Search results for: feed efficiency
5542 Feasibility Study of a Solar Solid Desiccant Cooling System in Algerian Areas
Authors: N. Hatraf, l. Merabeti, M. Abbas
Abstract:
The interest in air conditioning using renewable energies is increasing. The Thermal energy produced from the solar energy can be transformed to useful cooling and heating through the thermo chemical or thermo physical processes by using thermally activated energy conversion system. Solid desiccant conditioning systems can represent a reliable alternative solution compared with other thermal cooling technologies. Their basic characteristics refer to the capability to regulate both temperature and humidity of the conditioned space in one side and to its potential in electrical energy saving in the other side. The ambient air contains so much water that very high dehumidification rates are required. For a continuous dehumidification of the process air the water adsorbed on the desiccant material has to be removed, which is done by allowing hot air to flow through the desiccant material (regeneration). Basically, solid desiccant cooling system transfers moisture from the inlet air to the silica gel by using two processes: absorption process and the regeneration process; The silica gel in the desiccant wheel which is the most important device in the system absorbs the moisture from the incoming air to the desiccant material in this case the silica gel, then it changes the heat with an rotary heat exchanger, after that the air passes through an humidifier to have the humidity required before entering to the local. The main aim of this paper is to study how the dehumidification rate, the generation temperature and many other factors influence the efficiency of a solid desiccant system by using TRNSYS software.Keywords: desiccation, dehumidification, TRNSYS, efficiency
Procedia PDF Downloads 4225541 A Two-Step, Temperature-Staged, Direct Coal Liquefaction Process
Authors: Reyna Singh, David Lokhat, Milan Carsky
Abstract:
The world crude oil demand is projected to rise to 108.5 million bbl/d by the year 2035. With reserves estimated at 869 billion tonnes worldwide, coal is an abundant resource. This work was aimed at producing a high value hydrocarbon liquid product from the Direct Coal Liquefaction (DCL) process at, comparatively, mild operating conditions. Via hydrogenation, the temperature-staged approach was investigated. In a two reactor lab-scale pilot plant facility, the objectives included maximising thermal dissolution of the coal in the presence of a hydrogen donor solvent in the first stage, subsequently promoting hydrogen saturation and hydrodesulphurization (HDS) performance in the second. The feed slurry consisted of high grade, pulverized bituminous coal on a moisture-free basis with a size fraction of < 100μm; and Tetralin mixed in 2:1 and 3:1 solvent/coal ratios. Magnetite (Fe3O4) at 0.25wt% of the dry coal feed was added for the catalysed runs. For both stages, hydrogen gas was used to maintain a system pressure of 100barg. In the first stage, temperatures of 250℃ and 300℃, reaction times of 30 and 60 minutes were investigated in an agitated batch reactor. The first stage liquid product was pumped into the second stage vertical reactor, which was designed to counter-currently contact the hydrogen rich gas stream and incoming liquid flow in the fixed catalyst bed. Two commercial hydrotreating catalysts; Cobalt-Molybdenum (CoMo) and Nickel-Molybdenum (NiMo); were compared in terms of their conversion, selectivity and HDS performance at temperatures 50℃ higher than the respective first stage tests. The catalysts were activated at 300°C with a hydrogen flowrate of approximately 10 ml/min prior to the testing. A gas-liquid separator at the outlet of the reactor ensured that the gas was exhausted to the online VARIOplus gas analyser. The liquid was collected and sampled for analysis using Gas Chromatography-Mass Spectrometry (GC-MS). Internal standard quantification methods for the sulphur content, the BTX (benzene, toluene, and xylene) and alkene quality; alkanes and polycyclic aromatic hydrocarbon (PAH) compounds in the liquid products were guided by ASTM standards of practice for hydrocarbon analysis. In the first stage, using a 2:1 solvent/coal ratio, an increased coal to liquid conversion was favoured by a lower operating temperature of 250℃, 60 minutes and a system catalysed by magnetite. Tetralin functioned effectively as the hydrogen donor solvent. A 3:1 ratio favoured increased concentrations of the long chain alkanes undecane and dodecane, unsaturated alkenes octene and nonene and PAH compounds such as indene. The second stage product distribution showed an increase in the BTX quality of the liquid product, branched chain alkanes and a reduction in the sulphur concentration. As an HDS performer and selectivity to the production of long and branched chain alkanes, NiMo performed better than CoMo. CoMo is selective to a higher concentration of cyclohexane. For 16 days on stream each, NiMo had a higher activity than CoMo. The potential to cover the demand for low–sulphur, crude diesel and solvents from the production of high value hydrocarbon liquid in the said process, is thus demonstrated.Keywords: catalyst, coal, liquefaction, temperature-staged
Procedia PDF Downloads 6525540 Detection of Biomechanical Stress for the Prevention of Disability Derived from Musculoskeletal Disorders
Authors: Leydi Noemi Peraza Gómez, Jose Álvarez Nemegyei, Damaris Francis Estrella Castillo
Abstract:
In order to have an epidemiological tool to detect biomechanical stress (ERGO-Mex), which impose physical labor or recreational activities, a questionnaire is constructed in Spanish, validated and culturally adapted to the Mayan indigenous population of Yucatan. Through the seven steps proposed by Guillemin and Beaton the procedure was: initial translation, synthesis of the translations, feed back of the translation. After that review by a committee of experts, pre-test of the preliminary version, and presentation of the results to the committee of experts and members of the community. Finally the evaluation of its internal validity (Cronbach's α coefficient) and external (intraclass correlation coefficient). The results for the validation in Spanish indicated that 45% of the participants have biomechanical stress. The ERGO-Mex correlation was 0.69 (p <0.0001). Subjects with high biomechanical stress had a higher score than subjects with low biomechanical stress (17.4 ± 8.9 vs.9.8 ± 2.8, p = 0.003). The Cronbach's α coefficient was 0.92; and for validation in Cronbach's α maya it was 0.82 and CCI = 0.70 (95% CI: 0.58-0.79; p˂0.0001); ERGO-Mex is suitable for performing early detection of musculoskeletal diseases and helping to prevent disability.Keywords: biomechanical stress, disability, musculoskeletal disorders, prevention
Procedia PDF Downloads 1845539 Achievement of High L-Cysteine Yield from Enzymatic Conversion Using Eutectic Mixtures of the Substrate ATC
Authors: Deokyeong Choe, Sung Hun Youn, Younggon Kim, Chul Soo Shin
Abstract:
L-Cysteine, a sulfur-containing amino acid, has been often used in the pharmaceutical, cosmetic, food, and feed additive industries. This amino acid has been usually produced by acid-hydrolysis of human hair and poultry feathers. There are many problems, such as avoidance for use of animal hair, low yields, and formation of harmful waste material. As an alternative, the enzymatic conversion of D, L-2-amino-Δ2-thiazoline-4-carboxylic acid (ATC) to L-cysteine has been developed as an environmental-friendly method. However, the substrate solubility was too low to be used in industry. In this study, high concentrations of eutectic substrate solutions were prepared to solve the problem. Eutectic melting occurred at 39°C after mixing ATC and malonic acid at a molar ratio of 1:1. The characteristics of eutectic mixtures were analyzed by FE-SEM, EDS mapping, and XPS. However, since sorbitol, MnSO4, and NaOH should be added as supplements to the substrate mixture for the activation and stabilization of the enzyme, strategies for sequential addition of total five compounds, ATC, malonic acid, sorbitol, MnSO4, and NaOH were established. As a result, eutectic substrate mixtures of 670 mM ATC were successfully formulated. After 6 h of enzymatic reaction, 550 mM L-cysteine was made.Keywords: D, L-2-amino-Δ2-thiazoline-4-carboxylicacid, enzymatic conversion, eutectic solution, l-cysteine
Procedia PDF Downloads 4295538 Effects of Tool State on the Output Parameters of Front Milling Using Discrete Wavelet Transform
Authors: Bruno S. Soria, Mauricio R. Policena, Andre J. Souza
Abstract:
The state of the cutting tool is an important factor to consider during machining to achieve a good surface quality. The vibration generated during material cutting can also directly affect the surface quality and life of the cutting tool. In this work, the effect of mechanical broken failure (MBF) on carbide insert tools during face milling of AISI 304 stainless steel was evaluated using three levels of feed rate and two spindle speeds for each tool condition: three carbide inserts have perfect geometry, and three other carbide inserts have MBF. The axial and radial depths remained constant. The cutting forces were determined through a sensory system that consists of a piezoelectric dynamometer and data acquisition system. Discrete Wavelet Transform was used to separate the static part of the signals of force and vibration. The roughness of the machined surface was analyzed for each machining condition. The MBF of the tool increased the intensity and force of vibration and worsened the roughness factors.Keywords: face milling, stainless steel, tool condition monitoring, wavelet discrete transform
Procedia PDF Downloads 1515537 Strategic Leadership and Sustainable Project Management in Enugu, Nigeria
Authors: Nnadi Ezekiel Ejiofor
Abstract:
In Enugu, Nigeria, this study investigates the connection between strategic leadership and project management sustainability, with an emphasis on building projects in the State. The study set out to accomplish two specific goals: first, it sought to establish a link between creative project management and resource efficiency in construction projects in Enugu State, Nigeria; and second, it sought to establish a link between innovative thinking and waste minimization in those same projects. A structured questionnaire was used to collect primary data from 45 registered construction enterprises in the study area as part of the study's descriptive research approach. Due to the nonparametric nature of the data, Spearman Rank Order Correlation was used to evaluate the acquired data. The findings demonstrate that creative project management had a significant positive impact on resource efficiency in construction projects carried out by architecture firms in Enugu State, Nigeria (r =.849; p.001), and that innovative thinking had a significant impact on waste reduction in those same projects (r =.849; p.001). It was determined that strategic leadership had a significant impact on the sustainability of project management, and it was thus advised that project managers should foresee, prepare for, and effectively communicate present and future developments to project staff in order to ensure that the objective of sustainable initiatives, such as recycling and reuse, is implemented in construction projects.Keywords: construction, project management, strategic leadership, sustainability, waste reduction
Procedia PDF Downloads 555536 Solar Photovoltaic Foundation Design
Authors: Daniel John Avutia
Abstract:
Solar Photovoltaic (PV) development is reliant on the sunlight hours available in a particular region to generate electricity. A potential area is assessed through its inherent solar radiation intensity measured in watts per square meter. Solar energy development involves the feasibility, design, construction, operation and maintenance of the relevant infrastructure, but this paper will focus on the design and construction aspects. Africa and Australasia have the longest sunlight hours per day and the highest solar radiation per square meter, 7 sunlight hours/day and 5 kWh/day respectively. Solar PV support configurations consist of fixed-tilt support and tracker system structures, the differentiation being that the latter was introduced to improve the power generation efficiency of the former due to the sun tracking movement capabilities. The installation of Solar PV foundations involves rammed piles, drilling/grout piles and shallow raft reinforced concrete structures. This paper presents a case study of 2 solar PV projects in Africa and Australia, discussing the foundation design consideration and associated construction cost implications of the selected foundations systems. Solar PV foundations represent up to one fifth of the civil works costs in a project. Therefore, the selection of the most structurally sound and feasible foundation for the prevailing ground conditions is critical towards solar PV development. The design wind speed measured by anemometers govern the pile embedment depth for rammed and drill/grout foundation systems. The lateral pile deflection and vertical pull out resistance of piles increase proportionally with the embedment depth for uniform pile geometry and geology. The pile driving rate may also be used to anticipate the lateral resistance and skin friction restraining the pile. Rammed pile foundations are the most structurally suitable due to the pile skin friction and ease of installation in various geological conditions. The competitiveness of solar PV projects within the renewable energy mix is governed by lowering capital expenditure, improving power generation efficiency and power storage technological advances. The power generation reliability and efficiency are areas for further research within the renewable energy niche.Keywords: design, foundations, piles, solar
Procedia PDF Downloads 1965535 Development of selective human matrix metalloproteinases-9 (hMMP-9) inhibitors as potent diabetic wound healing agents
Authors: Geetakshi Arora, Danish Malhotra
Abstract:
Diabetic wounds are serious health issues and often fail to heal, leading to limb amputation that makes the life of the patient miserable. Delayed wound healing has been characterized by an increase in matrix metalloproteinase-9 (MMP-9). Thus research throughout the world has been going on to develop selective MMP-9 inhibitors for aiding diabetic wound healing. Bioactive constituents from natural sources always served as potential leads in drug development with high rates of success. Considering the need for novel selective MMP-9 inhibitors and the importance of natural bioactive compounds in drug development, we have screened a library of bioactive constituents from plant sources that were effective in diabetic wound healing on human MMP-9 (hMMP-9) using molecular docking studies. Screened constituents are ranked according to their dock score, ∆G value (binding affinity), and Ligand efficiency evaluated from FleXX docking and Hyde scoring modules available with drug designing platform LeadIT. Rhamnocitrin showed the highest correlation between dock score, ∆G value (binding affinity), and Ligand efficiency was further explored for binding interactions with hMMP-9. The overall study suggest that Rhamnocitrin is sufficiently decorated with both hydrophilic and hydrophobic substitutions that perfectly block hMMP-9 and act as a potential lead in the design and development of selective hMMP-9 inhibitors.Keywords: MMP-9, diabetic wound, molecular docking, phytoconstituents
Procedia PDF Downloads 1295534 Standardization of Solar Water Pumping System for Remote Areas in Indonesia
Authors: Danar Agus Susanto, Hermawan Febriansyah, Meilinda Ayundyahrini
Abstract:
The availability of spring water to meet people demand is often a problem, especially in tropical areas with very limited surface water sources, or very deep underground water. Although the technology and equipment of pumping system are available and easy to obtain, but in remote areas, the availability of pumping system is difficult, due to the unavailability of fuel or the lack of electricity. Solar Water Pumping System (SWPS) became one of the alternatives that can overcome these obstacles. In the tropical country, sunlight can be obtained throughout the year, even in remote areas. SWPS were already widely built in Indonesia, but many encounter problems during operations, such as decreased of efficiency; pump damaged, damaged of controllers or inverters, and inappropriate photovoltaic performance. In 2011, International Electrotechnical Commission (IEC) issued the IEC standard 62253:2011 titled Photovoltaic pumping systems - Design qualification and performance measurements. This standard establishes design qualifications and performance measurements related to the product of a solar water pumping system. National Standardization Agency of Indonesia (BSN) as the national standardization body in Indonesia, has not set the standard related to solar water pumping system. This research to study operational procedures of SWPS by adopting of IEC Standard 62253:2011 to be Indonesia Standard (SNI). This research used literature study and field observation for installed SWPS in Indonesia. Based on the results of research on SWPS already installed in Indonesia, IEC 62253: 2011 standard can improve efficiency and reduce operational failure of SWPS. SWPS installed in Indonesia still has GAP of 51% against parameters in IEC standard 62253: 2011. The biggest factor not being met is related to operating and maintenance handbooks for personnel that included operation and repair procedures. This may result in operator ignorance in installing, operating and maintaining the system. The Photovoltaic (PV) was also the most non-compliance factor of 71%, although there are 22 Indonesia Standard (SNI) for PV (modules, installation, testing, and construction). These research samples (installers, manufacturers/distributors, and experts) agreed on the parameter in the IEC standard 62253: 2011 able to improve the quality of SWPS in Indonesia. Recommendations of this study, that is required the adoption of IEC standard 62253:2011 into SNI to support the development of SWPS for remote areas in Indonesia.Keywords: efficiency, inappropriate installation, remote areas, solar water pumping system, standard
Procedia PDF Downloads 2005533 A Study on Evaluation for Performance Verification of Ni-63 Radioisotope Betavoltaic Battery
Authors: Youngmok Yun, Bosung Kim, Sungho Lee, Kyeongsu Jeon, Hyunwook Hwangbo, Byounggun Choi
Abstract:
A betavoltaic battery converts nuclear energy released as beta particles (β-) directly into electrical energy. Betavoltaic cells are analogous to photovoltaic cells. The beta particle’s kinetic energy enters a p-n junction and creates electron-hole pairs. Subsequently, the built-in potential of the p-n junction accelerates the electrons and ions to their respective collectors. The major challenges are electrical conversion efficiencies and exact evaluation. In this study, the performance of betavoltaic battery was evaluated. The betavoltaic cell was evaluated in the same condition as radiation from radioactive isotope using by FE-SEM(field emission scanning electron microscope). The average energy of the radiation emitted from the Ni-63 radioisotope is 17.42 keV. FE-SEM is capable of emitting an electron beam of 1-30keV. Therefore, it is possible to evaluate betavoltaic cell without radioactive isotopes. The betavoltaic battery consists of radioisotope that is physically connected on the surface of Si-based PN diode. The performance of betavoltaic battery can be estimated by the efficiency of PN diode unit cell. The current generated by scanning electron microscope with fixed accelerating voltage (17keV) was measured by using faraday cup. Electrical characterization of the p-n junction diode was performed by using Nano Probe Work Station and I-V measurement system. The output value of the betavoltaic cells developed by this research team was 0.162 μw/cm2 and the efficiency was 1.14%.Keywords: betavoltaic, nuclear, battery, Ni-63, radio-isotope
Procedia PDF Downloads 2595532 Power Iteration Clustering Based on Deflation Technique on Large Scale Graphs
Authors: Taysir Soliman
Abstract:
One of the current popular clustering techniques is Spectral Clustering (SC) because of its advantages over conventional approaches such as hierarchical clustering, k-means, etc. and other techniques as well. However, one of the disadvantages of SC is the time consuming process because it requires computing the eigenvectors. In the past to overcome this disadvantage, a number of attempts have been proposed such as the Power Iteration Clustering (PIC) technique, which is one of versions from SC; some of PIC advantages are: 1) its scalability and efficiency, 2) finding one pseudo-eigenvectors instead of computing eigenvectors, and 3) linear combination of the eigenvectors in linear time. However, its worst disadvantage is an inter-class collision problem because it used only one pseudo-eigenvectors which is not enough. Previous researchers developed Deflation-based Power Iteration Clustering (DPIC) to overcome problems of PIC technique on inter-class collision with the same efficiency of PIC. In this paper, we developed Parallel DPIC (PDPIC) to improve the time and memory complexity which is run on apache spark framework using sparse matrix. To test the performance of PDPIC, we compared it to SC, ESCG, ESCALG algorithms on four small graph benchmark datasets and nine large graph benchmark datasets, where PDPIC proved higher accuracy and better time consuming than other compared algorithms.Keywords: spectral clustering, power iteration clustering, deflation-based power iteration clustering, Apache spark, large graph
Procedia PDF Downloads 1945531 Assessing Nutrient Concentration and Trophic Status of Brahma Sarover at Kurukshetra, India
Authors: Shailendra Kumar Patidar
Abstract:
Eutrophication of surface water is one of the most widespread environmental problems at present. Large number of pilgrims and tourists visit sacred artificial tank known as “Brahma Sarover” located at Kurukshetra, India to take holy dip and perform religious ceremonies. The sources of pollutants include impurities in feed water, mass bathing, religious offerings and windblown particulate matter. Studies so far have focused mainly on assessing water quality for bathing purpose by using physico-chemical and bacteriological parameters. No effort has been made to assess nutrient concentration and trophic status of the tank to take more appropriate measures for improving water quality on long term basis. In the present study, total nitrogen, total phosphorous and chlorophyll a measurements have been done to assess the nutrient level and trophic status of the tank. The results show presence of high concentration of nutrients and Chlorophyll a indicating mesotrophic and eutrophic state of the tank. Phosphorous has been observed as limiting nutrient in the tank water.Keywords: Brahma Sarover, eutrophication, nutrients, trophic status
Procedia PDF Downloads 3755530 Prediction and Optimization of Machining Induced Residual Stresses in End Milling of AISI 1045 Steel
Authors: Wajid Ali Khan
Abstract:
Extensive experimentation and numerical investigation are performed to predict the machining-induced residual stresses in the end milling of AISI 1045 steel, and an optimization code has been developed using the particle swarm optimization technique. Experiments were conducted using a single factor at a time and design of experiments approach. Regression analysis was done, and a mathematical model of the cutting process was developed, thus predicting the machining-induced residual stress with reasonable accuracy. The mathematical model served as the objective function to be optimized using particle swarm optimization. The relationship between the different cutting parameters and the output variables, force, and residual stresses has been studied. The combined effect of the process parameters, speed, feed, and depth of cut was examined, and it is understood that 85% of the variation of these variables can be attributed to these machining parameters under research. A 3D finite element model is developed to predict the cutting forces and the machining-induced residual stresses in end milling operation. The results were validated experimentally and against the Johnson-cook model available in the literature.Keywords: residual stresses, end milling, 1045 steel, optimization
Procedia PDF Downloads 1095529 Investigating the Effects of Cylinder Disablement on Diesel Engine Fuel Economy and Exhaust Temperature Management
Authors: Hasan Ustun Basaran
Abstract:
Diesel engines are widely used in transportation sector due to their high thermal efficiency. However, they also release high rates of NOₓ and PM (particulate matter) emissions into the environment which have hazardous effects on human health. Therefore, environmental protection agencies have issued strict emission regulations on automotive diesel engines. Recently, these regulations are even increasingly strengthened. Engine producers search novel on-engine methods such as advanced combustion techniques, utilization of renewable fuels, exhaust gas recirculation, advanced fuel injection methods or use exhaust after-treatment (EAT) systems in order to reduce emission rates on diesel engines. Although those aforementioned on-engine methods are effective to curb emission rates, they result in inefficiency or cannot decrease emission rates satisfactorily at all operating conditions. Therefore, engine manufacturers apply both on-engine techniques and EAT systems to meet the stringent emission norms. EAT systems are highly effective to diminish emission rates, however, they perform inefficiently at low loads due to low exhaust gas temperatures (below 250°C). Therefore, the objective of this study is to demonstrate that engine-out temperatures can be elevated above 250°C at low-loaded cases via cylinder disablement. The engine studied and modeled via Lotus Engine Simulation (LES) software is a six-cylinder turbocharged and intercooled diesel engine. Exhaust temperatures and mass flow rates are predicted at 1200 rpm engine speed and several low loaded conditions using LES program. It is seen that cylinder deactivation results in a considerable exhaust temperature rise (up to 100°C) at low loads which ensures effective EAT management. The method also improves fuel efficiency through reduced total pumping loss. Decreased total air induction due to inactive cylinders is thought to be responsible for improved engine pumping loss. The technique reduces exhaust gas flow rate as air flow is cut off on disabled cylinders. Still, heat transfer rates to the after-treatment catalyst bed do not decrease that much since exhaust temperatures are increased sufficiently. Simulation results are promising; however, further experimental studies are needed to identify the true potential of the method on fuel consumption and EAT improvement.Keywords: cylinder disablement, diesel engines, exhaust after-treatment, exhaust temperature, fuel efficiency
Procedia PDF Downloads 1815528 Estimation of the Exergy-Aggregated Value Generated by a Manufacturing Process Using the Theory of the Exergetic Cost
Authors: German Osma, Gabriel Ordonez
Abstract:
The production of metal-rubber spares for vehicles is a sequential process that consists in the transformation of raw material through cutting activities and chemical and thermal treatments, which demand electricity and fossil fuels. The energy efficiency analysis for these cases is mostly focused on studying of each machine or production step, but is not common to study of the quality of the production process achieves from aggregated value viewpoint, which can be used as a quality measurement for determining of impact on the environment. In this paper, the theory of exergetic cost is used for determining of aggregated exergy to three metal-rubber spares, from an exergy analysis and thermoeconomic analysis. The manufacturing processing of these spares is based into batch production technique, and therefore is proposed the use of this theory for discontinuous flows from of single models of workstations; subsequently, the complete exergy model of each product is built using flowcharts. These models are a representation of exergy flows between components into the machines according to electrical, mechanical and/or thermal expressions; they determine the demanded exergy to produce the effective transformation in raw materials (aggregated exergy value), the exergy losses caused by equipment and irreversibilities. The energy resources of manufacturing process are electricity and natural gas. The workstations considered are lathes, punching presses, cutters, zinc machine, chemical treatment tanks, hydraulic vulcanizing presses and rubber mixer. The thermoeconomic analysis was done by workstation and by spare; first of them describes the operation of the components of each machine and where the exergy losses are; while the second of them estimates the exergy-aggregated value for finished product and wasted feedstock. Results indicate that exergy efficiency of a mechanical workstation is between 10% and 60% while this value in the thermal workstations is less than 5%; also that each effective exergy-aggregated value is one-thirtieth of total exergy required for operation of manufacturing process, which amounts approximately to 2 MJ. These troubles are caused mainly by technical limitations of machines, oversizing of metal feedstock that demands more mechanical transformation work, and low thermal insulation of chemical treatment tanks and hydraulic vulcanizing presses. From established information, in this case, it is possible to appreciate the usefulness of theory of exergetic cost for analyzing of aggregated value in manufacturing processes.Keywords: exergy-aggregated value, exergy efficiency, thermoeconomics, exergy modeling
Procedia PDF Downloads 1735527 Effect of Graded Levels of Detoxified Jatropha cursas on the Performance Characteristics of Cockerel Birds
Authors: W. S. Lawal, T. Akande
Abstract:
Abstract— Four (4) difference methods were employed to detoxify Jatropha carcas, they were physical method (it include soaking and sun drying) Chemical (the use of methylated sprit, hexane and methane). Biological (the use of Aspergillus niger and then sundry for 7days and then Bacillus lichiformis) and Combined method (the combination of chemical and biological methods). Phobol esther analysis was carried out after the detoxification methods and it was found that the combined method is better off (P<0.05). Detoxified Jatropha from each of this methods was sundry and grinded for easy inclusion into poultry feed, detoxified jatropha was included at 0%, 0.5%, 1%, 2%, 3%, 4%, and 5% but the combined method was increased up to 7% because the birds were able to tolerate it, the 0% was the control experiment. 405 day old broiler chicks was used to test the effect of detoxified Jatropha carcas on their performance, there are 5birds per treatment and there are 3 replicates, the experiment lasted for 8weeks,highest number of mortality was obtained in physical method, birds in chemical method tolerated up to 3% Jatropha carcas, biological method is better, as birds there were comfortable at 5% but the best of them is combined method the birds did very well at 7% as there were less mortality and highest weight gain was achieved here (P<0.05) and it was recommended.Keywords: phobol esther, inclusion level, tolerance level, Jatropha carcas
Procedia PDF Downloads 4065526 Impact of Nitrogenous Wastewater and Seawater Acidification on Algae
Authors: Pei Luen Jiang
Abstract:
Oysters (Ostreidae) and hard clams (Meretrix lusoria) are important shallow sea-cultured shellfish in Taiwan, and are mainly farmed in Changhua, Yunlin, Chiayi and Tainan. As these shellfish are fed primarily on natural plankton, the artificial feed is not required, leading to high economic value in aquatic farming. However, in recent years, though mariculture production areas have expanded steadily, large-scale deaths of farmed shellfish have also become increasingly common due to climate change and human factors. Through studies over the past few years, our research team has determined the impact of nitrogen deprivation on growth and morphological variations in algae and sea anemones (Actiniaria) and identified the target genes affected by adverse environmental factors. In mariculture, high-density farming is commonly adopted, which results in elevated concentrations of nitrogenous waste in the water. In addition, excessive carbon dioxide from the atmosphere also dissolves in seawater, causing a steady decrease in the pH of seawater, leading to acidification. This study to observe the impact of high concentrations of nitrogen sources and carbon dioxide on algae.Keywords: algae, shellfish, nitrogen, acidification
Procedia PDF Downloads 1845525 Significance of High Specific Speed in Circulating Water Pump, Which Can Cause Cavitation, Noise and Vibration
Authors: Chandra Gupt Porwal
Abstract:
Excessive vibration means increased wear, increased repair efforts, bad product selection & quality and high energy consumption. This may be sometimes experienced by cavitation or suction/discharge re-circulation which could occur only when net positive suction head available NPSHA drops below the net positive suction head required NPSHR. Cavitation can cause axial surging if it is excessive, will damage mechanical seals, bearings, possibly other pump components frequently and shorten the life of the impeller. Efforts have been made to explain Suction Energy (SE), Specific Speed (Ns), Suction Specific Speed (Nss), NPSHA, NPSHR & their significance, possible reasons of cavitation /internal re-circulation, its diagnostics and remedial measures to arrest and prevent cavitation in this paper. A case study is presented by the author highlighting that the root cause of unwanted noise and vibration is due to cavitation, caused by high specific speeds or inadequate net- positive suction head available which results in damages to material surfaces of impeller & suction bells and degradation of machine performance, its capacity and efficiency too. The author strongly recommends revisiting the technical specifications of CW pumps to provide sufficient NPSH margin ratios > 1.5, for future projects and Nss be limited to 8500 -9000 for cavitation free operation.Keywords: best efficiency point (BEP), net positive suction head NPSHA, NPSHR, specific speed NS, suction specific speed NSS
Procedia PDF Downloads 2565524 Thermo-Hydro-Mechanical-Chemical Coupling in Enhanced Geothermal Systems: Challenges and Opportunities
Authors: Esmael Makarian, Ayub Elyasi, Fatemeh Saberi, Olusegun Stanley Tomomewo
Abstract:
Geothermal reservoirs (GTRs) have garnered global recognition as a sustainable energy source. The Thermo-Hydro-Mechanical-Chemical (THMC) integration coupling proves to be a practical and effective method for optimizing production in GTRs. The study outcomes demonstrate that THMC coupling serves as a versatile and valuable tool, offering in-depth insights into GTRs and enhancing their operational efficiency. This is achieved through temperature analysis and pressure changes and their impacts on mechanical properties, structural integrity, fracture aperture, permeability, and heat extraction efficiency. Moreover, THMC coupling facilitates potential benefits assessment and risks associated with different geothermal technologies, considering the complex thermal, hydraulic, mechanical, and chemical interactions within the reservoirs. However, THMC-coupling utilization in GTRs presents a multitude of challenges. These challenges include accurately modeling and predicting behavior due to the interconnected nature of processes, limited data availability leading to uncertainties, induced seismic events risks to nearby communities, scaling and mineral deposition reducing operational efficiency, and reservoirs' long-term sustainability. In addition, material degradation, environmental impacts, technical challenges in monitoring and control, accurate assessment of resource potential, and regulatory and social acceptance further complicate geothermal projects. Addressing these multifaceted challenges is crucial for successful geothermal energy resources sustainable utilization. This paper aims to illuminate the challenges and opportunities associated with THMC coupling in enhanced geothermal systems. Practical solutions and strategies for mitigating these challenges are discussed, emphasizing the need for interdisciplinary approaches, improved data collection and modeling techniques, and advanced monitoring and control systems. Overcoming these challenges is imperative for unlocking the full potential of geothermal energy making a substantial contribution to the global energy transition and sustainable development.Keywords: geothermal reservoirs, THMC coupling, interdisciplinary approaches, challenges and opportunities, sustainable utilization
Procedia PDF Downloads 725523 Corporate In-Kind Donations and Economic Efficiency: The Case of Surplus Food Recovery and Donation
Authors: Sedef Sert, Paola Garrone, Marco Melacini, Alessandro Perego
Abstract:
This paper is aimed at enhancing our current understanding of motivations behind corporate in-kind donations and to find out whether economic efficiency may be a major driver. Our empirical setting is consisted of surplus food recovery and donation by companies from food supply chain. This choice of empirical setting is motivated by growing attention on the paradox of food insecurity and food waste i.e. a total of 842 million people worldwide were estimated to be suffering from regularly not getting enough food, while approximately 1.3 billion tons per year food is wasted globally. Recently, many authors have started considering surplus food donation to nonprofit organizations as a way to cope with social issue of food insecurity and environmental issue of food waste. In corporate philanthropy literature the motivations behind the corporate donations for social purposes, such as altruistic motivations, enhancements to employee morale, the organization’s image, supplier/customer relationships, local community support, have been examined. However, the relationship with economic efficiency is not studied and in many cases the pure economic efficiency as a decision making factor is neglected. Although in literature there are some studies give us the clue on economic value creation of surplus food donation such as saving landfill fees or getting tax deductions, so far there is no study focusing deeply on this phenomenon. In this paper, we develop a conceptual framework which explores the economic barriers and drivers towards alternative surplus food management options i.e. discounts, secondary markets, feeding animals, composting, energy recovery, disposal. The case study methodology is used to conduct the research. Protocols for semi structured interviews are prepared based on an extensive literature review and adapted after expert opinions. The interviews are conducted mostly with the supply chain and logistics managers of 20 companies in food sector operating in Italy, in particular in Lombardy region. The results shows that in current situation, the food manufacturing companies can experience cost saving by recovering and donating the surplus food with respect to other methods especially considering the disposal option. On the other hand, retail and food service sectors are not economically incentivized to recover and donate surplus food to disfavored population. The paper shows that not only strategic and moral motivations, but also economic motivations play an important role in managerial decision making process in surplus food management. We also believe that our research while rooted in the surplus food management topic delivers some interesting implications to more general research on corporate in-kind donations. It also shows that there is a huge room for policy making favoring the recovery and donation of surplus products.Keywords: corporate philanthropy, donation, recovery, surplus food
Procedia PDF Downloads 3185522 Enhanced Retrieval-Augmented Generation (RAG) Method with Knowledge Graph and Graph Neural Network (GNN) for Automated QA Systems
Authors: Zhihao Zheng, Zhilin Wang, Linxin Liu
Abstract:
In the research of automated knowledge question-answering systems, accuracy and efficiency are critical challenges. This paper proposes a knowledge graph-enhanced Retrieval-Augmented Generation (RAG) method, combined with a Graph Neural Network (GNN) structure, to automatically determine the correctness of knowledge competition questions. First, a domain-specific knowledge graph was constructed from a large corpus of academic journal literature, with key entities and relationships extracted using Natural Language Processing (NLP) techniques. Then, the RAG method's retrieval module was expanded to simultaneously query both text databases and the knowledge graph, leveraging the GNN to further extract structured information from the knowledge graph. During answer generation, contextual information provided by the knowledge graph and GNN is incorporated to improve the accuracy and consistency of the answers. Experimental results demonstrate that the knowledge graph and GNN-enhanced RAG method perform excellently in determining the correctness of questions, achieving an accuracy rate of 95%. Particularly in cases involving ambiguity or requiring contextual information, the structured knowledge provided by the knowledge graph and GNN significantly enhances the RAG method's performance. This approach not only demonstrates significant advantages in improving the accuracy and efficiency of automated knowledge question-answering systems but also offers new directions and ideas for future research and practical applications.Keywords: knowledge graph, graph neural network, retrieval-augmented generation, NLP
Procedia PDF Downloads 465521 Roof Integrated Photo Voltaic with Air Collection on Glasgow School of Art Campus Building: A Feasibility Study
Authors: Rosalie Menon, Angela Reid
Abstract:
Building integrated photovoltaic systems with air collectors (hybrid PV-T) have proved successful however there are few examples of their application in the UK. The opportunity to pull heat from behind the PV system to contribute to a building’s heating system is an efficient use of waste energy and its potential to improve the performance of the PV array is well documented. As part of Glasgow School of Art’s estate expansion, the purchase and redevelopment of an existing 1950’s college building was used as a testing vehicle for the hybrid PV-T system as an integrated element of the upper floor and roof. The primary objective of the feasibility study was to determine if hybrid PV-T was technically and financially suitable for the refurbished building. The key consideration was whether the heat recovered from the PV panels (to increase the electrical efficiency) can be usefully deployed as a heat source within the building. Dynamic thermal modelling (IES) and RetScreen Software were used to carry out the feasibility study not only to simulate overshadowing and optimise the PV-T locations but also to predict the atrium temperature profile; predict the air load for the proposed new 4 No. roof mounted air handling units and to predict the dynamic electrical efficiency of the PV element. The feasibility study demonstrates that there is an energy reduction and carbon saving to be achieved with each hybrid PV-T option however the systems are subject to lengthy payback periods and highlights the need for enhanced government subsidy schemes to reward innovation with this technology in the UK.Keywords: building integrated, photovoltatic thermal, pre-heat air, ventilation
Procedia PDF Downloads 1745520 The Construction of a Probiotic Lactic Acid Bacterium Expressing Acid-Resistant Phytase Enzyme
Authors: R. Majidzadeh Heravi, M. Sankian, H. Kermanshahi, M. R. Nassiri, A. Heravi Moussavi, S. A. Lari, A. R. Varasteh
Abstract:
The use of probiotics engineered to express specific enzymes has been the subject of considerable attention in poultry industry because of increased nutrient availability and reduced cost of enzyme supplementation. Phytase enzyme is commonly added to poultry feed to improve digestibility and availability of phosphorus from plant sources. To construct a probiotic with potential of phytate degradation, phytase gene (appA) from E. coli was cloned and transformed into two probiotic bacteria Lactobacillus salivarius and Lactococcus lactis. L. salivarous showed plasmid instability, unable to express the gene. The expression of appA gene in L. lactis was analyzed by detecting specific RNA and zymography assay. Phytase enzyme was isolated from cellular extracts of recombinant L. lactis, showing a 46 kDa band upon the SDS-PAGE analysis. Zymogram also confirmed the phytase activity of the 46 kDa band corresponding to the enzyme. An enzyme activity of 4.9U/ml was obtained in cell extracts of L. lactis. The growth of native and recombinant L. lactis was similar in the presence of two concentrations of ox bile.Keywords: Lactobacillus salivarus, Lactococcuslactis, recombinant, phytase, poultry
Procedia PDF Downloads 4935519 Data-Driven Performance Evaluation of Surgical Doctors Based on Fuzzy Analytic Hierarchy Processes
Authors: Yuguang Gao, Qiang Yang, Yanpeng Zhang, Mingtao Deng
Abstract:
To enhance the safety, quality and efficiency of healthcare services provided by surgical doctors, we propose a comprehensive approach to the performance evaluation of individual doctors by incorporating insights from performance data as well as views of different stakeholders in the hospital. Exploratory factor analysis was first performed on collective multidimensional performance data of surgical doctors, where key factors were extracted that encompass assessment of professional experience and service performance. A two-level indicator system was then constructed, for which we developed a weighted interval-valued spherical fuzzy analytic hierarchy process to analyze the relative importance of the indicators while handling subjectivity and disparity in the decision-making of multiple parties involved. Our analytical results reveal that, for the key factors identified as instrumental for evaluating surgical doctors’ performance, the overall importance of clinical workload and complexity of service are valued more than capacity of service and professional experience, while the efficiency of resource consumption ranks comparatively the lowest in importance. We also provide a retrospective case study to illustrate the effectiveness and robustness of our quantitative evaluation model by assigning meaningful performance ratings to individual doctors based on the weights developed through our approach.Keywords: analytic hierarchy processes, factor analysis, fuzzy logic, performance evaluation
Procedia PDF Downloads 625518 Anti-Scale Magnetic Method as a Prevention Method for Calcium Carbonate Scaling
Authors: Maha Salman, Gada Al-Nuwaibit
Abstract:
The effect of anti-scale magnetic method (AMM) in retarding scaling deposition is confirmed by many researchers, to result in new crystal morphology, the crystal which has the tendency to remain suspended more than precipitated. AMM is considered as an economic method when compared to other common methods used for scale prevention in desalination plant as acid treatment and addition of antiscalant. The current project was initiated to evaluate the effectiveness of AMM in preventing calcium carbonate scaling. The AMM was tested at different flow velocities (1.0, 0.5, 0.3, 0.1, and 0.003 m/s), different operating temperatures (50, 70, and 90°C), different feed pH and different magnetic field strength. The results showed that AMM was effective in retarding calcium carbonate scaling deposition, and the performance of AMM depends strongly on the flow velocity. The scaling retention time was found to be affected by the operating temperatures, flow velocity, and magnetic strength (MS), and in general, it was found that as the operating temperatures increased the effectiveness of the AMM in retarding calcium carbonate (CaCO₃) scaling increased.Keywords: magnetic treatment, field strength, flow velocity, magnetic scale retention time
Procedia PDF Downloads 3835517 A Goal-Oriented Approach for Supporting Input/Output Factor Determination in the Regulation of Brazilian Electricity Transmission
Authors: Bruno de Almeida Vilela, Heinz Ahn, Ana Lúcia Miranda Lopes, Marcelo Azevedo Costa
Abstract:
Benchmarking public utilities such as transmission system operators (TSOs) is one of the main strategies employed by regulators in order to fix monopolistic companies’ revenues. Since 2007 the Brazilian regulator has been utilizing Data Envelopment Analysis (DEA) to benchmark TSOs. Despite the application of DEA to improve the transmission sector’s efficiency, some problems can be pointed out, such as the high price of electricity in Brazil; the limitation of the benchmarking only to operational expenses (OPEX); the absence of variables that represent the outcomes of the transmission service; and the presence of extremely low and high efficiencies. As an alternative to the current concept of benchmarking the Brazilian regulator uses, we propose a goal-oriented approach. Our proposal supports input/output selection by taking traditional organizational goals and measures as a basis for the selection of factors for benchmarking purposes. As the main advantage, it resolves the classical DEA problems of input/output selection, undesirable and dual-role factors. We also provide a demonstration of our goal-oriented concept regarding service quality. As a result, most TSOs’ efficiencies in Brazil might improve when considering quality as important in their efficiency estimation.Keywords: decision making, goal-oriented benchmarking, input/output factor determination, TSO regulation
Procedia PDF Downloads 2005516 Experimental Study of Energy Absorption Efficiency (EAE) of Warp-Knitted Spacer Fabric Reinforced Foam (WKSFRF) Under Low-Velocity Impact
Authors: Amirhossein Dodankeh, Hadi Dabiryan, Saeed Hamze
Abstract:
Using fabrics to reinforce composites considerably leads to improved mechanical properties, including resistance to the impact load and the energy absorption of composites. Warp-knitted spacer fabrics (WKSF) are fabrics consisting of two layers of warp-knitted fabric connected by pile yarns. These connections create a space between the layers filled by pile yarns and give the fabric a three-dimensional shape. Today because of the unique properties of spacer fabrics, they are widely used in the transportation, construction, and sports industries. Polyurethane (PU) foams are commonly used as energy absorbers, but WKSF has much better properties in moisture transfer, compressive properties, and lower heat resistance than PU foam. It seems that the use of warp-knitted spacer fabric reinforced PU foam (WKSFRF) can lead to the production and use of composite, which has better properties in terms of energy absorption from the foam, its mold formation is enhanced, and its mechanical properties have been improved. In this paper, the energy absorption efficiency (EAE) of WKSFRF under low-velocity impact is investigated experimentally. The contribution of the effect of each of the structural parameters of the WKSF on the absorption of impact energy has also been investigated. For this purpose, WKSF with different structures such as two different thicknesses, small and large mesh sizes, and position of the meshes facing each other and not facing each other were produced. Then 6 types of composite samples with different structural parameters were fabricated. The physical properties of samples like weight per unit area and fiber volume fraction of composite were measured for 3 samples of any type of composites. Low-velocity impact with an initial energy of 5 J was carried out on 3 samples of any type of composite. The output of the low-velocity impact test is acceleration-time (A-T) graph with a lot deviation point, in order to achieve the appropriate results, these points were removed using the FILTFILT function of MATLAB R2018a. Using Newtonian laws of physics force-displacement (F-D) graph was drawn from an A-T graph. We know that the amount of energy absorbed is equal to the area under the F-D curve. Determination shows the maximum energy absorption is 2.858 J which is related to the samples reinforced with fabric with large mesh, high thickness, and not facing of the meshes relative to each other. An index called energy absorption efficiency was defined, which means absorption energy of any kind of our composite divided by its fiber volume fraction. With using this index, the best EAE between the samples is 21.6 that occurs in the sample with large mesh, high thickness, and meshes facing each other. Also, the EAE of this sample is 15.6% better than the average EAE of other composite samples. Generally, the energy absorption on average has been increased 21.2% by increasing the thickness, 9.5% by increasing the size of the meshes from small to big, and 47.3% by changing the position of the meshes from facing to non-facing.Keywords: composites, energy absorption efficiency, foam, geometrical parameters, low-velocity impact, warp-knitted spacer fabric
Procedia PDF Downloads 1755515 Impregnation Reduction Method for the Preparation of Platinum-Nickel/Carbon Black Alloy Nanoparticles as Faor Electrocatalyst
Authors: Maryam Kiani
Abstract:
In order to enhance the efficiency and stability of an electrocatalyst for formic acid electro-oxidation reaction (FAOR), we developed a method to create Pt/Ni nanoparticles with carbon black. These nanoparticles were prepared using a simple impregnation reduction technique. During the observation, it was found that the nanoparticles had a spherical shape. Additionally, the average particle size remained consistent, falling within the range of about 4 nm. This approach aimed to obtain a loaded Pt-based electrocatalyst that would exhibit improved performance and stability when used in FAOR applications. By utilizing the impregnation reduction method and incorporating Ni nanoparticles along with Pt, we sought to enhance the catalytic properties of the material. By incorporating Ni atoms into the Pt structure, the electronic properties of Pt are modified, resulting in a delay in the chemisorption of harmful CO intermediate species. This modification also promotes the dehydrogenation pathway of the formic acid oxidation reaction (FAOR). Through electrochemical analysis, it has been observed that the Pt3Ni-C catalyst exhibits enhanced performance in FAOR compared to traditional Pt catalysts. This means that the addition of Ni atoms improves the efficiency and effectiveness of the Pt3Ni-C catalyst in facilitating the FAOR process. Overall, the utilization of these alloy nanoparticles as electrocatalysts represents a significant advancement in fuel cell technology.Keywords: electrocatalyst, impregnation reduction method, formic acid electro-oxidation reaction, fuel cells
Procedia PDF Downloads 1365514 Computationally Efficient Stacking Sequence Blending for Composite Structures with a Large Number of Design Regions Using Cellular Automata
Authors: Ellen Van Den Oord, Julien Marie Jan Ferdinand Van Campen
Abstract:
This article introduces a computationally efficient method for stacking sequence blending of composite structures. The computational efficiency makes the presented method especially interesting for composite structures with a large number of design regions. Optimization of composite structures with an unequal load distribution may lead to locally optimized thicknesses and ply orientations that are incompatible with one another. Blending constraints can be enforced to achieve structural continuity. In literature, many methods can be found to implement structural continuity by means of stacking sequence blending in one way or another. The complexity of the problem makes the blending of a structure with a large number of adjacent design regions, and thus stacking sequences, prohibitive. In this work the local stacking sequence optimization is preconditioned using a method found in the literature that couples the mechanical behavior of the laminate, in the form of lamination parameters, to blending constraints, yielding near-optimal easy-to-blend designs. The preconditioned design is then fed to the scheme using cellular automata that have been developed by the authors. The method is applied to the benchmark 18-panel horseshoe blending problem to demonstrate its performance. The computational efficiency of the proposed method makes it especially suited for composite structures with a large number of design regions.Keywords: composite, blending, optimization, lamination parameters
Procedia PDF Downloads 2325513 Characterization of Vegetable Wastes and Its Potential Use for Hydrogen and Methane Production via Dark Anaerobic Fermentation
Authors: Ajay Dwivedi, M. Suresh Kumar, A. N. Vaidya
Abstract:
The problem of fruit and vegetable waste management is a grave one and with ever increasing need to feed the exponentially growing population, more and more solid waste in the form of fruit and vegetables waste are generated and its management has become one of the key issues in protection of environment. Energy generation from fruit and vegetables waste by dark anaerobic fermentation is a recent an interesting avenue effective management of solid waste as well as for generating free and cheap energy. In the present study 17 vegetables were characterized for their physical as well as chemical properties, these characteristics were used to determine the hydrogen and methane potentials of vegetable from various models, and also lab scale batch experiments were performed to determine their actual hydrogen and methane production capacity. Lab scale batch experiments proved that vegetable waste can be used as effective substrate for bio hydrogen and methane production, however the expected yield of bio hydrogen and methane was much lower than predicted by models, this was due to the fact that other vital experimental parameters such as pH, total solids content, food to microorganism ratio was not optimized.Keywords: vegetable waste, physico-chemical characteristics, hydrogen, methane
Procedia PDF Downloads 430