- and intra-specific interactions in summer cover crop mixtures and monocultures on functional trait expression and ecosystem services. Functional traits that enhance ecosystem services related to agricultural production include height, specific leaf area (SLA), root, shoot ratio, leaf C and N concentrations, and flowering phenology. Ecosystem services include biomass production, weed suppression, reduced N leaching, N recycling, and support of pollinators. Employing a trait-based approach may allow for the elucidation of mechanistic links between plant structure and resulting ecosystem service delivery. While relationships between some functional traits and the delivery of particular ecosystem services may be readily apparent through existing ecological knowledge (e.g. height positively correlating with weed suppression), this study will begin to quantify those relationships so as to gain further understanding of whether and how measurable variation in functional trait expression across cover crop mixtures and monocultures can serve as a reliable predictor of variation in the types and abundances of ecosystem services delivered. Six cover crop species, including legume, grass, and broadleaf functional types, were selected for growth in six mixtures and their component monocultures based upon the principle of trait complementarity. The tricultures (three-way mixtures) are comprised of a legume, grass, and broadleaf species, and include cowpea/sudex/buckwheat, sunnhemp/sudex/buckwheat, and chickling vetch/oat/buckwheat combinations; the dicultures contain the same legume and grass combinations as above, without the buckwheat broadleaf. By combining species with expectedly complimentary traits (for example, legumes are N suppliers and grasses are N acquirers, creating a nutrient cycling loop) the cover crop mixtures may elicit a broader range of ecosystem services than that provided by a monoculture, though trade-offs could exist. Collecting functional trait data will enable the investigation of the types of interactions driving these ecosystem service outcomes. It also allows for generalizability across a broader range of species than just those selected for this study, which may aid in informing further research efforts exploring species and ecosystem functioning, as well as on-farm management decisions.Keywords: agroecology, cover crops, functional traits, multifunctionality, trait complementarity
Procedia PDF Downloads 256230 Prospects of Low Immune Response Transplants Based on Acellular Organ Scaffolds
Authors: Inna Kornienko, Svetlana Guryeva, Anatoly Shekhter, Elena Petersen
Abstract:
Transplantation is an effective treatment option for patients suffering from different end-stage diseases. However, it is plagued by a constant shortage of donor organs and the subsequent need of a lifelong immunosuppressive therapy for the patient. Currently some researchers look towards using of pig organs to replace human organs for transplantation since the matrix derived from porcine organs is a convenient substitute for the human matrix. As an initial step to create a new ex vivo tissue engineered model, optimized protocols have been created to obtain organ-specific acellular matrices and evaluated their potential as tissue engineered scaffolds for culture of normal cells and tumor cell lines. These protocols include decellularization by perfusion in a bioreactor system and immersion-agitation on an orbital shaker with use of various detergents (SDS, Triton X-100) and freezing. Complete decellularization – in terms of residual DNA amount – is an important predictor of probability of immune rejection of materials of natural origin. However, the signs of cellular material may still remain within the matrix even after harsh decellularization protocols. In this regard, the matrices obtained from tissues of low-immunogenic pigs with α3Galactosyl-tranferase gene knock out (GalT-KO) may be a promising alternative to native animal sources. The research included a study of induced effect of frozen and fresh fragments of GalT-KO skin on healing of full-thickness plane wounds in 80 rats. Commercially available wound dressings (Ksenoderm, Hyamatrix and Alloderm) as well as allogenic skin were used as a positive control and untreated wounds were analyzed as a negative control. The results were evaluated on the 4th day after grafting, which corresponds to the time of start of normal wound epithelization. It has been shown that a non-specific immune response in models treated with GalT-Ko pig skin was milder than in all the control groups. Research has been performed to measure technical skin characteristics: stiffness and elasticity properties, corneometry, tevametry, and cutometry. These metrics enabled the evaluation of hydratation level, corneous layer husking level, as well as skin elasticity and micro- and macro-landscape. These preliminary data may contribute to development of personalized transplantable organs from GalT-Ko pigs with significantly limited potential of immune rejection. By applying growth factors to a decellularized skin sample it is possible to achieve various regenerative effects based on the particular situation. In this particular research BMP2 and Heparin-binding EGF-like growth factor have been used. Ideally, a bioengineered organ must be biocompatible, non-immunogenic and support cell growth. Porcine organs are attractive for xenotransplantation if severe immunologic concerns can be bypassed. The results indicate that genetically modified pig tissues with knock-outed α3Galactosyl-tranferase gene may be used for production of low-immunogenic matrix suitable for transplantation.Keywords: decellularization, low-immunogenic, matrix, scaffolds, transplants
Procedia PDF Downloads 275229 Parsonage Turner Syndrome PTS, Case Report
Authors: A. M. Bumbea, A. Musetescu, P. Ciurea, A. Bighea
Abstract:
Objectives: The authors present a Parsonage Turner syndrome, a rare disease characterized by onset in apparently healthy person with shoulder and/or arm pain, sensory deficit, motor deficit. The causes are not established, could be determinate by vaccination, postoperative, immunologic disease, post traumatic etc. Methods: The authors present a woman case, 32 years old, (in 2006), no medical history, with arm pain and no other symptom. The onset was sudden with pain at very high level quantified as 10 to a 0 to 10 scale, with no response to classical analgesic and corticoids. The only drugs which can reduce the intensity of pain were oxycodone hydrochloride, 60 mg daily and pregabalinum150 mg daily. After two weeks the intensity of pain was reduced to 5. The patient started a rehabilitation program. After 6 weeks the patient associated sensory and motor deficit. We performed electromyography for upper limb that showed incomplete denervation with reduced neural transmission speed. The patient receives neurotrophic drugs and painkillers for a long period and physical and kinetic therapy. After 6 months the pain was reduced to level 2 and the patient maintained only 150 mg pregabalinum for another 6 months. Then, the evaluation showed no pain but general amiotrophy in upper limb. Results: At the evaluation in 2009, the patient developed a rheumatoid syndrome with tender and swelling joints, but no positive inflammation test, no antibodies or rheumatoid factor. After two years, in 2011 the patient develops an increase of antinuclear antibodies. This context certifies the diagnosis of lupus and the patient receives the specific therapy. Conclusions: This case is not a typical case of onset of lupus with PTS, but the onset of PTS could include the onset of an immune disease.Keywords: lupus, arm pain, patient, swelling
Procedia PDF Downloads 330228 Generalized Additive Model for Estimating Propensity Score
Authors: Tahmidul Islam
Abstract:
Propensity Score Matching (PSM) technique has been widely used for estimating causal effect of treatment in observational studies. One major step of implementing PSM is estimating the propensity score (PS). Logistic regression model with additive linear terms of covariates is most used technique in many studies. Logistics regression model is also used with cubic splines for retaining flexibility in the model. However, choosing the functional form of the logistic regression model has been a question since the effectiveness of PSM depends on how accurately the PS been estimated. In many situations, the linearity assumption of linear logistic regression may not hold and non-linear relation between the logit and the covariates may be appropriate. One can estimate PS using machine learning techniques such as random forest, neural network etc for more accuracy in non-linear situation. In this study, an attempt has been made to compare the efficacy of Generalized Additive Model (GAM) in various linear and non-linear settings and compare its performance with usual logistic regression. GAM is a non-parametric technique where functional form of the covariates can be unspecified and a flexible regression model can be fitted. In this study various simple and complex models have been considered for treatment under several situations (small/large sample, low/high number of treatment units) and examined which method leads to more covariate balance in the matched dataset. It is found that logistic regression model is impressively robust against inclusion quadratic and interaction terms and reduces mean difference in treatment and control set equally efficiently as GAM does. GAM provided no significantly better covariate balance than logistic regression in both simple and complex models. The analysis also suggests that larger proportion of controls than treatment units leads to better balance for both of the methods.Keywords: accuracy, covariate balances, generalized additive model, logistic regression, non-linearity, propensity score matching
Procedia PDF Downloads 367227 Design and Optimization of a Small Hydraulic Propeller Turbine
Authors: Dario Barsi, Marina Ubaldi, Pietro Zunino, Robert Fink
Abstract:
A design and optimization procedure is proposed and developed to provide the geometry of a high efficiency compact hydraulic propeller turbine for low head. For the preliminary design of the machine, classic design criteria, based on the use of statistical correlations for the definition of the fundamental geometric parameters and the blade shapes are used. These relationships are based on the fundamental design parameters (i.e., specific speed, flow coefficient, work coefficient) in order to provide a simple yet reliable procedure. Particular attention is paid, since from the initial steps, on the correct conformation of the meridional channel and on the correct arrangement of the blade rows. The preliminary geometry thus obtained is used as a starting point for the hydrodynamic optimization procedure, carried out using a CFD calculation software coupled with a genetic algorithm that generates and updates a large database of turbine geometries. The optimization process is performed using a commercial approach that solves the turbulent Navier Stokes equations (RANS) by exploiting the axial-symmetric geometry of the machine. The geometries generated within the database are therefore calculated in order to determine the corresponding overall performance. In order to speed up the optimization calculation, an artificial neural network (ANN) based on the use of an objective function is employed. The procedure was applied for the specific case of a propeller turbine with an innovative design of a modular type, specific for applications characterized by very low heads. The procedure is tested in order to verify its validity and the ability to automatically obtain the targeted net head and the maximum for the total to total internal efficiency.Keywords: renewable energy conversion, hydraulic turbines, low head hydraulic energy, optimization design
Procedia PDF Downloads 150226 Functional Connectivity Signatures of Polygenic Depression Risk in Youth
Authors: Louise Moles, Steve Riley, Sarah D. Lichenstein, Marzieh Babaeianjelodar, Robert Kohler, Annie Cheng, Corey Horien Abigail Greene, Wenjing Luo, Jonathan Ahern, Bohan Xu, Yize Zhao, Chun Chieh Fan, R. Todd Constable, Sarah W. Yip
Abstract:
Background: Risks for depression are myriad and include both genetic and brain-based factors. However, relationships between these systems are poorly understood, limiting understanding of disease etiology, particularly at the developmental level. Methods: We use a data-driven machine learning approach connectome-based predictive modeling (CPM) to identify functional connectivity signatures associated with polygenic risk scores for depression (DEP-PRS) among youth from the Adolescent Brain and Cognitive Development (ABCD) study across diverse brain states, i.e., during resting state, during affective working memory, during response inhibition, during reward processing. Results: Using 10-fold cross-validation with 100 iterations and permutation testing, CPM identified connectivity signatures of DEP-PRS across all examined brain states (rho’s=0.20-0.27, p’s<.001). Across brain states, DEP-PRS was positively predicted by increased connectivity between frontoparietal and salience networks, increased motor-sensory network connectivity, decreased salience to subcortical connectivity, and decreased subcortical to motor-sensory connectivity. Subsampling analyses demonstrated that model accuracies were robust across random subsamples of N’s=1,000, N’s=500, and N’s=250 but became unstable at N’s=100. Conclusions: These data, for the first time, identify neural networks of polygenic depression risk in a large sample of youth before the onset of significant clinical impairment. Identified networks may be considered potential treatment targets or vulnerability markers for depression risk.Keywords: genetics, functional connectivity, pre-adolescents, depression
Procedia PDF Downloads 58225 Factors Influencing Consumer Adoption of Digital Banking Apps in the UK
Authors: Sevelina Ndlovu
Abstract:
Financial Technology (fintech) advancement is recognised as one of the most transformational innovations in the financial industry. Fintech has given rise to internet-only digital banking, a novel financial technology advancement, and innovation that allows banking services through internet applications with no need for physical branches. This technology is becoming a new banking normal among consumers for its ubiquitous and real-time access advantages. There is evident switching and migration from traditional banking towards these fintech facilities, which could possibly pose a systemic risk if not properly understood and monitored. Fintech advancement has also brought about the emergence and escalation of financial technology consumption themes such as trust, security, perceived risk, and sustainability within the banking industry, themes scarcely covered in existing theoretic literature. To that end, the objective of this research is to investigate factors that determine fintech adoption and propose an integrated adoption model. This study aims to establish what the significant drivers of adoption are and develop a conceptual model that integrates technological, behavioral, and environmental constructs by extending the Unified Theory of Acceptance and Use of Technology 2 (UTAUT2). It proposes integrating constructs that influence financial consumption themes such as trust, perceived risk, security, financial incentives, micro-investing opportunities, and environmental consciousness to determine the impact of these factors on the adoption and intention to use digital banking apps. The main advantage of this conceptual model is the consolidation of a greater number of predictor variables that can provide a fuller explanation of the consumer's adoption of digital banking Apps. Moderating variables of age, gender, and income are incorporated. To the best of author’s knowledge, this study is the first that extends the UTAUT2 model with this combination of constructs to investigate user’s intention to adopt internet-only digital banking apps in the UK context. By investigating factors that are not included in the existing theories but are highly pertinent to the adoption of internet-only banking services, this research adds to existing knowledge and extends the generalisability of the UTAUT2 in a financial services adoption context. This is something that fills a gap in knowledge, as highlighted to needing further research on UTAUT2 after reviewing the theory in 2016 from its original version of 2003. To achieve the objectives of this study, this research assumes a quantitative research approach to empirically test the hypotheses derived from existing literature and pilot studies to give statistical support to generalise the research findings for further possible applications in theory and practice. This research is explanatory or casual in nature and uses cross-section primary data collected through a survey method. Convenient and purposive sampling using structured self-administered online questionnaires is used for data collection. The proposed model is tested using Structural Equation Modelling (SEM), and the analysis of primary data collected through an online survey is processed using Smart PLS software with a sample size of 386 digital bank users. The results are expected to establish if there are significant relationships between the dependent and independent variables and establish what the most influencing factors are.Keywords: banking applications, digital banking, financial technology, technology adoption, UTAUT2
Procedia PDF Downloads 72224 Modeling and Temperature Control of Water-cooled PEMFC System Using Intelligent Algorithm
Authors: Chen Jun-Hong, He Pu, Tao Wen-Quan
Abstract:
Proton exchange membrane fuel cell (PEMFC) is the most promising future energy source owing to its low operating temperature, high energy efficiency, high power density, and environmental friendliness. In this paper, a comprehensive PEMFC system control-oriented model is developed in the Matlab/Simulink environment, which includes the hydrogen supply subsystem, air supply subsystem, and thermal management subsystem. Besides, Improved Artificial Bee Colony (IABC) is used in the parameter identification of PEMFC semi-empirical equations, making the maximum relative error between simulation data and the experimental data less than 0.4%. Operation temperature is essential for PEMFC, both high and low temperatures are disadvantageous. In the thermal management subsystem, water pump and fan are both controlled with the PID controller to maintain the appreciate operation temperature of PEMFC for the requirements of safe and efficient operation. To improve the control effect further, fuzzy control is introduced to optimize the PID controller of the pump, and the Radial Basis Function (RBF) neural network is introduced to optimize the PID controller of the fan. The results demonstrate that Fuzzy-PID and RBF-PID can achieve a better control effect with 22.66% decrease in Integral Absolute Error Criterion (IAE) of T_st (Temperature of PEMFC) and 77.56% decrease in IAE of T_in (Temperature of inlet cooling water) compared with traditional PID. In the end, a novel thermal management structure is proposed, which uses the cooling air passing through the main radiator to continue cooling the secondary radiator. In this thermal management structure, the parasitic power dissipation can be reduced by 69.94%, and the control effect can be improved with a 52.88% decrease in IAE of T_in under the same controller.Keywords: PEMFC system, parameter identification, temperature control, Fuzzy-PID, RBF-PID, parasitic power
Procedia PDF Downloads 85223 Sentiment Analysis of Fake Health News Using Naive Bayes Classification Models
Authors: Danielle Shackley, Yetunde Folajimi
Abstract:
As more people turn to the internet seeking health-related information, there is more risk of finding false, inaccurate, or dangerous information. Sentiment analysis is a natural language processing technique that assigns polarity scores to text, ranging from positive, neutral, and negative. In this research, we evaluate the weight of a sentiment analysis feature added to fake health news classification models. The dataset consists of existing reliably labeled health article headlines that were supplemented with health information collected about COVID-19 from social media sources. We started with data preprocessing and tested out various vectorization methods such as Count and TFIDF vectorization. We implemented 3 Naive Bayes classifier models, including Bernoulli, Multinomial, and Complement. To test the weight of the sentiment analysis feature on the dataset, we created benchmark Naive Bayes classification models without sentiment analysis, and those same models were reproduced, and the feature was added. We evaluated using the precision and accuracy scores. The Bernoulli initial model performed with 90% precision and 75.2% accuracy, while the model supplemented with sentiment labels performed with 90.4% precision and stayed constant at 75.2% accuracy. Our results show that the addition of sentiment analysis did not improve model precision by a wide margin; while there was no evidence of improvement in accuracy, we had a 1.9% improvement margin of the precision score with the Complement model. Future expansion of this work could include replicating the experiment process and substituting the Naive Bayes for a deep learning neural network model.Keywords: sentiment analysis, Naive Bayes model, natural language processing, topic analysis, fake health news classification model
Procedia PDF Downloads 97222 A Radiomics Approach to Predict the Evolution of Prostate Imaging Reporting and Data System Score 3/5 Prostate Areas in Multiparametric Magnetic Resonance
Authors: Natascha C. D'Amico, Enzo Grossi, Giovanni Valbusa, Ala Malasevschi, Gianpiero Cardone, Sergio Papa
Abstract:
Purpose: To characterize, through a radiomic approach, the nature of areas classified PI-RADS (Prostate Imaging Reporting and Data System) 3/5, recognized in multiparametric prostate magnetic resonance with T2-weighted (T2w), diffusion and perfusion sequences with paramagnetic contrast. Methods and Materials: 24 cases undergoing multiparametric prostate MR and biopsy were admitted to this pilot study. Clinical outcome of the PI-RADS 3/5 was found through biopsy, finding 8 malignant tumours. The analysed images were acquired with a Philips achieva 1.5T machine with a CE- T2-weighted sequence in the axial plane. Semi-automatic tumour segmentation was carried out on MR images using 3DSlicer image analysis software. 45 shape-based, intensity-based and texture-based features were extracted and represented the input for preprocessing. An evolutionary algorithm (a TWIST system based on KNN algorithm) was used to subdivide the dataset into training and testing set and select features yielding the maximal amount of information. After this pre-processing 20 input variables were selected and different machine learning systems were used to develop a predictive model based on a training testing crossover procedure. Results: The best machine learning system (three-layers feed-forward neural network) obtained a global accuracy of 90% ( 80 % sensitivity and 100% specificity ) with a ROC of 0.82. Conclusion: Machine learning systems coupled with radiomics show a promising potential in distinguishing benign from malign tumours in PI-RADS 3/5 areas.Keywords: machine learning, MR prostate, PI-Rads 3, radiomics
Procedia PDF Downloads 188221 Theory of Planned Behavior Predicts Graduation Intentions of College and University Students with and without Learning Disabilities / Attention Deficit Hyperactivity Disorder in Canada and Israel
Authors: Catherine S. Fichten, Tali Heiman, Mary Jorgensen, Mai Nhu Nguyen, Rhonda Amsel, Dorit Olenik-Shemesh
Abstract:
The study examined Canadian and Israeli students' perceptions related to their intention to graduate from their program of studies. Canada and Israel are dissimilar in many ways that affect education, including language and alphabet. In addition, the postsecondary education systems differ. For example, in some parts of Canada (e.g., in Quebec, Canada’s 2nd largest province), students matriculate after 11 years of high school; in Israel, this typically occurs after 12 years. In addition, Quebec students attend two compulsory years of junior college before enrolling in a three-year university Bachelor program; in Israel students enroll in a three-year Bachelor program directly after matriculation. In addition, Israeli students typically enroll in the army shortly after high school graduation; in Canada, this is not the case. What the two countries do have in common is concern about the success of postsecondary students with disabilities. The present study was based on Ajzen’s Theory of Planned Behavior (TPB); the model suggests that behavior is influenced by Intention to carry it out. This, in turn, is predicted by the following correlated variables: Perceived Behavioral Control (i.e., ease or difficulty enacting the behavior - in this case graduation), Subjective Norms (i.e., perceived social/peer pressure from individuals important in the student’s life), and Attitude (i.e., positive or negative evaluation of graduation). A questionnaire was developed to test the TPB in previous Canadian studies and administered to 845 Canadian college students (755 nondisabled, 90 with LD/ADHD) who had completed at least one semester of studies) and to 660 Israeli university students enrolled in a Bachelor’s program (537 nondisabled, 123 with LD/ADHD). Because Israeli students were older than Canadian students we covaried age in SPSS-based ANOVA comparisons and included it in regression equations. Because females typically have better academic outcomes than males, gender was included in all analyses. ANOVA results indicate only a significant gender effect for Intention to graduate, with females having higher scores. Four stepwise regressions were conducted, with Intention to graduate as the predicted variable, and Gender and the three TPB predictors as independent variables (separate analyses for Israeli and Canadian samples with and without LD/ADHD). Results show that for samples with LD/ADHD, although Gender and Age were not significant predictors, the TPB predictors were, with all three TPB predictors being significant for the Canadian sample (i.e., Perceived Behavioral Control, Subjective Norms, Attitude, R2=.595), and two of the three (i.e., Perceived Behavioral Control, Subjective Norms) for the Israeli sample (R2=.528). For nondisabled students, the results for both countries show that all three TPB predictors were significant along with Gender: R2=.443 for Canada and R2=.332 for Israel; age was not significant. Our findings show that despite vast differences between our Canadian and Israeli samples, Intention to graduate was related to the three TPB predictors. This suggests that our TPB measure is valid for diverse samples and countries that it can be used as a quick, inexpensive way to predict graduation rates, and that strengthening the three predictor variables may result in higher graduation rates.Keywords: disability, higher education, students, theory of planned behavior
Procedia PDF Downloads 380220 Predictive Analytics for Theory Building
Authors: Ho-Won Jung, Donghun Lee, Hyung-Jin Kim
Abstract:
Predictive analytics (data analysis) uses a subset of measurements (the features, predictor, or independent variable) to predict another measurement (the outcome, target, or dependent variable) on a single person or unit. It applies empirical methods in statistics, operations research, and machine learning to predict the future, or otherwise unknown events or outcome on a single or person or unit, based on patterns in data. Most analyses of metabolic syndrome are not predictive analytics but statistical explanatory studies that build a proposed model (theory building) and then validate metabolic syndrome predictors hypothesized (theory testing). A proposed theoretical model forms with causal hypotheses that specify how and why certain empirical phenomena occur. Predictive analytics and explanatory modeling have their own territories in analysis. However, predictive analytics can perform vital roles in explanatory studies, i.e., scientific activities such as theory building, theory testing, and relevance assessment. In the context, this study is to demonstrate how to use our predictive analytics to support theory building (i.e., hypothesis generation). For the purpose, this study utilized a big data predictive analytics platform TM based on a co-occurrence graph. The co-occurrence graph is depicted with nodes (e.g., items in a basket) and arcs (direct connections between two nodes), where items in a basket are fully connected. A cluster is a collection of fully connected items, where the specific group of items has co-occurred in several rows in a data set. Clusters can be ranked using importance metrics, such as node size (number of items), frequency, surprise (observed frequency vs. expected), among others. The size of a graph can be represented by the numbers of nodes and arcs. Since the size of a co-occurrence graph does not depend directly on the number of observations (transactions), huge amounts of transactions can be represented and processed efficiently. For a demonstration, a total of 13,254 metabolic syndrome training data is plugged into the analytics platform to generate rules (potential hypotheses). Each observation includes 31 predictors, for example, associated with sociodemographic, habits, and activities. Some are intentionally included to get predictive analytics insights on variable selection such as cancer examination, house type, and vaccination. The platform automatically generates plausible hypotheses (rules) without statistical modeling. Then the rules are validated with an external testing dataset including 4,090 observations. Results as a kind of inductive reasoning show potential hypotheses extracted as a set of association rules. Most statistical models generate just one estimated equation. On the other hand, a set of rules (many estimated equations from a statistical perspective) in this study may imply heterogeneity in a population (i.e., different subpopulations with unique features are aggregated). Next step of theory development, i.e., theory testing, statistically tests whether a proposed theoretical model is a plausible explanation of a phenomenon interested in. If hypotheses generated are tested statistically with several thousand observations, most of the variables will become significant as the p-values approach zero. Thus, theory validation needs statistical methods utilizing a part of observations such as bootstrap resampling with an appropriate sample size.Keywords: explanatory modeling, metabolic syndrome, predictive analytics, theory building
Procedia PDF Downloads 276219 Detect Critical Thinking Skill in Written Text Analysis. The Use of Artificial Intelligence in Text Analysis vs Chat/Gpt
Authors: Lucilla Crosta, Anthony Edwards
Abstract:
Companies and the market place nowadays struggle to find employees with adequate skills in relation to anticipated growth of their businesses. At least half of workers will need to undertake some form of up-skilling process in the next five years in order to remain aligned with the requests of the market . In order to meet these challenges, there is a clear need to explore the potential uses of AI (artificial Intelligence) based tools in assessing transversal skills (critical thinking, communication and soft skills of different types in general) of workers and adult students while empowering them to develop those same skills in a reliable trustworthy way. Companies seek workers with key transversal skills that can make a difference between workers now and in the future. However, critical thinking seems to be the one of the most imprtant skill, bringing unexplored ideas and company growth in business contexts. What employers have been reporting since years now, is that this skill is lacking in the majority of workers and adult students, and this is particularly visible trough their writing. This paper investigates how critical thinking and communication skills are currently developed in Higher Education environments through use of AI tools at postgraduate levels. It analyses the use of a branch of AI namely Machine Learning and Big Data and of Neural Network Analysis. It also examines the potential effect the acquisition of these skills through AI tools and what kind of effects this has on employability This paper will draw information from researchers and studies both at national (Italy & UK) and international level in Higher Education. The issues associated with the development and use of one specific AI tool Edulai, will be examined in details. Finally comparisons will be also made between these tools and the more recent phenomenon of Chat GPT and forthcomings and drawbacks will be analysed.Keywords: critical thinking, artificial intelligence, higher education, soft skills, chat GPT
Procedia PDF Downloads 110218 Human-Machine Cooperation in Facial Comparison Based on Likelihood Scores
Authors: Lanchi Xie, Zhihui Li, Zhigang Li, Guiqiang Wang, Lei Xu, Yuwen Yan
Abstract:
Image-based facial features can be classified into category recognition features and individual recognition features. Current automated face recognition systems extract a specific feature vector of different dimensions from a facial image according to their pre-trained neural network. However, to improve the efficiency of parameter calculation, an algorithm generally reduces the image details by pooling. The operation will overlook the details concerned much by forensic experts. In our experiment, we adopted a variety of face recognition algorithms based on deep learning, compared a large number of naturally collected face images with the known data of the same person's frontal ID photos. Downscaling and manual handling were performed on the testing images. The results supported that the facial recognition algorithms based on deep learning detected structural and morphological information and rarely focused on specific markers such as stains and moles. Overall performance, distribution of genuine scores and impostor scores, and likelihood ratios were tested to evaluate the accuracy of biometric systems and forensic experts. Experiments showed that the biometric systems were skilled in distinguishing category features, and forensic experts were better at discovering the individual features of human faces. In the proposed approach, a fusion was performed at the score level. At the specified false accept rate, the framework achieved a lower false reject rate. This paper contributes to improving the interpretability of the objective method of facial comparison and provides a novel method for human-machine collaboration in this field.Keywords: likelihood ratio, automated facial recognition, facial comparison, biometrics
Procedia PDF Downloads 130