Search results for: mycobacterium tuberculosis complex
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5491

Search results for: mycobacterium tuberculosis complex

3331 Predictive Output Feedback Linearization for Safe Control of Collaborative Robots

Authors: Aliasghar Arab

Abstract:

Autonomous robots interacting with humans, as safety-critical nonlinear control systems, are complex closed-loop cyber-physical dynamical machines. Keeping these intelligent yet complicated systems safe and smooth during their operations is challenging. The aim of the safe predictive output feedback linearization control synthesis is to design a novel controller for smooth trajectory following while unsafe situations must be avoided. The controller design should obtain a linearized output for smoothness and invariance to a safety subset. Inspired by finite-horizon nonlinear model predictive control, the problem is formulated as constrained nonlinear dynamic programming. The safety constraints can be defined as control barrier functions. Avoiding unsafe maneuvers and performing smooth motions increases the predictability of the robot’s movement for humans when robots and people are working together. Our results demonstrate the proposed output linearization method obeys the safety constraints and, compared to existing safety-guaranteed methods, is smoother and performs better.

Keywords: robotics, collaborative robots, safety, autonomous robots

Procedia PDF Downloads 97
3330 Management of Medical Equipment Maintenance

Authors: Gholamreza Madad

Abstract:

The role of medical equipment in modern advanced hospitals is irrefutable. Despite limited financial resources, developing countries have taken an uncontrollable manner to the purchase of complex and expensive equipment, although they have not taken good maintenance to keep these huge capitals. In our country, limited studies have indicated that the irregularities exist in the management of medical equipment maintenance. Research method: The research was done as a cross-sectional one, and in this study, a questionnaire was used to collect data in 10 hospitals. After distributing and collecting questionnaires in person, the collected data were analyzed using descriptive statistics and SPSS software. Research findings: According to the obtained results from the four dimensions of the management of medical equipment maintenance, only (maintenance planning) was in a moderate position and other components with a score of less than 50% were at a low level. There was a direct relationship between the total score of maintenance management and guidance points and coordination of medical equipment maintenance, and as well as the age of hospital managers. Discussion and conclusion: In sum, we can say that problems such as lack of skilled staff in medical engineering departments of hospitals, lack of funds and unaware of the authorities of medical engineering units to their duties have caused that the maintenance situation of medical equipment maintenance is in poor condition (near average). The low inexperience of the authorities of the unit has also contributed to this problem.

Keywords: equipment, maintenance, medical equipment, hospitals

Procedia PDF Downloads 162
3329 Indexing and Incremental Approach Using Map Reduce Bipartite Graph (MRBG) for Mining Evolving Big Data

Authors: Adarsh Shroff

Abstract:

Big data is a collection of dataset so large and complex that it becomes difficult to process using data base management tools. To perform operations like search, analysis, visualization on big data by using data mining; which is the process of extraction of patterns or knowledge from large data set. In recent years, the data mining applications become stale and obsolete over time. Incremental processing is a promising approach to refreshing mining results. It utilizes previously saved states to avoid the expense of re-computation from scratch. This project uses i2MapReduce, an incremental processing extension to Map Reduce, the most widely used framework for mining big data. I2MapReduce performs key-value pair level incremental processing rather than task level re-computation, supports not only one-step computation but also more sophisticated iterative computation, which is widely used in data mining applications, and incorporates a set of novel techniques to reduce I/O overhead for accessing preserved fine-grain computation states. To optimize the mining results, evaluate i2MapReduce using a one-step algorithm and three iterative algorithms with diverse computation characteristics for efficient mining.

Keywords: big data, map reduce, incremental processing, iterative computation

Procedia PDF Downloads 351
3328 Investigations of Inclusion Complexes of Imazapyr with 2-Hydroxypropyl(β/γ) Cyclodextrin Experimental and Molecular Modeling Approach

Authors: Abdalla A. Elbashir, Maali Saad Mokhtar, FakhrEldin O. Suliman

Abstract:

The inclusion complexes of imazapyr (IMA) with 2-hydroxypropyl(β/γ) cyclodextrins (HP β/γ-CD), have been studied in aqueous media and in the solid state. In this work, fluorescence spectroscopy, electrospray-ionization mass spectrometry (ESI-MS), and HNMR were used to investigate and characterize the inclusion complexes of IMA with the cyclodextrins in solutions. The solid-state complexes were obtained by freeze-drying and were characterized by Fourier transform infrared spectroscopy (FTIR), and powder X-ray diffraction (PXRD). The most predominant complexes of IMA with both hosts are the 1:1 guest: host complexes. The association constants of IMA-HP β-CD and IMA-HP γ -CD were 115 and 215 L mol⁻¹, respectively. Molecular dynamic (MD) simulations were used to monitor the mode of inclusion and also to investigate the stability of these complexes in aqueous media at atomistic levels. The results obtained have indicated that these inclusion complexes are highly stable in aqueous media, thereby corroborating the experimental results. Additionally, it has been demonstrated that in addition to hydrophobic interactions and van der Waals interactions the presence of hydrogen bonding interactions of the type H---O and CH---O between the guest and the host have enhanced the stability of these complexes remarkably.

Keywords: imazapyr, inclusion complex, herbicides, 2-hydroxypropyl-β/γ-cyclodextrin

Procedia PDF Downloads 171
3327 Production Line Layout Planning Based on Complexity Measurement

Authors: Guoliang Fan, Aiping Li, Nan Xie, Liyun Xu, Xuemei Liu

Abstract:

Mass customization production increases the difficulty of the production line layout planning. The material distribution process for variety of parts is very complex, which greatly increases the cost of material handling and logistics. In response to this problem, this paper presents an approach of production line layout planning based on complexity measurement. Firstly, by analyzing the influencing factors of equipment layout, the complexity model of production line is established by using information entropy theory. Then, the cost of the part logistics is derived considering different variety of parts. Furthermore, the function of optimization including two objectives of the lowest cost, and the least configuration complexity is built. Finally, the validity of the function is verified in a case study. The results show that the proposed approach may find the layout scheme with the lowest logistics cost and the least complexity. Optimized production line layout planning can effectively improve production efficiency and equipment utilization with lowest cost and complexity.

Keywords: production line, layout planning, complexity measurement, optimization, mass customization

Procedia PDF Downloads 393
3326 Ground State Phases in Two-Mode Quantum Rabi Models

Authors: Suren Chilingaryan

Abstract:

We study two models describing a single two-level system coupled to two boson field modes in either a parallel or orthogonal setup. Both models may be feasible for experimental realization through Raman adiabatic driving in cavity QED. We study their ground state configurations; that is, we find the quantum precursors of the corresponding semi-classical phase transitions. We found that the ground state configurations of both models present the same critical coupling as the quantum Rabi model. Around this critical coupling, the ground state goes from the so-called normal configuration with no excitation, the qubit in the ground state and the fields in the quantum vacuum state, to a ground state with excitations, the qubit in a superposition of ground and excited state, while the fields are not in the vacuum anymore, for the first model. The second model shows a more complex ground state configuration landscape where we find the normal configuration mentioned above, two single-mode configurations, where just one of the fields and the qubit are excited, and a dual-mode configuration, where both fields and the qubit are excited.

Keywords: quantum optics, quantum phase transition, cavity QED, circuit QED

Procedia PDF Downloads 368
3325 An Alternative Method for Computing Clothoids

Authors: Gerardo Casal, Miguel E. Vázquez-Méndez

Abstract:

The clothoid (also known as Cornu spiral or Euler spiral) is a curve that is characterized because its curvature is proportional to its length. This property makes that it would be widely used as transition curve for designing the layout of roads and railway tracks. In this work, from the geometrical property characterizing the clothoid, its parametric equations are obtained and two algorithms to compute it are compared. The first (classical), is widely used in Surveying Schools and it is based on the use of explicit formulas obtained from Taylor expansions of sine and cosine functions. The second one (alternative) is a very simple algorithm, based on the numerical solution of the initial value problems giving the clothoid parameterization. Both methods are compared in some typical surveying problems. The alternative method does not use complex formulas and so it is conceptually very simple and easy to apply. It gives good results, even if the classical method goes wrong (if the quotient between length and radius of curvature is high), needs no subsequent translations nor rotations and, consequently, it seems an efficient tool for designing the layout of roads and railway tracks.

Keywords: transition curves, railroad and highway engineering, Runge-Kutta methods

Procedia PDF Downloads 283
3324 The Impact of Ultrasonic Field to Increase the Biodegradability of Leachate from The Landfill

Authors: Kwarciak-Kozlowska A., Slawik-Dembiczak L., Galwa-Widera M.

Abstract:

Complex and variable during operation of the landfill leachate composition prevents the use of a single universal method of their purification. Due to the presence of difficult biodegradable these substances in the wastewater, cleaning of them often requires the use of biological methods (activated sludge or anaerobic digestion), also often supporting by physicochemical processes. Currently, more attention is paid to the development of unconventional methods of disposal of sewage m.in ultleniania advanced methods including the use of ultrasonic waves. It was assumed that the ultrasonic waves induce change in the structure of organic compounds and contribute to the acceleration of biodegradability, including refractive substances in the leachate, so that will increase the effectiveness of their treatment in biological processes. We observed a marked increase in BOD leachate when subjected to the action of utradźwięowego. Ratio BOD / COD was 27% higher compared to the value of this ratio for leachate nienadźwiękawianych. It was found that the process of sonification leachate clearly influenced the formation and release of aliphatic compounds. These changes suggest a possible violation of the chemical structure of organic compounds in the leachate thereby give compounds of the chemical structure more susceptible to biodegradation.

Keywords: IR spectra, landfill leachate, organic pollutants, ultrasound

Procedia PDF Downloads 429
3323 Design of an Automatic Saw Cutting Machine for Wood and Aluminum

Authors: Jawad Ul Haq, Evan Mazur, Ahmed Qureshi, Mohamed Al-Hussein

Abstract:

The uses of wood in furniture, building, bridges and aluminum in transportation and construction, make aluminum and forest economy a prominent matter in North America. Machines available to date to cut the aforementioned materials are mostly industry oriented with complex structure and operations which require special training and skill. Furthermore, requirements such as pneumatics, 3-phase supply are associated with cost, maintenance, and safety hazards. Power saws are very useful tools used to cut and shape materials; however, they can cause serious hand injuries. Operator’s hands in table saw are vulnerable as they are used to guide pieces into the saw. Apart from hands, saw operator is also prone to material being kicked back out of the saw or sustain eye or respiratory injuries due to rapidly flying sawdust and other debris. In this paper, design of an automatic saw cutting machine has been proposed to ensure safety, portability, usage at domestic level and capability to cut both aluminum and wood. This paper demonstrates detailed Mechanical design in SOLIDWORKS and Control Systems using Programmable Logic Controller (PLC), based on the aforementioned design objectives.

Keywords: programmable logic controller, saw cutting, control, automation

Procedia PDF Downloads 273
3322 Topology Optimisation for Reduction in Material Use for Precast Concrete Elements: A Case Study of a 3D-Printed Staircase

Authors: Dengyu You, Alireza Kashani

Abstract:

This study explores the potential of 3D concrete printing in manufacturing prefabricated staircases. The applications of 3D concrete printing in large-scale construction could enhance the industry’s implementation of the Industry 4.0 concept. In addition, the current global challenge is to achieve Net Zero Emissions by 2050. Innovation in the construction industry could potentially speed up achieving this target. The 3D printing technology offers a possible solution that reduces cement usage, minimises framework wastes, and is capable of manufacturing complex structures. The performance of the 3D concrete printed lightweight staircase needs to be evaluated. In this study, the staircase is designed using computer-aided technologies, fabricated by 3D concrete printing technologies, and tested with Australian Standard (AS 1657-2018 Fixed platforms, walkways, stairways, and ladders – design, construction, and installation) under a laboratory environment. The experiment results will be further compared with the FEM analysis. The results indicate that 3D concrete printing is capable of fast production, reducing material usage, and is highly automotive, which meets the industry’s future development goal.

Keywords: concrete 3D printing, staircase, sustainability, automation

Procedia PDF Downloads 105
3321 The Hyundai Model: A Self-Sufficient State like Entity Masquerading as a Company

Authors: Nikita Koradia

Abstract:

Hyundai Motor Company, which started off as a small fish in a big sea, paved its way out successfully and established itself as an independent group from the conglomerate. Hyundai, with its officious power across the globe and particularly in South Korea in the automobile industry, has one the most complex yet fascinating governance structure. Being the second largest contributor to the Gross Domestic Product of South Korea after Samsung and having a market share of 51.3% domestically in automobile industry, Hyundai has faced its part of criticism owing to its anti-labor union approach and owing to its internalization of supply chain management. The censure has been coming from across jurisdictions like China, India, Canada, the EU, etc. The paper focuses on the growth of Hyundai and its inward and outward investment structure. The paper questions the ability of Hyundai to become a mini-state in itself by focusing on its governance structure. The paper further elaborates on its compliance and disclosure regime in the field of Corporate social responsibility and explores how far the business structure adopted by Hyundai works in its favor to become one of the leading automobile contenders in the market.

Keywords: compliance regime, disclosure regime, Hyundai motor company, supply-chain management

Procedia PDF Downloads 118
3320 An Interpolation Tool for Data Transfer in Two-Dimensional Ice Accretion Problems

Authors: Marta Cordero-Gracia, Mariola Gomez, Olivier Blesbois, Marina Carrion

Abstract:

One of the difficulties in icing simulations is for extended periods of exposure, when very large ice shapes are created. As well as being large, they can have complex shapes, such as a double horn. For icing simulations, these configurations are currently computed in several steps. The icing step is stopped when the ice shapes become too large, at which point a new mesh has to be created to allow for further CFD and ice growth simulations to be performed. This can be very costly, and is a limiting factor in the simulations that can be performed. A way to avoid the costly human intervention in the re-meshing step of multistep icing computation is to use mesh deformation instead of re-meshing. The aim of the present work is to apply an interpolation method based on Radial Basis Functions (RBF) to transfer deformations from surface mesh to volume mesh. This deformation tool has been developed specifically for icing problems. It is able to deal with localized, sharp and large deformations, unlike the tools traditionally used for more smooth wing deformations. This tool will be presented along with validation on typical two-dimensional icing shapes.

Keywords: ice accretion, interpolation, mesh deformation, radial basis functions

Procedia PDF Downloads 313
3319 A Proposed Framework for Software Redocumentation Using Distributed Data Processing Techniques and Ontology

Authors: Laila Khaled Almawaldi, Hiew Khai Hang, Sugumaran A. l. Nallusamy

Abstract:

Legacy systems are crucial for organizations, but their intricacy and lack of documentation pose challenges for maintenance and enhancement. Redocumentation of legacy systems is vital for automatically or semi-automatically creating documentation for software lacking sufficient records. It aims to enhance system understandability, maintainability, and knowledge transfer. However, existing redocumentation methods need improvement in data processing performance and document generation efficiency. This stems from the necessity to efficiently handle the extensive and complex code of legacy systems. This paper proposes a method for semi-automatic legacy system re-documentation using semantic parallel processing and ontology. Leveraging parallel processing and ontology addresses current challenges by distributing the workload and creating documentation with logically interconnected data. The paper outlines challenges in legacy system redocumentation and suggests a method of redocumentation using parallel processing and ontology for improved efficiency and effectiveness.

Keywords: legacy systems, redocumentation, big data analysis, parallel processing

Procedia PDF Downloads 46
3318 Preventive Maintenance of Rotating Machinery Based on Vibration Diagnosis of Rolling Bearing

Authors: T. Bensana, S. Mekhilef

Abstract:

The methodology of vibration based condition monitoring technology has been developing at a rapid stage in the recent years suiting to the maintenance of sophisticated and complicated machines. The ability of wavelet analysis to efficiently detect non-stationary, non-periodic, transient features of the vibration signal makes it a demanding tool for condition monitoring. This paper presents a methodology for fault diagnosis of rolling element bearings based on wavelet envelope power spectrum technique is analysed in both the time and frequency domains. In the time domain the auto-correlation of the wavelet de-noised signal is applied to evaluate the period of the fault pulses. However, in the frequency domain the wavelet envelope power spectrum has been used to identify the fault frequencies with the single sided complex Laplace wavelet as the mother wavelet function. Results show the superiority of the proposed method and its effectiveness in extracting fault features from the raw vibration signal.

Keywords: preventive maintenance, fault diagnostics, rolling element bearings, wavelet de-noising

Procedia PDF Downloads 379
3317 Perfectionism and its Impact on Body Image in Emerging Adults

Authors: Marianne John

Abstract:

This study explores the complex relationship between perfectionism and body image among young adults, focusing on self-oriented, socially prescribed, and other-oriented dimensions of perfectionism. Using the Multidimensional Perfectionism Scale (MPS) and the Body Image Scale (BIS), data from 200 participants revealed moderate levels of perfectionism and body image concerns, with both scales showing significant deviations from normality. Gender comparisons indicated no significant difference in body image perceptions, suggesting comparable societal pressures across genders, but a significant difference in perfectionism scores, with women showing higher socially influenced perfectionism tendencies. Correlation analysis found no significant associations between self-oriented or socially prescribed perfectionism and body image perceptions; however, a weak yet significant negative correlation emerged between other-oriented perfectionism and body dissatisfaction, indicating that heightened expectations of others may relate to greater body image concerns. These findings emphasize the multidimensional nature of perfectionism and its nuanced relationship with body image, highlighting the need for gender-sensitive interventions and further exploration of mediating factors like self-esteem and coping strategies in future research.

Keywords: perfectionism, body image, self-oriented, socially prescribed, other-oriented

Procedia PDF Downloads 5
3316 Exploring Antimicrobial Resistance in the Lung Microbial Community Using Unsupervised Machine Learning

Authors: Camilo Cerda Sarabia, Fernanda Bravo Cornejo, Diego Santibanez Oyarce, Hugo Osses Prado, Esteban Gómez Terán, Belén Diaz Diaz, Raúl Caulier-Cisterna, Jorge Vergara-Quezada, Ana Moya-Beltrán

Abstract:

Antimicrobial resistance (AMR) represents a significant and rapidly escalating global health threat. Projections estimate that by 2050, AMR infections could claim up to 10 million lives annually. Respiratory infections, in particular, pose a severe risk not only to individual patients but also to the broader public health system. Despite the alarming rise in resistant respiratory infections, AMR within the lung microbiome (microbial community) remains underexplored and poorly characterized. The lungs, as a complex and dynamic microbial environment, host diverse communities of microorganisms whose interactions and resistance mechanisms are not fully understood. Unlike studies that focus on individual genomes, analyzing the entire microbiome provides a comprehensive perspective on microbial interactions, resistance gene transfer, and community dynamics, which are crucial for understanding AMR. However, this holistic approach introduces significant computational challenges and exposes the limitations of traditional analytical methods such as the difficulty of identifying the AMR. Machine learning has emerged as a powerful tool to overcome these challenges, offering the ability to analyze complex genomic data and uncover novel insights into AMR that might be overlooked by conventional approaches. This study investigates microbial resistance within the lung microbiome using unsupervised machine learning approaches to uncover resistance patterns and potential clinical associations. it downloaded and selected lung microbiome data from HumanMetagenomeDB based on metadata characteristics such as relevant clinical information, patient demographics, environmental factors, and sample collection methods. The metadata was further complemented by details on antibiotic usage, disease status, and other relevant descriptions. The sequencing data underwent stringent quality control, followed by a functional profiling focus on identifying resistance genes through specialized databases like Antibiotic Resistance Database (CARD) which contains sequences of AMR gene sequence and resistance profiles. Subsequent analyses employed unsupervised machine learning techniques to unravel the structure and diversity of resistomes in the microbial community. Some of the methods employed were clustering methods such as K-Means and Hierarchical Clustering enabled the identification of sample groups based on their resistance gene profiles. The work was implemented in python, leveraging a range of libraries such as biopython for biological sequence manipulation, NumPy for numerical operations, Scikit-learn for machine learning, Matplotlib for data visualization and Pandas for data manipulation. The findings from this study provide insights into the distribution and dynamics of antimicrobial resistance within the lung microbiome. By leveraging unsupervised machine learning, we identified novel resistance patterns and potential drivers within the microbial community.

Keywords: antibiotic resistance, microbial community, unsupervised machine learning., sequences of AMR gene

Procedia PDF Downloads 24
3315 Influence of Corrugation and Loosely Bonded Interface on the Propagation of Torsional Wave Propagation in a Viscoelastic Layer

Authors: Amrita Das, Abhishek Kumar Singh

Abstract:

The present paper calibrates the efficacy of corrugated and loosely bonded common interface of a viscoelastic layer and a dry sandy Gibson half-space on the propagation of torsional surface wave. Using suitable boundary conditions, the dispersion relation for the concerned problem is deduced in complex form. Numerical computation of the real part of the obtained dispersion relation gives the dispersion curve whereas the imaginary part bestows the damping curves. The use of Whittaker’s function and Bessel’s functions are among the major concerns of the paper. The investigation of the influence of the affecting parameters viz. heterogeneities, sandiness, Biot’s gravity parameter, initial stresses, loosely bonded interface, corrugation and internal friction on the phase velocity as well as damped velocity of torsional wave, through numerical discussion and graphical illustration, is among the major highlights of the current study.

Keywords: corrugation, dry sandy Gibson half-space, loosely bonded interface, torsional wave, viscoelastic layer

Procedia PDF Downloads 325
3314 Patterns of Gear Substitution in Norwegian Trawl Fishery

Authors: Tannaz Alizadeh Ashrafi

Abstract:

Seasonal variability in biological and ecological factors together with relevant socio-economic determinants affect the choice of fishing gear, frequency of its usage and decision about gear conversion under multi-species situation. In order to deal with the complex dynamics of fisheries, fishers, constantly, have to make decisions about how long to fish, when to go fishing, what species to target, and which gear to deploy. In this regard, the purpose of this study is to examine the dynamics of gear/ species combination in Norwegian fishery. A comprehensive vessel-level set of data for the main economically important species including: cod, haddock, saithe, shrimp and mixed catch have been obtained from the Norwegian Directorate of Fisheries covering the daily data in 2010. The present study further analyzes the level of flexibility and rationality of the fishers operating in the trawl fishery. The results show the disproportion between intention of the trawl fishers to maximize profitability of each fishing trip and their harvesting behavior in reality. Discussion is based on so-called maximizing behavior.

Keywords: trawl fishery, gear substitution, rationality, profit maximizing behavior

Procedia PDF Downloads 277
3313 Investigation of a Hybrid Process: Multipoint Incremental Forming

Authors: Safa Boudhaouia, Mohamed Amen Gahbiche, Eliane Giraud, Wacef Ben Salem, Philippe Dal Santo

Abstract:

Multi-point forming (MPF) and asymmetric incremental forming (ISF) are two flexible processes for sheet metal manufacturing. To take advantages of these two techniques, a hybrid process has been developed: The Multipoint Incremental Forming (MPIF). This process accumulates at once the advantages of each of these last mentioned forming techniques, which makes it a very interesting and particularly an efficient process for single, small, and medium series production. In this paper, an experimental and a numerical investigation of this technique are presented. To highlight the flexibility of this process and its capacity to manufacture standard and complex shapes, several pieces were produced by using MPIF. The forming experiments are performed on a 3-axis CNC machine. Moreover, a numerical model of the MPIF process has been implemented in ABAQUS and the analysis showed a good agreement with experimental results in terms of deformed shape. Furthermore, the use of an elastomeric interpolator allows avoiding classical local defaults like dimples, which are generally caused by the asymmetric contact and also improves the distribution of residual strain. Future works will apply this approach to other alloys used in aeronautic or automotive applications.

Keywords: incremental forming, numerical simulation, MPIF, multipoint forming

Procedia PDF Downloads 356
3312 Development of Fake News Model Using Machine Learning through Natural Language Processing

Authors: Sajjad Ahmed, Knut Hinkelmann, Flavio Corradini

Abstract:

Fake news detection research is still in the early stage as this is a relatively new phenomenon in the interest raised by society. Machine learning helps to solve complex problems and to build AI systems nowadays and especially in those cases where we have tacit knowledge or the knowledge that is not known. We used machine learning algorithms and for identification of fake news; we applied three classifiers; Passive Aggressive, Naïve Bayes, and Support Vector Machine. Simple classification is not completely correct in fake news detection because classification methods are not specialized for fake news. With the integration of machine learning and text-based processing, we can detect fake news and build classifiers that can classify the news data. Text classification mainly focuses on extracting various features of text and after that incorporating those features into classification. The big challenge in this area is the lack of an efficient way to differentiate between fake and non-fake due to the unavailability of corpora. We applied three different machine learning classifiers on two publicly available datasets. Experimental analysis based on the existing dataset indicates a very encouraging and improved performance.

Keywords: fake news detection, natural language processing, machine learning, classification techniques.

Procedia PDF Downloads 167
3311 Estimation of Human Absorbed Dose Using Compartmental Model

Authors: M. Mousavi-Daramoroudi, H. Yousefnia, F. Abbasi-Davani, S. Zolghadri

Abstract:

Dosimetry is an indispensable and precious factor in patient treatment planning to minimize the absorbed dose in vital tissues. In this study, compartmental model was used in order to estimate the human absorbed dose of 177Lu-DOTATOC from the biodistribution data in wild type rats. For this purpose, 177Lu-DOTATOC was prepared under optimized conditions and its biodistribution was studied in male Syrian rats up to 168 h. Compartmental model was applied to mathematical description of the drug behaviour in tissue at different times. Dosimetric estimation of the complex was performed using radiation absorbed dose assessment resource (RADAR). The biodistribution data showed high accumulation in the adrenal and pancreas as the major expression sites for somatostatin receptor (SSTR). While kidneys as the major route of excretion receive 0.037 mSv/MBq, pancreas and adrenal also obtain 0.039 and 0.028 mSv/MBq. Due to the usage of this method, the points of accumulated activity data were enhanced, and further information of tissues uptake was collected that it will be followed by high (or improved) precision in dosimetric calculations.

Keywords: compartmental modeling, human absorbed dose, ¹⁷⁷Lu-DOTATOC, Syrian rats

Procedia PDF Downloads 195
3310 “SockGEL/PLUG” Injectable Smart/Intelligent and Bio-Inspired Sol-Gel Nanomaterials for Simple and Complex Oro-Dental and Cranio-Maxillo-Facial Interventional Applications

Authors: Ziyad S. Haidar

Abstract:

Millions of teeth are removed annually, and dental extraction is one of the most commonly performed surgical procedures globally. Whether due to caries, periodontal disease or trauma, exodontia and the ensuing wound healing and bone remodeling processes of the resultant socket (hole in the jaw bone) usually result in serious deformities of the residual alveolar osseous ridge and surrounding soft tissues (reduced height/width). Such voluminous changes render the placement of a proper conventional bridge, denture or even an implant-supported prosthesis extremely challenging. Further, most extractions continue to be performed with no regard for preventing the onset of alveolar osteitis (also known as dry socket, a painful and difficult-to-treat/-manage condition post-exodontia). Hence, such serious resorptive morphological changes often result in significant facial deformities and a negative impact on the overall Quality of Life (QoL) of patients (and oral health-related QoL), alarming, particularly for the geriatric with compromised healing and in light of the thriving longevity statistics. Opportunity: Despite advances in tissue/wound grafting, serious limitations continue to exist, including efficacy and clinical outcome predictability, cost, treatment time, expertise and risk of immune reactions. For cases of dry sockets, specifically, the commercially-available and often-prescribed home remedies are highly lacking. Indeed, most are not recommended for use anymore. Alveogyl is a fine example. Hence, there is a great market demand and need for alternative solutions. Solution: Herein, SockGEL/PLUG (patent pending), an all-natural, drug-free and injectable stimuli-responsive hydrogel, was designed, formulated, characterized and evaluated as an osteogenic, angiogenic, anti-microbial and pain-soothing suture-free intra-alveolar dressing, safe and efficacious for use in several oro-dental and cranio-maxillo-facial interventional applications; for example: in fresh dental extraction sockets, immediately post-exodontia. It is composed of FDA-approved, biocompatible and biodegradable polymers, self-assembled electro-statically to formulate a scaffolding matrix to (a) prevent the onset of alveolar osteitis via securing the fibrin-clot in situ and protecting/sealing the socket from contamination/infection; and (b) endogenously promote/accelerate wound healing and bone remodeling to preserve the volume of the alveolus. Findings: The intrinsic properties of the SockGEL/PLUG hydrogel were evaluated physico-chemico-mechanically for safety (cell viability), viscosity, rheology, bio-distribution and essentially, capacity to induce wound healing and osteogenesis (small defect, in vivo) without any signaling cues from exogenous cells, growth factors or drugs. The performed animal model of cranial critical-sized and non-vascularized bone defects shall provide vitally critical insights into the role and mechanism of the employed natural bio-polymer blend and gel product in endogenous reparative regeneration of soft tissues and bone morphogenesis. Alongside, the fine-tuning of our modified formulation method will further tackle appropriateness, reproducibility, scalability, ease and speed in producing stable, biodegradable and sterilizable stimuli (thermo-sensitive and photo-responsive) matrices (3-dimensional interpenetrating yet porous polymeric network) suitable for an intra-socket application, and beyond. Conclusions and Perspective: Findings are anticipated to provide sufficient evidence to translate into pilot clinical trials and validate the bionanomaterial before engaging the market for feasibility, acceptance and cost-effectiveness studies. The SockGEL/PLUG platform is patent pending: SockGEL is a bio-inspired drug-free hydrogel; SockPLUG is a drug-loaded hydrogel designed for complex indications.

Keywords: hydrogel, injectable, dentistry, craniomaxillofacial complex, bioinspired, nanobiotechnology, biopolymer, sol-gel, stimuli-responsive, matrix, tissue engineering, regenerative medicine

Procedia PDF Downloads 73
3309 The State Support to the Tourism Policy Formation Mechanism in Black Sea Basin Countries (Azerbaijan, Turkey, Russia, Georgia) and Its Impact on Sustainable Tourism Development

Authors: A. Bahar Ganiyeva, M. Sabuhi Tanriverdiyev

Abstract:

The article analyzes state support and policy mechanisms aimed at driving tourism as one of the vibrant and rapidly developing economies. State programs and long-range strategic roadmaps and previous programs execution, results and their impact on the particular countries economy have been raised during the research. This theme provides a useful framework for discussions with a wider range of stakeholders as the implications arising are of importance both for academics and practitioners engaged in hospitality and tourism development and research. The impact that tourism has on sustainable regional development in emerging markets is highly substantial. For Azerbaijan, Turkey, Georgia, and Russia, with their rich natural resources and cultural heritage, tourism can be an important basis for economic expansion, and a way to form an acceptable image of the countries as safe, open, hospitable, and complex.

Keywords: Sustainable tourism, hospitality, destination, strategic roadmap, tourism, economy, growth, state support, mechanism, policy formation, state program

Procedia PDF Downloads 159
3308 Handwriting Velocity Modeling by Artificial Neural Networks

Authors: Mohamed Aymen Slim, Afef Abdelkrim, Mohamed Benrejeb

Abstract:

The handwriting is a physical demonstration of a complex cognitive process learnt by man since his childhood. People with disabilities or suffering from various neurological diseases are facing so many difficulties resulting from problems located at the muscle stimuli (EMG) or signals from the brain (EEG) and which arise at the stage of writing. The handwriting velocity of the same writer or different writers varies according to different criteria: age, attitude, mood, writing surface, etc. Therefore, it is interesting to reconstruct an experimental basis records taking, as primary reference, the writing speed for different writers which would allow studying the global system during handwriting process. This paper deals with a new approach of the handwriting system modeling based on the velocity criterion through the concepts of artificial neural networks, precisely the Radial Basis Functions (RBF) neural networks. The obtained simulation results show a satisfactory agreement between responses of the developed neural model and the experimental data for various letters and forms then the efficiency of the proposed approaches.

Keywords: Electro Myo Graphic (EMG) signals, experimental approach, handwriting process, Radial Basis Functions (RBF) neural networks, velocity modeling

Procedia PDF Downloads 440
3307 Object-Centric Process Mining Using Process Cubes

Authors: Anahita Farhang Ghahfarokhi, Alessandro Berti, Wil M.P. van der Aalst

Abstract:

Process mining provides ways to analyze business processes. Common process mining techniques consider the process as a whole. However, in real-life business processes, different behaviors exist that make the overall process too complex to interpret. Process comparison is a branch of process mining that isolates different behaviors of the process from each other by using process cubes. Process cubes organize event data using different dimensions. Each cell contains a set of events that can be used as an input to apply process mining techniques. Existing work on process cubes assume single case notions. However, in real processes, several case notions (e.g., order, item, package, etc.) are intertwined. Object-centric process mining is a new branch of process mining addressing multiple case notions in a process. To make a bridge between object-centric process mining and process comparison, we propose a process cube framework, which supports process cube operations such as slice and dice on object-centric event logs. To facilitate the comparison, the framework is integrated with several object-centric process discovery approaches.

Keywords: multidimensional process mining, mMulti-perspective business processes, OLAP, process cubes, process discovery, process mining

Procedia PDF Downloads 256
3306 Complex Dynamics in a Model of Management of the Protected Areas

Authors: Paolo Russu

Abstract:

This paper investigates the economic and ecological dynamics that emerge in Protected Areas (PAs) due to interactions between visitors and the animals that live there. The PAs contain two species whose interactions are determined by the Lotka-Volterra equations system. Visitors' decisions to visit PAs are influenced by the entrance cost required to enter the park and the chance of witnessing the species living there. Visitors have contradictory effects on the species and thus on the sustainability of the protected areas: on the one hand, an increase in the number of tourists damages the natural habitat of the regions and thus the species living there; on the other hand, it increases the total amount of entrance fees that the managing body of the PAs can use to perform defensive expenditures that protect the species from extinction. For a given set of parameter values, saddle-node bifurcation, Hopf bifurcation, homoclinic orbits, and a Bogdanov–Takens bifurcation of codimension two has been investigated. The system displays periodic doubling and chaotic solutions, as numerical examples demonstrate. Pontryagin's Maximum Principle was utilised to develop an optimal admission charge policy that maximised social gain and ecosystem conservation.

Keywords: chaos, bifurcation points, dynamical model, optimal control

Procedia PDF Downloads 82
3305 Artificial Reproduction System and Imbalanced Dataset: A Mendelian Classification

Authors: Anita Kushwaha

Abstract:

We propose a new evolutionary computational model called Artificial Reproduction System which is based on the complex process of meiotic reproduction occurring between male and female cells of the living organisms. Artificial Reproduction System is an attempt towards a new computational intelligence approach inspired by the theoretical reproduction mechanism, observed reproduction functions, principles and mechanisms. A reproductive organism is programmed by genes and can be viewed as an automaton, mapping and reducing so as to create copies of those genes in its off springs. In Artificial Reproduction System, the binding mechanism between male and female cells is studied, parameters are chosen and a network is constructed also a feedback system for self regularization is established. The model then applies Mendel’s law of inheritance, allele-allele associations and can be used to perform data analysis of imbalanced data, multivariate, multiclass and big data. In the experimental study Artificial Reproduction System is compared with other state of the art classifiers like SVM, Radial Basis Function, neural networks, K-Nearest Neighbor for some benchmark datasets and comparison results indicates a good performance.

Keywords: bio-inspired computation, nature- inspired computation, natural computing, data mining

Procedia PDF Downloads 272
3304 Artificial Intelligence and Distributed System Computing: Application and Practice in Real Life

Authors: Lai Junzhe, Wang Lihao, Burra Venkata Durga Kumar

Abstract:

In recent years, due to today's global technological advances, big data and artificial intelligence technologies have been widely used in various industries and fields, playing an important role in reducing costs and increasing efficiency. Among them, artificial intelligence has derived another branch in its own continuous progress and the continuous development of computer personnel, namely distributed artificial intelligence computing systems. Distributed AI is a method for solving complex learning, decision-making, and planning problems, characterized by the ability to take advantage of large-scale computation and the spatial distribution of resources, and accordingly, it can handle problems with large data sets. Nowadays, distributed AI is widely used in military, medical, and human daily life and brings great convenience and efficient operation to life. In this paper, we will discuss three areas of distributed AI computing systems in vision processing, blockchain, and smart home to introduce the performance of distributed systems and the role of AI in distributed systems.

Keywords: distributed system, artificial intelligence, blockchain, IoT, visual information processing, smart home

Procedia PDF Downloads 113
3303 Bio-Inspired Information Complexity Management: From Ant Colony to Construction Firm

Authors: Hamza Saeed, Khurram Iqbal Ahmad Khan

Abstract:

Effective information management is crucial for any construction project and its success. Primary areas of information generation are either the construction site or the design office. There are different types of information required at different stages of construction involving various stakeholders creating complexity. There is a need for effective management of information flows to reduce uncertainty creating complexity. Nature provides a unique perspective in terms of dealing with complexity, in particular, information complexity. System dynamics methodology provides tools and techniques to address complexity. It involves modeling and simulation techniques that help address complexity. Nature has been dealing with complex systems since its creation 4.5 billion years ago. It has perfected its system by evolution, resilience towards sudden changes, and extinction of unadaptable and outdated species that are no longer fit for the environment. Nature has been accommodating the changing factors and handling complexity forever. Humans have started to look at their natural counterparts for inspiration and solutions for their problems. This brings forth the possibility of using a biomimetics approach to improve the management practices used in the construction sector. Ants inhabit different habitats. Cataglyphis and Pogonomyrmex live in deserts, Leafcutter ants reside in rainforests, and Pharaoh ants are native to urban developments of tropical areas. Detailed studies have been done on fifty species out of fourteen thousand discovered. They provide the opportunity to study the interactions in diverse environments to generate collective behavior. Animals evolve to better adapt to their environment. The collective behavior of ants emerges from feedback through interactions among individuals, based on a combination of three basic factors: The patchiness of resources in time and space, operating cost, environmental stability, and the threat of rupture. If resources appear in patches through time and space, the response is accelerating and non-linear, and if resources are scattered, the response follows a linear pattern. If the acquisition of energy through food is faster than energy spent to get it, the default is to continue with an activity unless it is halted for some reason. If the energy spent is rather higher than getting it, the default changes to stay put unless activated. Finally, if the environment is stable and the threat of rupture is low, the activation and amplification rate is slow but steady. Otherwise, it is fast and sporadic. To further study the effects and to eliminate the environmental bias, the behavior of four different ant species were studied, namely Red Harvester ants (Pogonomyrmex Barbatus), Argentine ants (Linepithema Humile), Turtle ants (Cephalotes Goniodontus), Leafcutter ants (Genus: Atta). This study aims to improve the information system in the construction sector by providing a guideline inspired by nature with a systems-thinking approach, using system dynamics as a tool. Identified factors and their interdependencies were analyzed in the form of a causal loop diagram (CLD), and construction industry professionals were interviewed based on the developed CLD, which was validated with significance response. These factors and interdependencies in the natural system corresponds with the man-made systems, providing a guideline for effective use and flow of information.

Keywords: biomimetics, complex systems, construction management, information management, system dynamics

Procedia PDF Downloads 137
3302 Multi-Modal Visualization of Working Instructions for Assembly Operations

Authors: Josef Wolfartsberger, Michael Heiml, Georg Schwarz, Sabrina Egger

Abstract:

Growing individualization and higher numbers of variants in industrial assembly products raise the complexity of manufacturing processes. Technical assistance systems considering both procedural and human factors allow for an increase in product quality and a decrease in required learning times by supporting workers with precise working instructions. Due to varying needs of workers, the presentation of working instructions leads to several challenges. This paper presents an approach for a multi-modal visualization application to support assembly work of complex parts. Our approach is integrated within an interconnected assistance system network and supports the presentation of cloud-streamed textual instructions, images, videos, 3D animations and audio files along with multi-modal user interaction, customizable UI, multi-platform support (e.g. tablet-PC, TV screen, smartphone or Augmented Reality devices), automated text translation and speech synthesis. The worker benefits from more accessible and up-to-date instructions presented in an easy-to-read way.

Keywords: assembly, assistive technologies, augmented reality, manufacturing, visualization

Procedia PDF Downloads 165