Search results for: multiple%20routes
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4735

Search results for: multiple%20routes

2545 Supply Chain Risk Management: A Meta-Study of Empirical Research

Authors: Shoufeng Cao, Kim Bryceson, Damian Hine

Abstract:

The existing supply chain risk management (SCRM) research is currently chaotic and somewhat disorganized, and the topic has been addressed conceptually more often than empirically. This paper, using both qualitative and quantitative data, employs a modified Meta-study method to investigate the SCRM empirical research published in quality journals over the period of 12 years (2004-2015). The purpose is to outline the extent research trends and the employed research methodologies (i.e., research method, data collection and data analysis) across the sub-field that will guide future research. The synthesized findings indicate that empirical study on risk ripple effect along an entire supply chain, industry-specific supply chain risk management and global/export supply chain risk management has not yet given much attention than it deserves in the SCRM field. Besides, it is suggested that future empirical research should employ multiple and/or mixed methods and multi-source data collection techniques to reduce common method bias and single-source bias, thus improving research validity and reliability. In conclusion, this paper helps to stimulate more quality empirical research in the SCRM field via identifying promising research directions and providing some methodology guidelines.

Keywords: empirical research, meta-study, methodology guideline, research direction, supply chain risk management

Procedia PDF Downloads 315
2544 The Effect of Public Debt on the Economic Growth and Development in Nigeria

Authors: Uzoma Emmanuel Igboji

Abstract:

This paper examines the influence of public debts (external and internal) on economic growth and development in Nigeria from (1980-2015). The study uses aggregate GDP as a proxy for economic growth, per capital income as a proxy for standard of living and Government expenditure on health as a proxy for human capital development, while Foreign Direct Investment, Unemployment rate, and Oil revenue were used as control variables. The study made use of ex-post facto research design with the data extracted from the Central Bank of Nigeria (CBN) Statistical Bulletin and the World Bank database. It adopted a multiple regression analysis of the ordinary least square (OLS) method with the help of E-View version 3.0. The results revealed that external debt has a negative and insignificant effect on GDP, per capital income and human capital development. The study concluded that external debts were being channeled to meet the recurrent expenditures of the nation’s economy at the expense of productive investment that could stimulate growth and poverty alleviation. It, however, recommended that government should ensure that the bulk of the total borrowings are mostly sourced from within the domestic economy so that the repayment of the principal and interest will serve as a crowd in-effect rather that crowd out-effect which in turn further accelerates the country’s economic growth and development.

Keywords: economic growth, external debt, internal debt, Nigeria

Procedia PDF Downloads 251
2543 A Small-Molecular Inhibitor of Influenza Virus via Disrupting the PA and PB1 Interaction of the Viral Polymerase

Authors: Shuofeng Yuan, Bojian Zheng

Abstract:

Assembly of the heterotrimeric polymerase complex of influenza virus from the individual subunits PB1, PA, and PB2 is a prerequisite for viral replication, in which the interaction between the N-terminal of PB1 (PB1N) and the C terminal of PA (PAC) may be a desired target for antiviral development. In this study, we first compared the feasibility of high throughput screening by enzyme-linked immunosorbent assay (ELISA) and fluorescence polarization (FP) assay. Among the two, ELISA was demonstrated to own broader dynamic range so that it was used for screening inhibitors, which blocked PA and PB1 interaction. Several binding inhibitors of PAC-PB1N were identified and subsequently tested for the antiviral efficacy. Apparently, 3-(2-chlorophenyl)-6-ethyl-7-methyl[1,2,4]triazolo[4,3-a]pyrimidin-5-ol, designated ANA-1, was found to be a strong inhibitor of PAC-PB1N interaction and act as a potent antiviral agent against the infections of multiple subtypes of influenza A virus, including H1N1, H3N2, H5N1, H7N7, H7N9 and H9N2 subtypes, in cell cultures. Intranasal administration of ANA-1 protected mice from lethal challenge and reduced lung viral loads in H1N1 virus infected BALB/c mice. Docking analyses predicted that ANA-1 bound to an allosteric site of PAC, which would cause conformational changes thereby disrupting the PAC-PB1N interaction. Overall, our study has identified a novel compound with potential to be developed as an anti-influenza drug.

Keywords: influenza, antiviral, viral polymerase, compounds

Procedia PDF Downloads 346
2542 Teaching and Learning with Picturebooks: Developing Multimodal Literacy with a Community of Primary School Teachers in China

Authors: Fuling Deng

Abstract:

Today’s children are frequently exposed to multimodal texts that adopt diverse modes to communicate myriad meanings within different cultural contexts. To respond to the new textual landscape, scholars have considered new literacy theories which propose picturebooks as important educational resources. Picturebooks are multimodal, with their meaning conveyed through the synchronisation of multiple modes, including linguistic, visual, spatial, and gestural acting as access to multimodal literacy. Picturebooks have been popular reading materials in primary educational settings in China. However, often viewed as “easy” texts directed at the youngest readers, picturebooks remain on the margins of Chinese upper primary classrooms, where they are predominantly used for linguistic tasks, with little value placed on their multimodal affordances. Practices with picturebooks in the upper grades in Chinese primary schools also encounter many challenges associated with the curation of texts for use, designing curriculum, and assessment. To respond to these issues, a qualitative study was conducted with a community of Chinese primary teachers using multi-methods such as interviews, focus groups, and documents. The findings showed the impact of the teachers’ increased awareness of picturebooks' multimodal affordances on their pedagogical decisions in using picturebooks as educational resources in upper primary classrooms.

Keywords: picturebook education, multimodal literacy, teachers' response to contemporary picturebooks, community of practice

Procedia PDF Downloads 136
2541 Development and Validation of an Electronic Module in Linear Motion for First Year College Students of Iloilo City

Authors: Donna H. Gabor

Abstract:

This study aimed to develop and validate an electronic module in physics for first-year college students of Iloilo and find out if there would be a significant difference in the performance of students before and after using the electronic module. The e-module was composed of one topic with two sub-lessons in linear motion (kinematics). The participants of the study were classified into three groups: the subject matter experts who are physics instructors who suggested the content, physical appearance, and limitations of the e-module; the IT experts who are active both in teaching and developing computer programs; and 28 students divided into two groups, 15 in the pilot group and 13 in the final test group. A researcher created 30 items checklist form (difficulty of a sample problem, comprehension, application, and definition of terms) was prepared and validated by the experts in subject matter for gathering data. To test the difference in student performance in physics, the researcher prepared an achievement test containing 25 items, multiple choices. The findings revealed that there was an increase in the performance of students in the pretest and post-test. T-test results revealed that there was a significant difference in the test scores of the students before and after using the module which can be used as a future reference for linear motion as an additional teaching tool in physics.

Keywords: electronic module, kinematics, linear motion, physics

Procedia PDF Downloads 133
2540 Death Anxiety and Life Expectancy among Older Adults in Iran

Authors: Vahid Rashedi, Banafsheh Ebrahimi, Mahtab Sharif Mohseni, Mohammadali Hosseini

Abstract:

Introduction: One of the metrics used to evaluate health status is life expectancy. This index alters as people age as a result of several events, illnesses, stress, and anxiety. One of the issues that might develop into a lethal phobia is death anxiety. This study looked at older persons in Tehran, Iran, to see if there was any correlation between life expectancy and fear of dying. Methods: Cluster random sampling was used to select 208 older persons (age 60) who had been sent to adult daycare facilities in Tehran for this correlational descriptive study. A demographic questionnaire, Temper's death anxiety scale, and Snyder's life expectancy scale were used to gather the data. Statistical Package for the Social Sciences softwear version 22 was used to conduct the data analysis. Results: The average age of the senior citizens was 66.60 (6.58) years. With a mean life expectancy of 24.94, it was discovered that the average death anxiety was 12.21. Additionally, Pearson's correlation coefficient demonstrated a bad correlation between fear of dying and life expectancy. Age, residential status, and death fear were the three primary predictors of a decline in life expectancy, according to multiple regression analysis. Conclusion: The findings suggest that there is a link between death fear and a lower life expectancy, which calls for the use of appropriate strategies to increase older individuals' life expectancies as well as the teaching of anxiety coping mechanisms.

Keywords: aged, frailty, death, anxiety, life

Procedia PDF Downloads 84
2539 A Study of Social Media Users’ Switching Behavior

Authors: Chiao-Chen Chang, Yang-Chieh Chin

Abstract:

Social media has created a change in the way the network community is clustered, especially from the location of the community, from the original virtual space to the intertwined network, and thus the communication between people will change from face to face communication to social media-based communication model. However, social media users who have had a fixed engagement may have an intention to switch to another service provider because of the emergence of new forms of social media. For example, some of Facebook or Twitter users switched to Instagram in 2014 because of social media messages or image overloads, and users may seek simpler and instant social media to become their main social networking tool. This study explores the impact of system features overload, information overload, social monitoring concerns, problematic use and privacy concerns as the antecedents on social media fatigue, dissatisfaction, and alternative attractiveness; further influence social media switching. This study also uses the online questionnaire survey method to recover the sample data, and then confirm the factor analysis, path analysis, model fit analysis and mediating analysis with the structural equation model (SEM). Research findings demonstrated that there were significant effects on multiple paths. Based on the research findings, this study puts forward the implications of theory and practice.

Keywords: social media, switching, social media fatigue, alternative attractiveness

Procedia PDF Downloads 140
2538 Suicide in Late-Life Major Depressive Disorder: A Review of Structural and Functional Neuroimaging Studies

Authors: Wenqiu Cao

Abstract:

Suicide prevention is a global problem that needs to be taken seriously. Investigating the mechanisms of suicide in major depressive disorder (MDD) separately through neuroimaging technology is essential for effective suicide prevention. And it’s particularly urgent in geriatric depressive patients since older adults are more likely to use rapidly deadly means, and suicidal behavior is more lethal for older adults. The current study reviews five studies related to suicide in geriatric MDD that uses neuroimaging methodology in order to analyze the relevant neurobiological mechanisms. The majority of the studies found significant white matter and grey matter reduction or lesion widespread in multiple brain regions, including the frontal and parietal regions, the midbrain, the external capsule, and the cerebellum. Regarding the cognitive impairment in geriatric MDD, the reward signals were found weakened in the paralimbic cortex. The functional magnetic resonance imaging (fMRI) studies also found hemodynamic changes in the right dorsolateral prefrontal cortex (DLPFC), orbitofrontal cortex (OFC), and right frontopolar cortex (FPC) regions in late-life MDD patients with suicidal ideation. Future studies should consider the age of depression onset, more accurate measurements of suicide, larger sample size, and longitudinal design.

Keywords: brain imaging, geriatric major depressive disorder, suicidality, suicide

Procedia PDF Downloads 134
2537 River Stage-Discharge Forecasting Based on Multiple-Gauge Strategy Using EEMD-DWT-LSSVM Approach

Authors: Farhad Alizadeh, Alireza Faregh Gharamaleki, Mojtaba Jalilzadeh, Houshang Gholami, Ali Akhoundzadeh

Abstract:

This study presented hybrid pre-processing approach along with a conceptual model to enhance the accuracy of river discharge prediction. In order to achieve this goal, Ensemble Empirical Mode Decomposition algorithm (EEMD), Discrete Wavelet Transform (DWT) and Mutual Information (MI) were employed as a hybrid pre-processing approach conjugated to Least Square Support Vector Machine (LSSVM). A conceptual strategy namely multi-station model was developed to forecast the Souris River discharge more accurately. The strategy used herein was capable of covering uncertainties and complexities of river discharge modeling. DWT and EEMD was coupled, and the feature selection was performed for decomposed sub-series using MI to be employed in multi-station model. In the proposed feature selection method, some useless sub-series were omitted to achieve better performance. Results approved efficiency of the proposed DWT-EEMD-MI approach to improve accuracy of multi-station modeling strategies.

Keywords: river stage-discharge process, LSSVM, discrete wavelet transform, Ensemble Empirical Decomposition Mode, multi-station modeling

Procedia PDF Downloads 174
2536 Web-Based Cognitive Writing Instruction (WeCWI): A Hybrid e-Framework for Instructional Design

Authors: Boon Yih Mah

Abstract:

Web-based Cognitive Writing Instruction (WeCWI) is a hybrid e-framework that consolidates instructional design and language development towards the development of a web-based instruction (WBI). WeCWI divides instructional design into macro and micro perspectives. In macro perspective, a 21st century educator is encouraged to disseminate knowledge and share ideas with in-class and global learners. By leveraging the virtue of technology, WeCWI aims to transform the educator into an aggregator, curator, publisher, social networker and finally, a web-based instructor. Since the most notable contribution of integrating technology is being a tool of teaching as well as a stimulus for learning, WeCWI focuses on the use of contemporary web tools based on the multiple roles played by the 21st century educator. The micro perspective draws attention to the pedagogical approaches focussing on three main aspects: reading, discussion, and writing. With the effective use of pedagogical approaches, technology adds new dimensions and expands the bounds of learning capacity. Lastly, WeCWI also imparts the fundamental theoretical concepts for web-based instructors’ awareness such as interactionism, e-learning interactional-based model, computer-mediated communication (CMC), cognitive theories, and learning style model.

Keywords: web-based cognitive writing instruction, WeCWI, instructional design, e-framework, web-based instructor

Procedia PDF Downloads 437
2535 Predictive Factors of Nasal Continuous Positive Airway Pressure (NCPAP) Therapy Success in Preterm Neonates with Hyaline Membrane Disease (HMD)

Authors: Novutry Siregar, Afdal, Emilzon Taslim

Abstract:

Hyaline Membrane Disease (HMD) is the main cause of respiratory failure in preterm neonates caused by surfactant deficiency. Nasal Continuous Positive Airway Pressure (NCPAP) is the therapy for HMD. The success of therapy is determined by gestational age, birth weight, HMD grade, time of NCAP administration, and time of breathing frequency recovery. The aim of this research is to identify the predictive factor of NCPAP therapy success in preterm neonates with HMD. This study used a cross-sectional design by using medical records of patients who were treated in the Perinatology of the Pediatric Department of Dr. M. Djamil Padang Central Hospital from January 2015 to December 2017. The samples were eighty-two neonates that were selected by using the total sampling technique. Data analysis was done by using the Chi-Square Test and the Multiple Logistic Regression Prediction Model. The results showed the success rate of NCPAP therapy reached 53.7%. Birth weight (p = 0.048, OR = 3.34 95% CI 1.01-11.07), HMD grade I (p = 0.018, OR = 4.95 CI 95% 1.31-18.68), HMD grade II (p = 0.044, OR = 5.52 95% CI 1.04-29.15), and time of breathing frequency recovery (p = 0,000, OR = 13.50 95% CI 3.58-50, 83) are the predictive factors of NCPAP therapy success in preterm neonates with HMD. The most significant predictive factor is the time of breathing frequency recovery.

Keywords: predictive factors, the success of therapy, NCPAP, preterm neonates, HMD

Procedia PDF Downloads 58
2534 Prospects of Acellular Organ Scaffolds for Drug Discovery

Authors: Inna Kornienko, Svetlana Guryeva, Natalia Danilova, Elena Petersen

Abstract:

Drug toxicity often goes undetected until clinical trials, the most expensive and dangerous phase of drug development. Both human cell culture and animal studies have limitations that cannot be overcome by improvements in drug testing protocols. Tissue engineering is an emerging alternative approach to creating models of human malignant tumors for experimental oncology, personalized medicine, and drug discovery studies. This new generation of bioengineered tumors provides an opportunity to control and explore the role of every component of the model system including cell populations, supportive scaffolds, and signaling molecules. An area that could greatly benefit from these models is cancer research. Recent advances in tissue engineering demonstrated that decellularized tissue is an excellent scaffold for tissue engineering. Decellularization of donor organs such as heart, liver, and lung can provide an acellular, naturally occurring three-dimensional biologic scaffold material that can then be seeded with selected cell populations. Preliminary studies in animal models have provided encouraging results for the proof of concept. Decellularized Organs preserve organ microenvironment, which is critical for cancer metastasis. Utilizing 3D tumor models results greater proximity of cell culture morphological characteristics in a model to its in vivo counterpart, allows more accurate simulation of the processes within a functioning tumor and its pathogenesis. 3D models allow study of migration processes and cell proliferation with higher reliability as well. Moreover, cancer cells in a 3D model bear closer resemblance to living conditions in terms of gene expression, cell surface receptor expression, and signaling. 2D cell monolayers do not provide the geometrical and mechanical cues of tissues in vivo and are, therefore, not suitable to accurately predict the responses of living organisms. 3D models can provide several levels of complexity from simple monocultures of cancer cell lines in liquid environment comprised of oxygen and nutrient gradients and cell-cell interaction to more advanced models, which include co-culturing with other cell types, such as endothelial and immune cells. Following this reasoning, spheroids cultivated from one or multiple patient-derived cell lines can be utilized to seed the matrix rather than monolayer cells. This approach furthers the progress towards personalized medicine. As an initial step to create a new ex vivo tissue engineered model of a cancer tumor, optimized protocols have been designed to obtain organ-specific acellular matrices and evaluate their potential as tissue engineered scaffolds for cultures of normal and tumor cells. Decellularized biomatrix was prepared from animals’ kidneys, urethra, lungs, heart, and liver by two decellularization methods: perfusion in a bioreactor system and immersion-agitation on an orbital shaker with the use of various detergents (SDS, Triton X-100) in different concentrations and freezing. Acellular scaffolds and tissue engineered constructs have been characterized and compared using morphological methods. Models using decellularized matrix have certain advantages, such as maintaining native extracellular matrix properties and biomimetic microenvironment for cancer cells; compatibility with multiple cell types for cell culture and drug screening; utilization to culture patient-derived cells in vitro to evaluate different anticancer therapeutics for developing personalized medicines.

Keywords: 3D models, decellularization, drug discovery, drug toxicity, scaffolds, spheroids, tissue engineering

Procedia PDF Downloads 299
2533 Neural Network Modelling for Turkey Railway Load Carrying Demand

Authors: Humeyra Bolakar Tosun

Abstract:

The transport sector has an undisputed place in human life. People need transport access to continuous increase day by day with growing population. The number of rail network, urban transport planning, infrastructure improvements, transportation management and other related areas is a key factor affecting our country made it quite necessary to improve the work of transportation. In this context, it plays an important role in domestic rail freight demand planning. Alternatives that the increase in the transportation field and has made it mandatory requirements such as the demand for improving transport quality. In this study generally is known and used in studies by the definition, rail freight transport, railway line length, population, energy consumption. In this study, Iron Road Load Net Demand was modeled by multiple regression and ANN methods. In this study, model dependent variable (Output) is Iron Road Load Net demand and 6 entries variable was determined. These outcome values extracted from the model using ANN and regression model results. In the regression model, some parameters are considered as determinative parameters, and the coefficients of the determinants give meaningful results. As a result, ANN model has been shown to be more successful than traditional regression model.

Keywords: railway load carrying, neural network, modelling transport, transportation

Procedia PDF Downloads 142
2532 Route Planning for Optimization Approach PSO_GA Sharing System (Scooter Sharing-Public Transportation) with Hybrid Optimization Approach PSO_GA

Authors: Mohammad Ali Farrokhpour

Abstract:

In the current decade and sustainable transportation systems, scooter sharing has attracted widespread attention as an environmentally-friendly means of public transportation which can help develop public transportation. The combination of scooters and subway in the area of sustainable transportation systems can provide a great many opportunities for developing access to public transportation. Of the challenges which have arisen and initiated discussions of interest about the implementation of a scooter-subway system to replace personal vehicles is the issue of routing in the aforementioned system. This has been chosen as the main subject of the present paper. Thus, the present paper provides an account for routing in this system. Because the issue of routing includes multiple factors such as time, costs, traffic, green spaces, etc., the above-mentioned problem is considered to be a multi-objective NP-hard optimization problem. For this purpose, the hybrid optimization approach of PSO-GA has been put forward in the present paper for the provided answers to be of higher accuracy and validity than those of normal optimization methods. The results obtained from modeling and problem solving for the case study in the MATLAB software are indicative of the efficiency and desirability of the model and the proposed approach for solving the model

Keywords: route planning, scooter sharing, public transportation, sharing system

Procedia PDF Downloads 84
2531 Peripheral Inflammation and Neurodegeneration; A Potential for Therapeutic Intervention in Alzheimer’s Disease, Parkinson’s Disease, and Amyotrophic Lateral Sclerosis

Authors: Lourdes Hanna, Edward Poluyi, Chibuikem Ikwuegbuenyi, Eghosa Morgan, Grace Imaguezegie

Abstract:

Background: Degeneration of the central nervous system (CNS), also known as neurodegeneration, describes an age-associated progressive loss of the structure and function of neuronal materials, leading to functional and mental impairments. Main body: Neuroinflammation contributes to the continuous worsening of neurodegenerative states which are characterised by functional and mental impairments due to the progressive loss of the structure and function of neu-ronal materials. Some of the most common neurodegenerative diseases include Alzheimer’s disease (AD), Parkinson’s disease (PD) and amyotrophic lateral sclerosis (ALS). Whilst neuroinflammation is a key contributor to the progression of such disease states, it is not the single cause as there are multiple factors which contribute. Theoretically, non-steroidal anti-inflammatory drugs (NSAIDs) have potential to target neuroinflammation to reduce the severity of disease states. Whilst some animal models investigating the effects of NSAIDs on the risk of neurodegenerative diseases have shown a beneficial effect, this is not the same finding. Conclusion: Further investigation using more advanced research methods is required to better understand neuroinflammatory pathways and understand if there is still a potential window for NSAID efficacy.

Keywords: intervention, central nervous system, neurodegeneration, neuroinflammation

Procedia PDF Downloads 81
2530 Diversity, Phyto Beneficial Activities and Agrobiotechnolody of Plant Growth Promoting Bacillus and Paenibacillus

Authors: Cheba Ben Amar

Abstract:

Bacillus and Paenibacillus are Gram-positive aerobic endospore-forming bacteria (AEFB) and most abundant in the rhizosphere, they mediated plant growth promotion and disease protection by several complex and interrelated processes involving direct and indirect mechanisms that include nitrogen fixation, phosphate solubilization, siderophores production, phytohormones production and plant diseases control. In addition to their multiple PGPR properties, high secretory capacity, spore forming ability and spore resistance to unfavorable conditions enabling their extended commercial applications for long shelf-life. Due to these unique advantages, Bacillus species were the most an ideal candidate for developing efficient PGPR products such as biopesticides, fungicides and fertilizers. This review list all studied and reported plant growth promoting Bacillus species and strains, discuss their capacities to enhance plant growth and protection with special focusing on the most frequent species Bacillus subtilis, B. pumilus ,B. megaterium, B. amyloliquefaciens , B. licheniformis and B. sphaericus, furthermore we recapitulate the beneficial activities and mechanisms of several species and strains of the genus Paenibacillus involved in plant growth stimulation and plant disease control.

Keywords: bacillus, paenibacillus, PGPR, beneficial activities, mechanisms, growth promotion, disease control, agrobiotechnology

Procedia PDF Downloads 398
2529 Group Boundaries against and Due to Identity Threat

Authors: Anna Siegler, Sara Bigazzi, Sara Serdult, Ildiko Bokretas

Abstract:

Social identity emerging from group membership defines the representational processes of our social reality. Based on our theoretical assumption the subjective perception of identity threat leads to an instable identity structure. The need to re-establish the positive identity will lead us to strengthen group boundaries. Prejudice in our perspective offer psychological security those who thinking in exclusive barriers, and we suggest that those who identify highly with their ingroup/national identity and less with superordinate identities take distance from others and this is related to their perception of threat. In our study we used a newly developed questionnaire, the Multiple Threat and Prejudice Questionnaire (MTPQ) which measure identity threat at different dimensions of identification (national, existential, gender, religious) and the distancing of different outgroups, over and above we worked with Social Dominance Orientation (SDO) and Identification with All Humanity Scale (IWAH). We conduct one data collection (N=1482) in a Hungarian sample to examine the connection between national threat and distance-taking, and this survey includes the investigation (N=218) of identification with different group categories. Our findings confirmed that those who feel themselves threatened in their national identity aspects are less likely to identify themselves with superordinate groups and this correlation is much stronger when they think about the nation as a bio-cultural unit, while if nation defined as a social-economy entity this connection is less powerful and has just the opposite direction.

Keywords: group boundaries, identity threat, prejudice, superordinate groups

Procedia PDF Downloads 409
2528 Vision-Based Collision Avoidance for Unmanned Aerial Vehicles by Recurrent Neural Networks

Authors: Yao-Hong Tsai

Abstract:

Due to the sensor technology, video surveillance has become the main way for security control in every big city in the world. Surveillance is usually used by governments for intelligence gathering, the prevention of crime, the protection of a process, person, group or object, or the investigation of crime. Many surveillance systems based on computer vision technology have been developed in recent years. Moving target tracking is the most common task for Unmanned Aerial Vehicle (UAV) to find and track objects of interest in mobile aerial surveillance for civilian applications. The paper is focused on vision-based collision avoidance for UAVs by recurrent neural networks. First, images from cameras on UAV were fused based on deep convolutional neural network. Then, a recurrent neural network was constructed to obtain high-level image features for object tracking and extracting low-level image features for noise reducing. The system distributed the calculation of the whole system to local and cloud platform to efficiently perform object detection, tracking and collision avoidance based on multiple UAVs. The experiments on several challenging datasets showed that the proposed algorithm outperforms the state-of-the-art methods.

Keywords: unmanned aerial vehicle, object tracking, deep learning, collision avoidance

Procedia PDF Downloads 159
2527 Active Noise Cancellation in the Rectangular Enclosure Systems

Authors: D. Shakirah Shukor, A. Aminudin, Hashim U. A., Waziralilah N. Fathiah, T. Vikneshvaran

Abstract:

The interior noise control is essential to be explored due to the interior acoustic analysis is significant in the systems such as automobiles, aircraft, air-handling system and diesel engine exhausts system. In this research, experimental work was undertaken for canceling an active noise in the rectangular enclosure. The rectangular enclosure was fabricated with multiple speakers and microphones inside the enclosure. A software program using digital signal processing is implemented to evaluate the proposed method. Experimental work was conducted to obtain the acoustic behavior and characteristics of the rectangular enclosure and noise cancellation based on active noise control in low-frequency range. Noise is generated by using multispeaker inside the enclosure and microphones are used for noise measurements. The technique for noise cancellation relies on the principle of destructive interference between two sound fields in the rectangular enclosure. One field is generated by the original or primary sound source, the other by a secondary sound source set up to interfere with, and cancel, that unwanted primary sound. At the end of this research, the result of output noise before and after cancellation are presented and discussed. On the basis of the findings presented in this research, an active noise cancellation in the rectangular enclosure is worth exploring in order to improve the noise control technologies.

Keywords: active noise control, digital signal processing, noise cancellation, rectangular enclosure

Procedia PDF Downloads 270
2526 Achieving Competitive Advantage Through Internal Resources and Competences

Authors: Ibrahim Alkandi

Abstract:

This study aims at understanding how banks can utilize their resources and capabilities to achieve a competitive advantage. The resource-based approach has been applied to assess the resources and capabilities as well as how the management perceives them as sources of competitive advantages. A quantitative approach was implemented using cross-sectional data. The research population consisted of Top managers in financial companies in Saudi Arabia, and the sample comprised 79 managers. The resources were sub divided into tangible and intangible. Among the variables that will be assessed in the research include propriety rights, trademark which is the brand, communication as well as organizational culture. To achieve the objective of the research, Multivariate analysis through multiple regression was used. The research tool used is a questionnaire whose validity is also assessed. According to the results of the study, there is a significant relationship between bank’s performance and the strategic management of propriety rights, trademark, administrative and financial skills as well as bank culture. Therefore, the research assessed four aspects, among the variables in the model, in relation to the strategic performance of these banks. The aspects considered were trademark, communication, administrative and leadership style as well as the company’s culture. Hence, this paper contributes to the body of literature by providing empirical evidence of the resources influencing both banks’ market and economic performance.

Keywords: competitive advantage, Saudi banks, strategic management, RBV

Procedia PDF Downloads 73
2525 A Stochastic Model to Predict Earthquake Ground Motion Duration Recorded in Soft Soils Based on Nonlinear Regression

Authors: Issam Aouari, Abdelmalek Abdelhamid

Abstract:

For seismologists, the characterization of seismic demand should include the amplitude and duration of strong shaking in the system. The duration of ground shaking is one of the key parameters in earthquake resistant design of structures. This paper proposes a nonlinear statistical model to estimate earthquake ground motion duration in soft soils using multiple seismicity indicators. Three definitions of ground motion duration proposed by literature have been applied. With a comparative study, we select the most significant definition to use for predict the duration. A stochastic model is presented for the McCann and Shah Method using nonlinear regression analysis based on a data set for moment magnitude, source to site distance and site conditions. The data set applied is taken from PEER strong motion databank and contains shallow earthquakes from different regions in the world; America, Turkey, London, China, Italy, Chili, Mexico...etc. Main emphasis is placed on soft site condition. The predictive relationship has been developed based on 600 records and three input indicators. Results have been compared with others published models. It has been found that the proposed model can predict earthquake ground motion duration in soft soils for different regions and sites conditions.

Keywords: duration, earthquake, prediction, regression, soft soil

Procedia PDF Downloads 152
2524 An In-Depth Definition of the 24 Levels of Consciousness and Its Relationship to Buddhism and Artificial Intelligence

Authors: James V. Luisi

Abstract:

Understanding consciousness requires a synthesis of ideas from multiple disciplines, including obvious ones like psychology, biology, evolution, neurology, and neuroscience, as well as less obvious ones like protozoology, botany, entomology, carcinology, herpetology, mammalogy, and computer sciences. Furthermore, to incorporate the necessary backdrop, it is best presented in a theme of Eastern philosophy, specifically leveraging the teachings of Buddhism for its relevance to early thought on consciousness. These ideas are presented as a multi-level framework that illustrates the various aspects of consciousness within a tapestry of foundational and dependent building blocks as to how living organisms evolved to understand elements of their reality sufficiently to survive, and in the case of Homo sapiens, eventually move beyond meeting the basic needs of survival, but to also achieve survival of the species beyond the eventual fate of our planet. This is not a complete system of thought, but just a framework of consciousness gathering some of the key elements regarding the evolution of consciousness and the advent of free will, and presenting them in a unique way that encourages readers to continue the dialog and thought process as an experience to enjoy long after reading the last page. Readers are encouraged to think for themselves about the issues raised herein and to question every facet presented, as much further exploration is needed. Needless to say, this subject will remain a rapidly evolving one for quite some time to come, and it is probably in the interests of everyone to at least consider attaining both an ability and willingness to participate in the dialog.

Keywords: consciousness, sentience, intelligence, artificial intelligence, Buddhism

Procedia PDF Downloads 105
2523 Characterization and Predictors of Community Integration of People with Psychiatric Problems: Comparisons with the General Population

Authors: J. Cabral, C. Barreto Carvalho, C. da Motta, M. Sousa

Abstract:

Community integration is a construct that an increasing body of research has shown to have a significant impact in well-being and recovery of people with psychiatric problems. However, there are few studies that explore which factors can be associated and predict community integration. Moreover, community integration has been mostly studied in minority groups, and currently literature on the definition and manifestation of community integration in the more general population is scarce. Thus, the current study aims to characterize community integration and explore possible predictor variables in a sample of participants with psychiatric problems (PP, N=183) and a sample of participants from the general population (GP, N=211). Results show that people with psychiatric problems present above average values of community integration, but are significantly lower than their healthy counterparts. It was also possible to observe that community integration does not vary in terms of the socio-demographic characteristics of both groups in this study. Correlation and multiple regression showed that, among several variables that literature present as relevant in the community integration process, only three variables emerged as having the most explanatory value in community integration of both groups: sense of community, basic needs satisfaction and submission. These results also shown that those variables have increased explanatory power in the PP sample, which leads us to emphasize the need to address this issue in future studies and increase the understanding of the factors that can be involved in the promotion of community integration, in order to devise more effective interventions in this field.

Keywords: community integration, mental illness, predictors, psychiatric problems

Procedia PDF Downloads 486
2522 Piping Fragility Composed of Different Materials by Using OpenSees Software

Authors: Woo Young Jung, Min Ho Kwon, Bu Seog Ju

Abstract:

A failure of the non-structural component can cause significant damages in critical facilities such as nuclear power plants and hospitals. Historically, it was reported that the damage from the leakage of sprinkler systems, resulted in the shutdown of hospitals for several weeks by the 1971 San Fernando and 1994 North Ridge earthquakes. In most cases, water leakages were observed at the cross joints, sprinkler heads, and T-joint connections in piping systems during and after the seismic events. Hence, the primary objective of this study was to understand the seismic performance of T-joint connections and to develop an analytical Finite Element (FE) model for the T-joint systems of 2-inch fire protection piping system in hospitals subjected to seismic ground motions. In order to evaluate the FE models of the piping systems using OpenSees, two types of materials were used: 1) Steel 02 materials and 2) Pinching 4 materials. Results of the current study revealed that the nonlinear moment-rotation FE models for the threaded T-joint reconciled well with the experimental results in both FE material models. However, the system-level fragility determined from multiple nonlinear time history analyses at the threaded T-joint was slightly different. The system-level fragility at the T-joint, determined by Pinching 4 material was more conservative than that of using Steel 02 material in the piping system.

Keywords: fragility, t-joint, piping, leakage, sprinkler

Procedia PDF Downloads 303
2521 Evaluating Machine Learning Techniques for Activity Classification in Smart Home Environments

Authors: Talal Alshammari, Nasser Alshammari, Mohamed Sedky, Chris Howard

Abstract:

With the widespread adoption of the Internet-connected devices, and with the prevalence of the Internet of Things (IoT) applications, there is an increased interest in machine learning techniques that can provide useful and interesting services in the smart home domain. The areas that machine learning techniques can help advance are varied and ever-evolving. Classifying smart home inhabitants’ Activities of Daily Living (ADLs), is one prominent example. The ability of machine learning technique to find meaningful spatio-temporal relations of high-dimensional data is an important requirement as well. This paper presents a comparative evaluation of state-of-the-art machine learning techniques to classify ADLs in the smart home domain. Forty-two synthetic datasets and two real-world datasets with multiple inhabitants are used to evaluate and compare the performance of the identified machine learning techniques. Our results show significant performance differences between the evaluated techniques. Such as AdaBoost, Cortical Learning Algorithm (CLA), Decision Trees, Hidden Markov Model (HMM), Multi-layer Perceptron (MLP), Structured Perceptron and Support Vector Machines (SVM). Overall, neural network based techniques have shown superiority over the other tested techniques.

Keywords: activities of daily living, classification, internet of things, machine learning, prediction, smart home

Procedia PDF Downloads 355
2520 Optimal Design of Step-Stress Partially Life Test Using Multiply Censored Exponential Data with Random Removals

Authors: Showkat Ahmad Lone, Ahmadur Rahman, Ariful Islam

Abstract:

The major assumption in accelerated life tests (ALT) is that the mathematical model relating the lifetime of a test unit and the stress are known or can be assumed. In some cases, such life–stress relationships are not known and cannot be assumed, i.e. ALT data cannot be extrapolated to use condition. So, in such cases, partially accelerated life test (PALT) is a more suitable test to be performed for which tested units are subjected to both normal and accelerated conditions. This study deals with estimating information about failure times of items under step-stress partially accelerated life tests using progressive failure-censored hybrid data with random removals. The life data of the units under test is considered to follow exponential life distribution. The removals from the test are assumed to have binomial distributions. The point and interval maximum likelihood estimations are obtained for unknown distribution parameters and tampering coefficient. An optimum test plan is developed using the D-optimality criterion. The performances of the resulting estimators of the developed model parameters are evaluated and investigated by using a simulation algorithm.

Keywords: binomial distribution, d-optimality, multiple censoring, optimal design, partially accelerated life testing, simulation study

Procedia PDF Downloads 317
2519 Study on Resource Allocation of Cloud Operating System Based on Multi-Tenant Data Resource Sharing Technology

Authors: Lin Yunuo, Seow Xing Quan, Burra Venkata Durga Kumar

Abstract:

In this modern era, the cloud operating system is the world trend applied in various industries such as business, healthy, etc. In order to deal with the large capacity of requirements in cloud computing, research come up with multi-tenant cloud computing to maximize the benefits of server providers and clients. However, there are still issues in multi-tenant cloud computing especially regarding resource allocation. Issues such as inefficient resource utilization, large latency, lack of scalability and elasticity and poor data isolation had caused inefficient resource allocation in multi-tenant cloud computing. Without a doubt, these issues prevent multitenancy reaches its best condition. In fact, there are multiple studies conducted to determine the optimal resource allocation to solve these problems these days. This article will briefly introduce the cloud operating system, Multi-tenant cloud computing and resource allocation in cloud computing. It then discusses resource allocation in multi-tenant cloud computing and the current challenges it faces. According to the issue ‘ineffective resource utilization’, we will discuss an efficient dynamic scheduling technique for multitenancy, namely Multi-tenant Dynamic Resource Scheduling Model (MTDRSM). Moreover, there also have some recommendations to improve the shortcoming of this model in this paper’s final section.

Keywords: cloud computing, cloud operation system, multitenancy, resource allocation, utilization of cloud resources

Procedia PDF Downloads 83
2518 The Impact of Perception of Transformational Leadership and Factors of Innovation Culture on Innovative Work Behavior in Junior High School's Teacher

Authors: Galih Mediana

Abstract:

Boarding school can helps students to turn all good qualities into habits. The process of forming one's personality can be done in various ways. In addition to gaining general knowledge at school during learning hours, teachers can instill values in students which can be done while in the dormitory when the learning process has ended. This shows the important role that must be played by boarding school’s teachers. Transformational leadership and a culture of innovation are things that can instill innovative behavior in teachers. This study aims to determine the effect of perceptions of transformational leadership and a culture of innovation on innovative work behavior among Islamic boarding school teachers. Respondents in this study amounted to 70 teachers. To measure transformational leadership, a modified measuring tool is used, namely the Multifactor Leadership Questionnaire (MLQ) by Bass (1985). To measure innovative work behavior, a measurement tool based on dimensions from Janssen (2000) is used. The innovation culture in this study will be measured using the innovation culture factor from Dobni (2008). This study uses multiple regression analysis to test the hypothesis. The results of this study indicate that there is an influence of perceptions of transformational leadership and innovation culture factors on innovative work behavior in Islamic boarding school’s teachers by 57.7%.

Keywords: transformational leadership, innovative work behavior, innovation culture, boarding school, teacher

Procedia PDF Downloads 107
2517 Mobility-Aware Relay Selection in Two Hop Unmanned Aerial Vehicles Network

Authors: Tayyaba Hussain, Sobia Jangsher, Saqib Ali, Saqib Ejaz

Abstract:

Unmanned Aerial vehicles (UAV’s) have gained great popularity due to their remoteness, ease of deployment and high maneuverability in different applications like real-time surveillance, image capturing, weather atmospheric studies, disaster site monitoring and mapping. These applications can involve a real-time communication with the ground station. However, altitude and mobility possess a few challenges for the communication. UAV’s at high altitude usually require more transmit power. One possible solution can be with the use of multi hops (UAV’s acting as relays) and exploiting the mobility pattern of the UAV’s. In this paper, we studied a relay (UAV’s acting as relays) selection for a reliable transmission to a destination UAV. We exploit the mobility information of the UAV’s to propose a Mobility-Aware Relay Selection (MARS) algorithm with the objective of giving improved data rates. The results are compared with Non Mobility-Aware relay selection scheme and optimal values. Numerical results show that our proposed MARS algorithm gives 6% better achievable data rates for the mobile UAV’s as compared with Non MobilityAware relay selection scheme. On average a decrease of 20.2% in data rate is achieved with MARS as compared with SDP solver in Yalmip.

Keywords: mobility aware, relay selection, time division multiple acess, unmanned aerial vehicle

Procedia PDF Downloads 237
2516 A Neural Network Approach to Understanding Turbulent Jet Formations

Authors: Nurul Bin Ibrahim

Abstract:

Advancements in neural networks have offered valuable insights into Fluid Dynamics, notably in addressing turbulence-related challenges. In this research, we introduce multiple applications of models of neural networks, namely Feed-Forward and Recurrent Neural Networks, to explore the relationship between jet formations and stratified turbulence within stochastically excited Boussinesq systems. Using machine learning tools like TensorFlow and PyTorch, the study has created models that effectively mimic and show the underlying features of the complex patterns of jet formation and stratified turbulence. These models do more than just help us understand these patterns; they also offer a faster way to solve problems in stochastic systems, improving upon traditional numerical techniques to solve stochastic differential equations such as the Euler-Maruyama method. In addition, the research includes a thorough comparison with the Statistical State Dynamics (SSD) approach, which is a well-established method for studying chaotic systems. This comparison helps evaluate how well neural networks can help us understand the complex relationship between jet formations and stratified turbulence. The results of this study underscore the potential of neural networks in computational physics and fluid dynamics, opening up new possibilities for more efficient and accurate simulations in these fields.

Keywords: neural networks, machine learning, computational fluid dynamics, stochastic systems, simulation, stratified turbulence

Procedia PDF Downloads 69