Search results for: online training method
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 23987

Search results for: online training method

21827 A Neural Network Modelling Approach for Predicting Permeability from Well Logs Data

Authors: Chico Horacio Jose Sambo

Abstract:

Recently neural network has gained popularity when come to solve complex nonlinear problems. Permeability is one of fundamental reservoir characteristics system that are anisotropic distributed and non-linear manner. For this reason, permeability prediction from well log data is well suited by using neural networks and other computer-based techniques. The main goal of this paper is to predict reservoir permeability from well logs data by using neural network approach. A multi-layered perceptron trained by back propagation algorithm was used to build the predictive model. The performance of the model on net results was measured by correlation coefficient. The correlation coefficient from testing, training, validation and all data sets was evaluated. The results show that neural network was capable of reproducing permeability with accuracy in all cases, so that the calculated correlation coefficients for training, testing and validation permeability were 0.96273, 0.89991 and 0.87858, respectively. The generalization of the results to other field can be made after examining new data, and a regional study might be possible to study reservoir properties with cheap and very fast constructed models.

Keywords: neural network, permeability, multilayer perceptron, well log

Procedia PDF Downloads 403
21826 Fan-Subbing in East Asia: Audience Involvement in Transnational Media Flows

Authors: Jason D. Lin, Christine Sim

Abstract:

This paper examines the nature of transnational media flows in East Asia, specifically expounding on the popularity of Korean dramas in China and Taiwan. Situated in interdisciplinary academic work from cultural studies, media studies, and linguistics, this project locates the significance of certain genres and regions in determining why some are subject to flow while others remain within domestic borders. Moreover, transnational flows can take one of two routes –official translations and adaptations by media corporations and subtitles written by fans in online communities. The work of 'fan-subbing' has allowed for a more democratized showcase of what bilingual fans consume and are invested in sharing, rather than what major media companies deem relevant and monetizable. This reflects a culture of relatability driven by audiences rather than by corporate direction. Of course, a variety of technological, political, and economic factors play imperative roles in how both professional and fan-made subtitles flowed across borders and between nations. While fan-subbed media may be subject to criticism because of a lack of formal regulation, these limitations can, in some cases, be overcome by the agency afforded to audiences in the digital landscape. Finally, this paper offers a critical lens for deliberating the lasting impact of fan involvement on both professional practices and the flows of mainstream media throughout East Asia.

Keywords: audience studies, bilingual, cultural proximity, fan-subbing, online communities, subtitles

Procedia PDF Downloads 129
21825 Impact of Team-Based Learning Approach in English Language Learning Process: A Case Study of Universidad Federico Santa Maria

Authors: Yessica A. Aguilera

Abstract:

English is currently the only foreign language included in the national educational curriculum in Chile. The English curriculum establishes that once completed secondary education, students are expected to reach B1 level according to the Common European Reference Framework (CEFR) scale. However, the objective has not been achieved, and to the author’s best knowledge, there is still a severe lack of English language skills among students who have completed their secondary education studies. In order to deal with the fact that students do not manage English as expected, team-based learning (TBL) was introduced in English language lessons at the Universidad Federico Santa María (USM). TBL is a collaborative teaching-learning method which enhances active learning by combining individual and team work. This approach seeks to help students achieve course objectives while learning how to function in teams. The purpose of the research was to assess the implementation and effectiveness of TBL in English language classes at USM technical training education. Quantitative and qualitative data were collected from teachers and students about their experience through TBL. Research findings show that both teachers and students are satisfied with the method and that students’ engagement and participation in class is higher. Additionally, students score higher on examinations improving academic outcomes. The findings of the research have the potential to guide how TBL could be included in future English language courses.

Keywords: collaborative learning, college education, English language learning, team-based learning

Procedia PDF Downloads 189
21824 Designing of Induction Motor Efficiency Monitoring System

Authors: Ali Mamizadeh, Ires Iskender, Saeid Aghaei

Abstract:

Energy is one of the important issues with high priority property in the world. Energy demand is rapidly increasing depending on the growing population and industry. The useable energy sources in the world will be insufficient to meet the need for energy. Therefore, the efficient and economical usage of energy sources is getting more importance. In a survey conducted among electric consuming machines, the electrical machines are consuming about 40% of the total electrical energy consumed by electrical devices and 96% of this consumption belongs to induction motors. Induction motors are the workhorses of industry and have very large application areas in industry and urban systems like water pumping and distribution systems, steel and paper industries and etc. Monitoring and the control of the motors have an important effect on the operating performance of the motor, driver selection and replacement strategy management of electrical machines. The sensorless monitoring system for monitoring and calculating efficiency of induction motors are studied in this study. The equivalent circuit of IEEE is used in the design of this study. The terminal current and voltage of induction motor are used in this motor to measure the efficiency of induction motor. The motor nameplate information and the measured current and voltage are used in this system to calculate accurately the losses of induction motor to calculate its input and output power. The efficiency of the induction motor is monitored online in the proposed method without disconnecting the motor from the driver and without adding any additional connection at the motor terminal box. The proposed monitoring system measure accurately the efficiency by including all losses without using torque meter and speed sensor. The monitoring system uses embedded architecture and does not need to connect to a computer to measure and log measured data. The conclusion regarding the efficiency, the accuracy and technical and economical benefits of the proposed method are presented. The experimental verification has been obtained on a 3 phase 1.1 kW, 2-pole induction motor. The proposed method can be used for optimal control of induction motors, efficiency monitoring and motor replacement strategy.

Keywords: induction motor, efficiency, power losses, monitoring, embedded design

Procedia PDF Downloads 348
21823 An Improved Tie Force Method for Progressive Collapse Resistance Design of Precast Concrete Cross Wall Structures

Authors: M. Tohidi, J. Yang, C. Baniotopoulos

Abstract:

Progressive collapse of buildings typically occurs when abnormal loading conditions cause local damages, which leads to a chain reaction of failure and ultimately catastrophic collapse. The tie force (TF) method is one of the main design approaches for progressive collapse. As the TF method is a simplified method, further investigations on the reliability of the method is necessary. This study aims to develop an improved TF method to design the cross wall structures for progressive collapse. To this end, the pullout behavior of strands in grout was firstly analyzed; and then, by considering the tie force-slip relationship in the friction stage together with the catenary action mechanism, a comprehensive analytical method was developed. The reliability of this approach is verified by the experimental results of concrete block pullout tests and full scale floor-to-floor joints tests undertaken by Portland Cement Association (PCA). Discrepancies in the tie force between the analytical results and codified specifications have suggested the deficiency of TF method, hence an improved model based on the analytical results has been proposed to address this concern.

Keywords: cross wall, progressive collapse, ties force method, catenary, analytical

Procedia PDF Downloads 469
21822 Interventions for Children with Autism Using Interactive Technologies

Authors: Maria Hopkins, Sarah Koch, Fred Biasini

Abstract:

Autism is lifelong disorder that affects one out of every 110 Americans. The deficits that accompany Autism Spectrum Disorders (ASD), such as abnormal behaviors and social incompetence, often make it extremely difficult for these individuals to gain functional independence from caregivers. These long-term implications necessitate an immediate effort to improve social skills among children with an ASD. Any technology that could teach individuals with ASD necessary social skills would not only be invaluable for the individuals affected, but could also effect a massive saving to society in treatment programs. The overall purpose of the first study was to develop, implement, and evaluate an avatar tutor for social skills training in children with ASD. “Face Say” was developed as a colorful computer program that contains several different activities designed to teach children specific social skills, such as eye gaze, joint attention, and facial recognition. The children with ASD were asked to attend to FaceSay or a control painting computer game for six weeks. Children with ASD who received the training had an increase in emotion recognition, F(1, 48) = 23.04, p < 0.001 (adjusted Ms 8.70 and 6.79, respectively) compared to the control group. In addition, children who received the FaceSay training had higher post-test scored in facial recognition, F(1, 48) = 5.09, p < 0.05 (adjusted Ms: 38.11 and 33.37, respectively) compared to controls. The findings provide information about the benefits of computer-based training for children with ASD. Recent research suggests the value of also using socially assistive robots with children who have an ASD. Researchers investigating robots as tools for therapy in ASD have reported increased engagement, increased levels of attention, and novel social behaviors when robots are part of the social interaction. The overall goal of the second study was to develop a social robot designed to teach children specific social skills such as emotion recognition. The robot is approachable, with both an animal-like appearance and features of a human face (i.e., eyes, eyebrows, mouth). The feasibility of the robot is being investigated in children ages 7-12 to explore whether the social robot is capable of forming different facial expressions to accurately display emotions similar to those observed in the human face. The findings of this study will be used to create a potentially effective and cost efficient therapy for improving the cognitive-emotional skills of children with autism. Implications and study findings using the robot as an intervention tool will be discussed.

Keywords: autism, intervention, technology, emotions

Procedia PDF Downloads 381
21821 Assessing Distance Education Practices: Teachers Experience and Perceptions

Authors: Mohammed Amraouy, Mostafa Bellafkih, Abdellah Bennane, Aziza Benomar

Abstract:

Distance education has become popular due to their ability to provide learning from almost anywhere and anytime. COVID-19 forced educational institutions to urgently introduce distance education to ensure pedagogical continuity, so all stakeholders were invited to adapt to this new paradigm. In order to identify strengths and weaknesses, the research focuses on the need to create an effective mechanism for evaluating distance education. The aims of this research were to explore and evaluate the use of digital media in general and official platforms in particular in distance education practices. To this end, we have developed and validated a questionnaire before administering it to a sample of 431 teachers in Morocco. Teachers reported lower knowledge and skills in the didactic use of ICT in the distance education process. In addition, although age and educative experience of the teachers continue to modulate the level of instrumental skills. Therefore, resources (digital resources and infrastructure) and the teachers’ ICT training present serious limitations, which require a training more focused on the distance educational paradigm and educational environments that allow teachers to create educational activities able to promote and facilitate the distance learning process.

Keywords: distance education, e-learning, teachers’ perceptions, assessment

Procedia PDF Downloads 137
21820 Analysis of Selected Hematological Variables during Three Different Menstrual Phases between Sedentary and Sports Women

Authors: G. Vasanthi

Abstract:

The purpose of the study was to analyse the red blood cells and white blood cells during three different menstrual phases between sedentary and sports women. To achieve this purpose, fifteen female sedentary post graduate students (M.A., M.Sc.) and fifteen students of Master of Physical Education and Sports (M.P.Ed.) women who regularly involved in vigouous sports training and participated in sports competition on different games were selected by adopting random sampling method. All the students were hostelers and their age group was between 20 to 22 years. The blood sample were collected during the mid-period of the three different phases to calculate the red blood cells and white blood cells. The data collected were treated statistically by using analysis of variance. The results reveal that the RBC and WBC is found to be significant between sedentary and sports women during the three different menstrual phases.

Keywords: RBC, WBC, menstrual, proliferative, secretary, sedentary women, sports women

Procedia PDF Downloads 503
21819 Abortion Care Education in U.S. Accreditation Commission for Midwifery Education Certified Nurse Midwifery Programs: A Call For Expansion

Authors: Maggie Hall, Haley O'Neill

Abstract:

The U.S. faces a severe shortage of abortion providers, exacerbated by the June 2022 Dobbs v. Jackson Women’s Health Organization decision. Midwives, especially certified nurse midwives, are well-positioned to fill this gap in abortion care. However, a lack of clinical education and training prevents midwives from exercising their full scope of practice. National and international organizations that set obstetrics and midwifery education standards, including the International Confederation of Midwives, American College of Obstetricians and Gynecologists, and American Public Health Association, call for expansion of midwifery-managed abortion care through the first trimester. In the U.S., midwifery programs are accredited based on compliance with ACME standards and compliance is a prerequisite for the American Midwifery Certification Board exams. We conducted a literature review of studies in the last five years regarding abortion didactic and clinical education barriers via CINAHL, EBSCO and PubMed database reviews. We gave preference for primary sources within the last five years; however, due to the rapid changes in abortion education and access, we also included literature from 2012-2022. We evaluated ACME-accredited programs in relation to their geography within abortion-protected or restricted states and assessed state-specific barriers to abortion care education and provision as clinical students. There are 43 AMCB-accredited midwifery schools in 28 states across the U.S. Twenty schools (47%) are in the 15 states in which advanced practice clinicians can provide non-surgical abortion care, such as medication abortion and MVA procedures. Twenty-four schools (56%) are in the 16 states in which abortion care provision is restricted to Licensed Physicians and cannot offer in-state clinical training opportunities for midwifery students. Six schools are in the five states in which abortion is completely banned and are geographically concentrated in the southernmost region of the U.S., including Alabama, Kentucky, Louisiana, Tennessee, and Texas. Subsequently, these programs cannot offer in-state clinical training opportunities for midwifery students. Notably, there are seven ACME programs in six states that do not restrict abortion access by gestational age, including Colorado, Connecticut, Washington, D.C., New Jersey, New Mexico, and Oregon. These programs may be uniquely positioned for midwifery involvement in abortion care beyond the first trimester. While the following states don’t house ACME programs, abortion care can be provided by advanced practice clinicians in Rhode Island, Delaware, Hawaii, Maine, Maryland, Montana, New Hampshire, and Vermont, offering clinical placement and/or new ACME program development opportunities. We identify existing barriers to clinical education and training opportunities for midwifery-managed abortion care, which are both geographic and institutional in nature. We recommend expansion and standardization of clinical education and training opportunities for midwifery-managed abortion care in ACME-accredited programs to improve access to abortion care. Midwifery programs and teaching hospitals need to expand education, training, and residency opportunities for midwifery students to strengthen access to midwife-managed abortion care. ACNM and ACME should re-evaluate accreditation criteria and the implications of ACME programs in states where students are not able to learn abortion care in clinical contexts due to state-specific abortion restrictions.

Keywords: midwifery education, abortion, abortion education, abortion access

Procedia PDF Downloads 81
21818 The Importance of Compulsory Pre-School Education from the Parents’ Perspective in the Czech Republic

Authors: Beata Horníckova, Sona Lorencova

Abstract:

The study deals with the presentation of the results of quantitatively oriented research. The research was conducted as part of a questionnaire survey with the aim to find out what are the attitudes of parents to compulsory preschool education in the Czech Republic. This research presents results from the area of importance of compulsory pre-school education from the parents’ perspective. The research method was a questionnaire, which was distributed to respondents through an online platform. The research involved 107 parents, who answered a total of 36 questions that found out their attitudes to last year’s compulsory preschool attendance. The results show that compulsory pre-school attendance has increased the importance of pre-school education. However, the results also show that the compulsory last year of pre-school education is not more important according to parents than in previous years. Most participants consider compulsory pre-school attendance to be important and are happy that their child attends it. The results reveal the fact that the introduction of compulsory pre-school attendance has contributed to the importance of parents’ perceptions of pre-primary education.

Keywords: compulsory pre-school education, education of pre-school children, kindergarten, parents

Procedia PDF Downloads 164
21817 Educational Framework for Coaches on Injury Prevention in Adolescent Team Sports

Authors: Chantell Gouws, Lourens Millard, Anne Naude, Jan-Wessel Meyer, Brandon Stuwart Shaw, Ina Shaw

Abstract:

Background: Millions of South African youths participate in team sports, with netball and rugby being two of the largest worldwide. This increased participation and professionalism have resulted in an increase in the number of musculoskeletal injuries. Objective: This study examined the extent to which sport coaching knowledge translates to the injuries and prevention of injuries in adolescents participating in netball and rugby. Methods: Thirty-four South African sports coaches participated in the study. Eighteen netball coaches and 16 rugby coaches with varying levels of coaching experience were selected to participate. An adapted version of Nash and Sproule’s questionnaire was used to investigate the coaches’ knowledge with regards to sport-specific common injuries, injury prevention, fitness/conditioning, individual technique development, training programs, mental training, and preparation of players. The analysis of data was carried out using a number of different techniques outlined by Nash and Sproule (2012). These techniques were determined by the type of data. Descriptive data was used to provide statistical analysis. Quantitative data was used to determine the educational framework and knowledge of sports coaches on injury prevention. Numerical data was obtained through questions on sports injuries, as well as coaches’ sports knowledge levels. Participants’ knowledge was measured using a standardized scoring system. Results: For the 0-4 years of netball coaching experience, 76.4% of the coaches had knowledge and experience and 33.3% appropriate first aid knowledge, while for the 9-12 years and 13-16 years, 100% of the coaches had knowledge and experience and first aid knowledge. For the 0-4 years in rugby coaching experience, 59.1% had knowledge and experience and 71% the appropriate first aid knowledge; for the 17-20 years, 100% had knowledge and experience and first aid, while for higher or equal to 25 years, 45.5% had knowledge and experience. In netball, 90% of injuries consisted of ankle injuries, followed by 70% for knee, 50% for shoulder, 20% for lower leg, and 15% for finger injuries. In rugby, 81% of the injuries occurred at the knee, followed by 50% for the shoulder, 40% for the ankle, 31% for the head and neck, and 25% for hamstring injuries. Six hours of training resulted in a 13% chance of injuries in netball and a 32% chance in rugby. For 10 hours of training, the injury prevalence was 10% in netball and 17% in rugby, while 15 hours resulted in an injury incidence of 58% in netball players and a 25% chance in rugby players. Conclusion: This study highlights the need for coaches to improve their knowledge in relation to injuries and injury prevention, along with factors that act as a preventative measure and promotes players’ well-being.

Keywords: musculoskeletal injury, sport coaching, sport trauma

Procedia PDF Downloads 161
21816 Bone Mineral Density of the Lumbar Spine, Femur in Elite Egyptian Male Swimmers

Authors: Magdy Abouzeid

Abstract:

Introduction: Physical activity has been shown to have a positive effect on bone mineral density (BMD) and bone mineral content (BMC) among children, adolescents, and adults. Sports characterized by little or moderate weight bearing or impact have a low osteogenic effect. However, the action of such sports on bone turnover remains unclear. Swimming, as a non-weight-bearing sport, has been considered to be insignificant in the maintenance of bone mass. Purpose: To examine this issue we measured (BMD) and(BMC) of the lumbar spine, proximal femur via dual energy x-ray absorptiometry in the group of elite male swimmers, and determine the effect of swimming training on bone health and compared the results with matched controls group in age, body weight and height. Materials and Methods: Twenty-five male swimmers (age 20.7+/-0.8 years) training for 12-15 hours/week; and the controls group consisted of 25 non-active male (age 21.3 +/-1.3 years) were studied BMD and BMC of lumbar spine, femur were assessed via (DXA) absorptiometry. Results: There was significant difference between swimmers and control group in BMD and BMC, BMD of Swimmers was significantly greater than controls at all sites. The lumbar spine (1, 08 +/-0.202 vs., 0717+0.57 gxcm (-2), right proximal femur (1, 02 +/-, 044 vs., 771+/-, 027 gxcm (-2), and left proximal femur (1.374+/-0.212 vs. 1.01 +/-0.141 gxcm (-2). Swimmers were significantly taller, and had greater BMC and BMD compared to the controls group (P<0.001). Conclusions: These results suggest that swimming training may be beneficial in the prevention or therapy of OSTEOPENIA, and may lead to increased (BMD) and (BMC) for male swimmers. Swimming may be an effective non-pharmacological intervention for the adults and adolescent. Further research with younger athletes of another type of aquatics sport is warranted to better identify the periods of BMD development during which Aquatics sport has the greatest impact on bone health.

Keywords: bone mineral density, lumbar spine, femur, swimming, DXA absorptiometry

Procedia PDF Downloads 322
21815 Factors Impacting Training and Adult Education Providers’ Business Performance: The Singapore Context

Authors: Zan Chen, D. Kwok

Abstract:

The SkillsFuture Singapore’s mission to develop a responsive and forward-looking Training and Adult Education (TAE) and workforce development system is undergirded by how successful TAE providers are in their business performance and strategies that strengthen their operational efficiency and processes. Therefore, understanding the factors that drive the business performance of TAE providers is critical to the success of SkillsFuture Singapore’s initiatives. This study aims to investigate how business strategy, work autonomy, work intensity and professional development support impact the business performance of private TAE providers. Specifically, the three research questions are: (1) Are there significant relationships between the above-mentioned four factors and TAE providers’ business performance?; (2) Are there significant differences on the four factors between low and high TAE providers’ business performance groups?; and (3) To what extent and in what manner do the four factors predict TAE providers’ business performance? This was part of the first national study on organizations and professionals working in the Training and Adult Education (TAE) sector. Data from 265 private TAE providers where respondents were Chief Executive Officers representatives from the Senior Management were analyzed. The results showed that business strategy (the extent that the organization leads the way in terms of developing new products and services; uses up-to-date learning technologies; customizes its products and services to the client’s needs), work autonomy (the extent that the staff personally have an influence on how hard they work; deciding what tasks they are to do; deciding how they are to do the tasks, and deciding the quality standards to which they work) and professional development support (both monetary and non-monetary support and incentives) had positive and significant relationships with business performance. However, no significant relationship is found between work intensity and business performance. A business strategy, work autonomy and professional development support were significantly higher in the high business performance group compared to the low-performance group among the TAE providers. Results of hierarchical regression analyses controlling for the size of the TAE providers showed significant impacts of business strategy, work autonomy and professional development support on TAE providers’ business performance. Overall, the model accounted for 27% of the variance in TAE providers’ business performance. This study provides policymakers with insights into improving existing policies, designing new initiatives and implementing targeting interventions to support TAE providers. The findings also have implications on how the TAE providers could better formulate their organizational strategies and business models. Finally, limitations of study, along with directions for future research will be discussed in the paper.

Keywords: adult education, business performance, business strategy, training, work autonomy

Procedia PDF Downloads 208
21814 Creation of a Trust-Wide, Cross-Speciality, Virtual Teaching Programme for Doctors, Nurses and Allied Healthcare Professionals

Authors: Nelomi Anandagoda, Leanne J. Eveson

Abstract:

During the COVID-19 pandemic, the surge in in-patient admissions across the medical directorate of a district general hospital necessitated the implementation of an incident rota. Conscious of the impact on training and professional development, the idea of developing a virtual teaching programme was conceived. The programme initially aimed to provide junior doctors, specialist nurses, pharmacists, and allied healthcare professionals from medical specialties and those re-deployed from other specialties (e.g., ophthalmology, GP, surgery, psychiatry) the knowledge and skills to manage the deteriorating patient with COVID-19. The programme was later developed to incorporate the general internal medicine curriculum. To facilitate continuing medical education whilst maintaining social distancing during this period, a virtual platform was used to deliver teaching to junior doctors across two large district general hospitals and two community hospitals. Teaching sessions were recorded and uploaded to a common platform, providing a resource for participants to catch up on and re-watch teaching sessions, making strides towards reducing discrimination against the professional development of less than full-time trainees. Thus, creating a learning environment, which is inclusive and accessible to adult learners in a self-directed manner. The negative impact of the pandemic on the well-being of healthcare professionals is well documented. To support the multi-disciplinary team, the virtual teaching programme evolved to included sessions on well-being, resilience, and work-life balance. Providing teaching for learners across the multi-disciplinary team (MDT) has been an eye-opening experience. By challenging the concept that learners should only be taught within their own peer groups, the authors have fostered a greater appreciation of the strengths of the MDT and showcased the immense wealth of expertise available within the trust. The inclusive nature of the teaching and the ease of joining a virtual teaching session has facilitated the dissemination of knowledge across the MDT, thus improving patient care on the frontline. The weekly teaching programme has been running for over eight months, with ongoing engagement, interest, and participation. As described above, the teaching programme has evolved to accommodate the needs of its learners. It has received excellent feedback with an appreciation of its inclusive, multi-disciplinary, and holistic nature. The COVID-19 pandemic provided a catalyst to rapidly develop novel methods of working and training and widened access/exposure to the virtual technologies available to large organisations. By merging pedagogical expertise and technology, the authors have created an effective online learning environment. Although the authors do not propose to replace face-to-face teaching altogether, this model of virtual multidisciplinary team, cross-site teaching has proven to be a great leveler. It has made high-quality teaching accessible to learners of different confidence levels, grades, specialties, and working patterns.

Keywords: cross-site, cross-speciality, inter-disciplinary, multidisciplinary, virtual teaching

Procedia PDF Downloads 170
21813 Temporal Profile of Exercise-Induced Changes in Plasma Brain-Derived Neurotrophic Factor Levels of Schizophrenic Individuals

Authors: Caroline Lavratti, Pedro Dal Lago, Gustavo Reinaldo, Gilson Dorneles, Andreia Bard, Laira Fuhr, Daniela Pochmann, Alessandra Peres, Luciane Wagner, Viviane Elsner

Abstract:

Approximately 1% of the world's population is affected by schizophrenia (SZ), a chronic and debilitating neurodevelopmental disorder. Among possible factors, reduced levels of Brain-derived neurotrophic factor (BDNF) has been recognized in physiopathogenesis and course of SZ. In this context, peripheral BDNF levels have been used as a biomarker in several clinical studies, since this neurotrophin is able to cross the blood-brain barrier in a bi-directional manner and seems to present a strong correlation with the central nervous system fluid levels. The patients with SZ usually adopts a sedentary lifestyle, which has been partly associated with the increase in obesity incidence rates, metabolic syndrome, type 2 diabetes and coronary heart disease. On the other hand, exercise, a non-invasive and low cost intervention, has been considered an important additional therapeutic option for this population, promoting benefits to physical and mental health. To our knowledge, few studies have been pointed out that the positive effects of exercise in SZ patients are mediated, at least in part, to enhanced levels of BDNF after training. However, these studies are focused on evaluating the effect of single bouts of exercise of chronic interventions, data concerning the short- and long-term exercise outcomes on BDNF are scarce. Therefore, this study aimed to evaluate the effect of a concurrent exercise protocol (CEP) on plasma BDNF levels of SZ patients in different time-points. Material and Methods: This study was approved by the Research Ethics Committee of the Centro Universitário Metodista do IPA (no 1.243.680/2015). The participants (n=15) were subbmited to the CEP during 90 days, 3 times a week for 60 minutes each session. In order to evaluate the short and long-term effects of exercise, blood samples were collected pre, 30, 60 and 90 days after the intervention began. Plasma BDNF levels were determined with the ELISA method, from Sigma-Aldrich commercial kit (catalog number RAB0026) according to manufacturer's instructions. Results: A remarkable increase on plasma BDNF levels at 90 days after training compared to baseline (p=0.006) and 30 days (p=0.007) values were observed. Conclusion: Our data are in agreement with several studies that show significant enhancement on BDNF levels in response to different exercise protocols in SZ individuals. We might suggest that BDNF upregulation after training in SZ patients acts in a dose-dependent manner, being more pronounced in response to chronic exposure. Acknowledgments: This work was supported by Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS)/Brazil.

Keywords: exercise, BDNF, schizophrenia, time-points

Procedia PDF Downloads 252
21812 The Improved Element Free Galerkin Method for 2D Heat Transfer Problems

Authors: Imen Debbabi, Hédi BelHadjSalah

Abstract:

The Improved Element Free Galerkin (IEFG) method is presented to treat the steady states and the transient heat transfer problems. As a result of a combination between the Improved Moving Least Square (IMLS) approximation and the Element Free Galerkin (EFG) method, the IEFG's shape functions don't have the Kronecker delta property and the penalty method is used to impose the Dirichlet boundary conditions. In this paper, two heat transfer problems, transient and steady states, are studied to improve the efficiency of this meshfree method for 2D heat transfer problems. The performance of the IEFG method is shown using the comparison between numerical and analytic results.

Keywords: meshfree methods, the Improved Moving Least Square approximation (IMLS), the Improved Element Free Galerkin method (IEFG), heat transfer problems

Procedia PDF Downloads 393
21811 A Reflection on the Professional Development Journey of Science Educators

Authors: M. Shaheed Hartley

Abstract:

Science and mathematics are regarded as gateway subjects in South Africa as they are the perceived route to careers in science, engineering, technology and mathematics (STEM). One of the biggest challenges that the country faces is the poor achievement of learners in these two learning areas in the external high school exit examination. To compound the problem many national and international benchmark tests paint a bleak picture of the state of science and mathematics in the country. In an attempt to address this challenge, the education department of the Eastern Cape Province invited the Science Learning Centre of the University of the Western Cape to provide training to their science teachers in the form of a structured course conducted on a part-time basis in 2010 and 2011. The course was directed at improving teachers’ content knowledge, pedagogical strategies and practical and experimental skills. A total of 41 of the original 50 science teachers completed the course and received their certificates in 2012. As part of their continuous professional development, 31 science teachers enrolled for BEd Hons in science education in 2013 and 28 of them completed the course in 2014. These students graduated in 2015. Of the 28 BEd Hons students who completed the course 23 registered in 2015 for Masters in Science Education and were joined by an additional 3 students. This paper provides a reflection by science educators on the training, supervision and mentorship provided to them as students of science education. The growth and development of students through their own reflection and understanding as well as through the eyes of the lecturers and supervisors that took part in the training provide the evaluation of the professional development process over the past few years. This study attempts to identify the merits, challenges and limitations of this project and the lessons to be learnt on such projects. It also documents some of the useful performance indicators with a view to developing a framework for good practice for such programmes.

Keywords: reflection, science education, professional development, rural schools

Procedia PDF Downloads 195
21810 FisherONE: Employing Distinct Pedagogy through Technology Integration in Senior Secondary Education

Authors: J. Kontoleon, D.Gall, M.Pidskalny

Abstract:

FisherONE offers a distinct pedagogic model for senior secondary education that integrates advanced technology to meet the learning needs of Year 11 and 12 students across Catholic schools in Queensland. As a fully online platform, FisherONE employs pedagogy that combines flexibility with personalized, data-driven learning. The model leverages tools like the MaxHub hybrid interactive system and AI-powered learning assistants to create tailored learning pathways that promote student autonomy and engagement. This paper examines FisherONE’s success in employing pedagogic strategies through technology. Initial findings suggest that students benefit from the blended approach of virtual assessments and real-time support, even as AI-assisted tools remain in the proof-of-concept phase. The study outlines how FisherONE plans to continue refining its educational methods to better serve students in distance learning environments, specifically in challenging subjects like physics. The integration of technology in FisherONE enhances the effectiveness of teaching and learning, addressing common challenges in online education by offering scalable, individualized learning experiences. This approach demonstrates the future potential of technology in education and the role it can play in fostering meaningful student outcomes.

Keywords: AI-assisted learning, innovative pedagogy, personalized learning, senior education, technology in education

Procedia PDF Downloads 18
21809 Classification of Echo Signals Based on Deep Learning

Authors: Aisulu Tileukulova, Zhexebay Dauren

Abstract:

Radar plays an important role because it is widely used in civil and military fields. Target detection is one of the most important radar applications. The accuracy of detecting inconspicuous aerial objects in radar facilities is lower against the background of noise. Convolutional neural networks can be used to improve the recognition of this type of aerial object. The purpose of this work is to develop an algorithm for recognizing aerial objects using convolutional neural networks, as well as training a neural network. In this paper, the structure of a convolutional neural network (CNN) consists of different types of layers: 8 convolutional layers and 3 layers of a fully connected perceptron. ReLU is used as an activation function in convolutional layers, while the last layer uses softmax. It is necessary to form a data set for training a neural network in order to detect a target. We built a Confusion Matrix of the CNN model to measure the effectiveness of our model. The results showed that the accuracy when testing the model was 95.7%. Classification of echo signals using CNN shows high accuracy and significantly speeds up the process of predicting the target.

Keywords: radar, neural network, convolutional neural network, echo signals

Procedia PDF Downloads 353
21808 The Impact of Cloud Accounting on Boards of Directors in the Middle East and North African (MENA) Countries

Authors: Ahmad Alqatan

Abstract:

Purpose: The purpose of this study is to analyze how the adoption of cloud accounting systems influences the governance practices and performance of boards of directors in MENA countries. The research aims to identify the benefits and challenges associated with cloud accounting and its role in improving board efficiency and oversight. Methodology: This research employs a mixed-method approach, combining quantitative surveys and qualitative interviews with board members and financial officers from a diverse range of companies in the MENA region. The quantitative data is analyzed to determine patterns and correlations, while qualitative insights provide a deeper understanding of the contextual factors influencing cloud accounting adoption and its impacts. Findings: The findings indicate that cloud accounting significantly enhances the decision-making capabilities of boards by providing real-time financial information and facilitating better communication among board members. Companies using cloud accounting reports improved financial oversight and more timely and accurate financial reporting. However, the research also identifies challenges such as cybersecurity concerns, resistance to change, and the need for ongoing training and support. Practical Implications: The study suggests that MENA companies can benefit from investing in cloud accounting technologies to improve board governance and strategic decision-making. It highlights the importance of addressing cybersecurity issues and providing adequate training for board members to maximize the advantages of cloud accounting. Originality: This research contributes to the limited literature on cloud accounting in the MENA region, offering valuable insights for policymakers, business leaders, and academics. It underscores the transformative potential of cloud accounting for enhancing board performance and corporate governance in emerging markets.

Keywords: cloud accounting, board of directors, MENA region, corporate governance, financial transparency, real-time data, decision-making, cybersecurity, technology adoption

Procedia PDF Downloads 30
21807 Risk Tolerance and Individual Worthiness Based on Simultaneous Analysis of the Cognitive Performance and Emotional Response to a Multivariate Situational Risk Assessment

Authors: Frederic Jumelle, Kelvin So, Didan Deng

Abstract:

A method and system for neuropsychological performance test, comprising a mobile terminal, used to interact with a cloud server which stores user information and is logged into by the user through the terminal device; the user information is directly accessed through the terminal device and is processed by artificial neural network, and the user information comprises user facial emotions information, performance test answers information and user chronometrics. This assessment is used to evaluate the cognitive performance and emotional response of the subject to a series of dichotomous questions describing various situations of daily life and challenging the users' knowledge, values, ethics, and principles. In industrial applications, the timing of this assessment will depend on the users' need to obtain a service from a provider, such as opening a bank account, getting a mortgage or an insurance policy, authenticating clearance at work, or securing online payments.

Keywords: artificial intelligence, neurofinance, neuropsychology, risk management

Procedia PDF Downloads 138
21806 Artificial Neural Network Approach for GIS-Based Soil Macro-Nutrients Mapping

Authors: Shahrzad Zolfagharnassab, Abdul Rashid Mohamed Shariff, Siti Khairunniza Bejo

Abstract:

Conventional methods for nutrient soil mapping are based on laboratory tests of samples that are obtained from surveys. The time and cost involved in gathering and analyzing soil samples are the reasons that researchers use Predictive Soil Mapping (PSM). PSM can be defined as the development of a numerical or statistical model of the relationship among environmental variables and soil properties, which is then applied to a geographic database to create a predictive map. Kriging is a group of geostatistical techniques to spatially interpolate point values at an unobserved location from observations of values at nearby locations. The main problem with using kriging as an interpolator is that it is excessively data-dependent and requires a large number of closely spaced data points. Hence, there is a need to minimize the number of data points without sacrificing the accuracy of the results. In this paper, an Artificial Neural Networks (ANN) scheme was used to predict macronutrient values at un-sampled points. ANN has become a popular tool for prediction as it eliminates certain difficulties in soil property prediction, such as non-linear relationships and non-normality. Back-propagation multilayer feed-forward network structures were used to predict nitrogen, phosphorous and potassium values in the soil of the study area. A limited number of samples were used in the training, validation and testing phases of ANN (pattern reconstruction structures) to classify soil properties and the trained network was used for prediction. The soil analysis results of samples collected from the soil survey of block C of Sawah Sempadan, Tanjung Karang rice irrigation project at Selangor of Malaysia were used. Soil maps were produced by the Kriging method using 236 samples (or values) that were a combination of actual values (obtained from real samples) and virtual values (neural network predicted values). For each macronutrient element, three types of maps were generated with 118 actual and 118 virtual values, 59 actual and 177 virtual values, and 30 actual and 206 virtual values, respectively. To evaluate the performance of the proposed method, for each macronutrient element, a base map using 236 actual samples and test maps using 118, 59 and 30 actual samples respectively produced by the Kriging method. A set of parameters was defined to measure the similarity of the maps that were generated with the proposed method, termed the sample reduction method. The results show that the maps that were generated through the sample reduction method were more accurate than the corresponding base maps produced through a smaller number of real samples. For example, nitrogen maps that were produced from 118, 59 and 30 real samples have 78%, 62%, 41% similarity, respectively with the base map (236 samples) and the sample reduction method increased similarity to 87%, 77%, 71%, respectively. Hence, this method can reduce the number of real samples and substitute ANN predictive samples to achieve the specified level of accuracy.

Keywords: artificial neural network, kriging, macro nutrient, pattern recognition, precision farming, soil mapping

Procedia PDF Downloads 70
21805 Identification of Ideal Plain Sufu (Fermented Soybean Curds) Based on Ideal Profile Method and Assessment of the Consistency of Ideal Profiles Obtained from Consumers

Authors: Yan Ping Chen, Hau Yin Chung

Abstract:

The Ideal Profile Method (IPM) is a newly developed descriptive sensory analysis conducted by consumers without previous training. To perform this test, both the perceived and the ideal intensities from the judgements of consumers on products’ attributes, as well as their hedonic ratings were collected for formulating an ideal product (the most liked one). In addition, Ideal Profile Analysis (IPA) was conducted to check the consistency of the ideal data at both the panel and consumer levels. In this test, 12 commercial plain sufus bought from Hong Kong local market were tested by 113 consumers according to the IPM, and rated on 22 attributes. Principal component analysis was used to profile the perceived and the ideal spaces of tested products. The consistency of ideal data was then checked by IPA. The result showed that most consumers shared a common ideal. It was observed that the sensory product space and the ideal product space were structurally similar. Their first dimensions all opposed products with intense fermented related aroma to products with less fermented related aroma. And the predicted ideal profile (the estimated liking score around 7.0 in a 9.0-point scale) got higher hedonic score than the tested products (the average liking score around 6.0 in a 9.0-point scale). For the majority of consumers (95.2%), the stated ideal product considered as a potential ideal through checking the R2 coefficient value. Among all the tested products, sample-6 was the most popular one with consumer liking percentage around 30%. This product with less fermented and moldy flavour but easier to melt in mouth texture possessed close sensory profile according to the ideal product. This experiment validated that data from untrained consumers could be guided as useful information. Appreciated sensory characteristics could be served as reference in the optimization of the commercial plain sufu.

Keywords: ideal profile method, product development, sensory evaluation, sufu (fermented soybean curd)

Procedia PDF Downloads 188
21804 Adomian’s Decomposition Method to Functionally Graded Thermoelastic Materials with Power Law

Authors: Hamdy M. Youssef, Eman A. Al-Lehaibi

Abstract:

This paper presents an iteration method for the numerical solutions of a one-dimensional problem of generalized thermoelasticity with one relaxation time under given initial and boundary conditions. The thermoelastic material with variable properties as a power functional graded has been considered. Adomian’s decomposition techniques have been applied to the governing equations. The numerical results have been calculated by using the iterations method with a certain algorithm. The numerical results have been represented in figures, and the figures affirm that Adomian’s decomposition method is a successful method for modeling thermoelastic problems. Moreover, the empirical parameter of the functional graded, and the lattice design parameter have significant effects on the temperature increment, the strain, the stress, the displacement.

Keywords: Adomian, decomposition method, generalized thermoelasticity, algorithm

Procedia PDF Downloads 143
21803 The Investigation on the Status of Disaster Prevention and Reduction Knowledge in Rural Pupils in China

Authors: Jian-Na Zhang, Xiao-Li Chen, Si-Jian Li

Abstract:

Objective: In order to investigate current status on knowledge of disaster prevention and reduction in rural pupils, to explore education method on disaster prevention and reduction for rural pupils. Method: A questionnaire was designed based on literature review. Convenient sampling was used in the survey. The questionnaire survey was conducted among 180 students from Huodehong town central primary school which located in Ludian county of Zhaotong city in Yunnan province, where 6.5 magnitude earthquake happened in 2014. The result indicated that the pupils’ knowledge and skills on disaster prevention and reduction relevant poor. The source for them to obtain the knowledge of disaster prevention and reduction included TV (68.9%), followed by their parents (43.9%), while only 24.4% of knowledge is from the teachers. The scores about different natural disaster are ranking in descending order: earthquake (5.39 ±1.27), floods (3.77 ±1.17); debris flow (2.81 ±1.05), family fire (2.16± 0.96). And the disaster experience did not help the pupils enhance the knowledge reserves. There is no statistical significance (P > 0.05) in knowledge scores of disaster prevention and reduction between experienced and non-experienced group. Conclusion: The local disaster experiences did not draw the attention of parents and schools. Knowledge popularization of disaster for local pupils is extremely urgent. It is necessary to take advantage of more mediums to popularize the knowledge and skills about disaster prevention and reduction, for example, family education, school education, newspapers, brochures, etc. The training courses on disaster prevention and reduction which are based on the characteristics of the local rural pupils and the characteristics of the local disasters would be useful.

Keywords: rural, pupils, disaster prevention and reduction knowledge, popularization

Procedia PDF Downloads 353
21802 Artificial Neural Network Based Approach in Prediction of Potential Water Pollution Across Different Land-Use Patterns

Authors: M.Rüştü Karaman, İsmail İşeri, Kadir Saltalı, A.Reşit Brohi, Ayhan Horuz, Mümin Dizman

Abstract:

Considerable relations has recently been given to the environmental hazardous caused by agricultural chemicals such as excess fertilizers. In this study, a neural network approach was investigated in the prediction of potential nitrate pollution across different land-use patterns by using a feedforward multilayered computer model of artificial neural network (ANN) with proper training. Periodical concentrations of some anions, especially nitrate (NO3-), and cations were also detected in drainage waters collected from the drain pipes placed in irrigated tomato field, unirrigated wheat field, fallow and pasture lands. The soil samples were collected from the irrigated tomato field and unirrigated wheat field on a grid system with 20 m x 20 m intervals. Site specific nitrate concentrations in the soil samples were measured for ANN based simulation of nitrate leaching potential from the land profiles. In the application of ANN model, a multi layered feedforward was evaluated, and data sets regarding with training, validation and testing containing the measured soil nitrate values were estimated based on spatial variability. As a result of the testing values, while the optimal structures of 2-15-1 was obtained (R2= 0.96, P < 0.01) for unirrigated field, the optimal structures of 2-10-1 was obtained (R2= 0.96, P < 0.01) for irrigated field. The results showed that the ANN model could be successfully used in prediction of the potential leaching levels of nitrate, based on different land use patterns. However, for the most suitable results, the model should be calibrated by training according to different NN structures depending on site specific soil parameters and varied agricultural managements.

Keywords: artificial intelligence, ANN, drainage water, nitrate pollution

Procedia PDF Downloads 310
21801 Safeguarding the Construction Industry: Interrogating and Mitigating Emerging Risks from AI in Construction

Authors: Abdelrhman Elagez, Rolla Monib

Abstract:

This empirical study investigates the observed risks associated with adopting Artificial Intelligence (AI) technologies in the construction industry and proposes potential mitigation strategies. While AI has transformed several industries, the construction industry is slowly adopting advanced technologies like AI, introducing new risks that lack critical analysis in the current literature. A comprehensive literature review identified a research gap, highlighting the lack of critical analysis of risks and the need for a framework to measure and mitigate the risks of AI implementation in the construction industry. Consequently, an online survey was conducted with 24 project managers and construction professionals, possessing experience ranging from 1 to 30 years (with an average of 6.38 years), to gather industry perspectives and concerns relating to AI integration. The survey results yielded several significant findings. Firstly, respondents exhibited a moderate level of familiarity (66.67%) with AI technologies, while the industry's readiness for AI deployment and current usage rates remained low at 2.72 out of 5. Secondly, the top-ranked barriers to AI adoption were identified as lack of awareness, insufficient knowledge and skills, data quality concerns, high implementation costs, absence of prior case studies, and the uncertainty of outcomes. Thirdly, the most significant risks associated with AI use in construction were perceived to be a lack of human control (decision-making), accountability, algorithm bias, data security/privacy, and lack of legislation and regulations. Additionally, the participants acknowledged the value of factors such as education, training, organizational support, and communication in facilitating AI integration within the industry. These findings emphasize the necessity for tailored risk assessment frameworks, guidelines, and governance principles to address the identified risks and promote the responsible adoption of AI technologies in the construction sector.

Keywords: risk management, construction, artificial intelligence, technology

Procedia PDF Downloads 99
21800 The Development of a New Block Method for Solving Stiff ODEs

Authors: Khairil I. Othman, Mahfuzah Mahayaddin, Zarina Bibi Ibrahim

Abstract:

We develop and demonstrate a computationally efficient numerical technique to solve first order stiff differential equations. This technique is based on block method whereby three approximate points are calculated. The Cholistani of varied step sizes are presented in divided difference form. Stability regions of the formulae are briefly discussed in this paper. Numerical results show that this block method perform very well compared to existing methods.

Keywords: block method, divided difference, stiff, computational

Procedia PDF Downloads 430
21799 Optimized Dynamic Bayesian Networks and Neural Verifier Test Applied to On-Line Isolated Characters Recognition

Authors: Redouane Tlemsani, Redouane, Belkacem Kouninef, Abdelkader Benyettou

Abstract:

In this paper, our system is a Markovien system which we can see it like a Dynamic Bayesian Networks. One of the major interests of these systems resides in the complete training of the models (topology and parameters) starting from training data. The Bayesian Networks are representing models of dubious knowledge on complex phenomena. They are a union between the theory of probability and the graph theory in order to give effective tools to represent a joined probability distribution on a set of random variables. The representation of knowledge bases on description, by graphs, relations of causality existing between the variables defining the field of study. The theory of Dynamic Bayesian Networks is a generalization of the Bayesians networks to the dynamic processes. Our objective amounts finding the better structure which represents the relationships (dependencies) between the variables of a dynamic bayesian network. In applications in pattern recognition, one will carry out the fixing of the structure which obliges us to admit some strong assumptions (for example independence between some variables).

Keywords: Arabic on line character recognition, dynamic Bayesian network, pattern recognition, networks

Procedia PDF Downloads 618
21798 Quantifying Stability of Online Communities and Its Impact on Disinformation

Authors: Victor Chomel, Maziyar Panahi, David Chavalarias

Abstract:

Misinformation has taken an increasingly worrying place in social media. Propagation patterns are closely linked to the structure of communities. This study proposes a method of community analysis based on a combination of centrality indicators for the network and its main communities. The objective is to establish a link between the stability of the communities over time, the social ascension of its members internally, and the propagation of information in the community. To this end, data from the debates about global warming and political communities on Twitter have been collected, and several tens of millions of tweets and retweets have helped us better understand the structure of these communities. The quantification of this stability allows for the study of the propagation of information of any kind, including disinformation. Our results indicate that the most stable communities over time are the ones that enable the establishment of nodes capturing a large part of the information and broadcasting its opinions. Conversely, communities with a high turnover and social ascendancy only stabilize themselves strongly in the face of adversity and external events but seem to offer a greater diversity of opinions most of the time.

Keywords: community analysis, disinformation, misinformation, Twitter

Procedia PDF Downloads 140