Search results for: atmospheric distillation unit
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2948

Search results for: atmospheric distillation unit

788 A Project-Based Learning Approach in the Course of 'Engineering Skills' for Undergraduate Engineering Students

Authors: Armin Eilaghi, Ahmad Sedaghat, Hayder Abdurazzak, Fadi Alkhatib, Shiva Sadeghi, Martin Jaeger

Abstract:

A summary of experiences, recommendations, and lessons learnt in the application of PBL in the course of “Engineering Skills” in the School of Engineering at Australian College of Kuwait in Kuwait is presented. Four projects were introduced as part of the PBL course “Engineering Skills” to 24 students in School of Engineering. These students were grouped in 6 teams to develop their skills in 10 learning outcomes. The learning outcomes targeted skills such as drawing, design, modeling, manufacturing and analysis at a preliminary level; and also some life line learning and teamwork skills as these students were exposed for the first time to the PBL (project based learning). The students were assessed for 10 learning outcomes of the course and students’ feedback was collected using an anonymous survey at the end of the course. Analyzing the students’ feedbacks, it is observed that 67% of students preferred multiple smaller projects than a single big project because it provided them with more time and attention focus to improve their “soft skills” including project management, risk assessment, and failure analysis. Moreover, it is found that 63% of students preferred to work with different team members during the course to improve their professional communication skills. Among all, 62% of students believed that working with team members from other departments helped them to increase the innovative aspect of projects and improved their overall performance. However, 70% of students counted extra time needed to regenerate momentum with the new teams as the major challenge. Project based learning provided a suitable platform for introducing students to professional engineering practice and meeting the needs of students, employers and educators. It was found that students achieved their 10 learning outcomes and gained new skills developed in this PBL unit. This was reflected in their portfolios and assessment survey.

Keywords: project-based learning, engineering skills, undergraduate engineering, problem-based learning

Procedia PDF Downloads 145
787 The Role of Microbes in Organic Sustainable Agriculture and Plant Protection

Authors: Koppula Prawan, Kehinde D. Oyeyemi, Kushal P. Singh

Abstract:

As people become more conscious of the detrimental consequences of conventional agricultural practices on the environment and human health, organic, sustainable agriculture and plant protection employing microorganisms have grown in importance. Although the use of microorganisms in agriculture is a centuries-old tradition, it has recently attracted renewed interest as a sustainable alternative to chemical-based plant protection and fertilization. Healthy soil is the cornerstone of sustainable agriculture, and microbes are essential to this process. Synthetic fertilizers and pesticides can destroy the beneficial microorganisms in the soil, upsetting the ecosystem's equilibrium. By utilizing organic farming's natural practices, such as the usage of microbes, it aims to maintain and improve the health of the soil. Microbes have several functions in agriculture, including nitrogen fixation, phosphorus solubilization, and disease suppression. Nitrogen fixation is the process by which certain microbes, such as rhizobia and Azotobacter, convert atmospheric nitrogen into a form that plants can use. Phosphorus solubilization involves the conversion of insoluble phosphorus into a soluble form that plants can absorb. Disease suppression involves the use of microbes to control plant diseases by competing with pathogenic organisms for resources or by producing antimicrobial compounds. Microbes can be applied to plants through seed coatings, foliar sprays, or soil inoculants. Seed coatings involve applying a mixture of microbes and nutrients to the surface of seeds before planting. Foliar sprays involve applying microbes and nutrients to the leaves of plants during the growing season. Soil inoculants involve adding microbes to the soil before planting. The use of microbes in plant protection and fertilization has several advantages over conventional methods. Firstly, microbes are natural and non-toxic, making them safe for human health and the environment. Secondly, microbes have the ability to adapt to changing environmental conditions, making them more resilient to drought and other stressors. Finally, the use of microbes can reduce the need for synthetic fertilizers and pesticides, reducing costs and minimizing environmental impact. In conclusion, organic, sustainable agriculture and plant protection using microbes are an effective and sustainable alternatives to conventional farming practices. The use of microbes can help to preserve and enhance soil health, increase plant productivity, and reduce the need for synthetic fertilizers and pesticides. As the demand for organic and sustainable agriculture continues to grow, the use of microbes is likely to become more widespread, providing a more environmentally friendly and sustainable future for agriculture.

Keywords: microbes, inoculants, fertilization, soil health, conventional.

Procedia PDF Downloads 64
786 Development of an Inexpensive Electrocatalytic Energy Material: Cu-Ni-CeO2 for High Performance Alcoholic Fuel Cell

Authors: Sujit Kumar Guchhait, Subir Paul

Abstract:

One of the major research areas is to find an alternative source of energy to fulfill the energy crisis and environmental problems. The Fuel cell is such kind of energy producing unit. Use of fuel cell to produce renewable energy for commercial purpose is limited by the high cost of Pt based electrode material. Development of high energetic, as well as inexpensive fuel cell electrode materials, is needs of hour to produce clean energy using derive bio-fuel. In this present investigation, inexpensive Cu-Ni-CeO2 electrode material has been synthesized by using pulse current. The surface morphology of the electrode materials is controlled by several deposition parameters to increase the rate of electrochemical oxidation of alcoholic fuel, ethanol. The electrochemical characterization of the developed material was done by Cyclic Voltammetry (CV) and Chronoamperometry (CA) and Electrochemical Impedance Spectroscopy test. It is interesting to find that both these materials have shown high electrocatalytic properties in terms of high exchange current density (I0), low polarization resistance (Rp) and low impedance. It is seen that the addition of CeO2 to Ni-Cu has outperformed Pt as far as high electrocatalytic properties are concerned. The exchange current density on the Cu-Ni-CeO2 electrode surface for ethanol oxidation is about eight times higher than the same on the Pt surface with much lower polarization resistance than the later. The surface morphology of the electrode materials has been revealed by Field Effect Scanning Electron Microscope (FESEM). It is seen that grains are narrow and subspherical with 3D surface containing pores in between two elongated grains. XRD study exhibits the presence of Ni and CeO2 on the Cu surface.

Keywords: electro-catalyst, alcoholic fuel, cyclic voltammetry, potentiodynamic polarization, EIS, XRD, SEM

Procedia PDF Downloads 283
785 Integration of Hybrid PV-Wind in Three Phase Grid System Using Fuzzy MPPT without Battery Storage for Remote Area

Authors: Thohaku Abdul Hadi, Hadyan Perdana Putra, Nugroho Wicaksono, Adhika Prajna Nandiwardhana, Onang Surya Nugroho, Heri Suryoatmojo, Soedibjo

Abstract:

Access to electricity is now a basic requirement of mankind. Unfortunately, there are still many places around the world which have no access to electricity, such as small islands, where there could potentially be a factory, a plantation, a residential area, or resorts. Many of these places might have substantial potential for energy generation such us Photovoltaic (PV) and Wind turbine (WT), which can be used to generate electricity independently for themselves. Solar energy and wind power are renewable energy sources which are mostly found in nature and also kinds of alternative energy that are still developing in a rapid speed to help and meet the demand of electricity. PV and Wind has a characteristic of power depend on solar irradiation and wind speed based on geographical these areas. This paper presented a control methodology of hybrid small scale PV/Wind energy system that use a fuzzy logic controller (FLC) to extract the maximum power point tracking (MPPT) in different solar irradiation and wind speed. This paper discusses simulation and analysis of the generation process of hybrid resources in MPP and power conditioning unit (PCU) of Photovoltaic (PV) and Wind Turbine (WT) that is connected to the three-phase low voltage electricity grid system (380V) without battery storage. The capacity of the sources used is 2.2 kWp PV and 2.5 kW PMSG (Permanent Magnet Synchronous Generator) -WT power rating. The Modeling of hybrid PV/Wind, as well as integrated power electronics components in grid connected system, are simulated using MATLAB/Simulink.

Keywords: fuzzy MPPT, grid connected inverter, photovoltaic (PV), PMSG wind turbine

Procedia PDF Downloads 338
784 Fuel Cells and Offshore Wind Turbines Technology for Eco-Friendly Ports with a Case Study

Authors: Ibrahim Sadek Sedik Ibrahim, Mohamed M. Elgohary

Abstract:

Sea ports are considered one of the factors affecting the progress of economic globalization and the international trade; consequently, they are considered one of the sources involved in the deterioration of the maritime environment due to the excessive amount of exhaust gases emitted from their activities. The majority of sea ports depend on the national electric grid as a source of power for the domestic and ships’ electric demands. This paper discusses the possibility of shifting ports from relying on the national grid electricity to green power-based ports. Offshore wind turbines and hydrogenic PEM fuel cell units appear as two typical promising clean energy sources for ports. As a case study, the paper investigates the prospect of converting Alexandria Port in Egypt to be an eco-friendly port with the study of technical, logistic, and financial requirements. The results show that the fuel cell, followed by a combined system of wind turbines and fuel cells, is the best choice regarding electricity production unit cost by 0.101 and 0.107 $/kWh, respectively. Furthermore, using of fuel cells and offshore wind turbine as green power concept will achieving emissions reduction quantity of CO₂, NOx, and CO emissions by 80,441, 20.814, and 133.025 ton per year, respectively. Finally, the paper highlights the role that renewable energy can play when supplying Alexandria Port with green energy to lift the burden on the government in supporting the electricity, with a possibility of achieving a profit of 3.85% to 22.31% of the annual electricity cost compared with the international prices.

Keywords: fuel cells, green ports, IMO, national electric grid, offshore wind turbines, port emissions, renewable energy

Procedia PDF Downloads 119
783 Optimal Emergency Shipment Policy for a Single-Echelon Periodic Review Inventory System

Authors: Saeed Poormoaied, Zumbul Atan

Abstract:

Emergency shipments provide a powerful mechanism to alleviate the risk of imminent stock-outs and can result in substantial benefits in an inventory system. Customer satisfaction and high service level are immediate consequences of utilizing emergency shipments. In this paper, we consider a single-echelon periodic review inventory system consisting of a single local warehouse, being replenished from a central warehouse with ample capacity in an infinite horizon setting. Since the structure of the optimal policy appears to be complicated, we analyze this problem under an order-up-to-S inventory control policy framework, the (S, T) policy, with the emergency shipment consideration. In each period of the periodic review policy, there is a single opportunity at any point of time for the emergency shipment so that in case of stock-outs, an emergency shipment is requested. The goal is to determine the timing and amount of the emergency shipment during a period (emergency shipment policy) as well as the base stock periodic review policy parameters (replenishment policy). We show that how taking advantage of having an emergency shipment during periods improves the performance of the classical (S, T) policy, especially when fixed and unit emergency shipment costs are small. Investigating the structure of the objective function, we develop an exact algorithm for finding the optimal solution. We also provide a heuristic and an approximation algorithm for the periodic review inventory system problem. The experimental analyses indicate that the heuristic algorithm is computationally more efficient than the approximation algorithm, but in terms of the solution efficiency, the approximation algorithm performs very well. We achieve up to 13% cost savings in the (S, T) policy if we apply the proposed emergency shipment policy. Moreover, our computational results reveal that the approximated solution is often within 0.21% of the globally optimal solution.

Keywords: emergency shipment, inventory, periodic review policy, approximation algorithm.

Procedia PDF Downloads 123
782 The Association of Smoking and Body Mass Index with Acne Vulgaris in Adolescents and Young Adults

Authors: Almutazballlah Qablan, Jihan M. Muhaidat, Bana Abu Rajab

Abstract:

Background: Acne vulgaris is the most common skin condition that general practitioners and dermatologists encounter. It represents a chronic inflammatory disease affecting the pilosebaceous unit. Although acne vulgaris is not a life-threatening condition, it has a considerable psychological impact on the affected person. Acne patients have poor body image, low self-esteem, social isolation, and restricted activities. As part of the emotional impact, increased levels of anxiety, anger, depression, and frustration have also been observed in acne patients. (1) In this study, we want to assess the association between two modifiable risk factors; BMI and smoking, regarding acne vulgaris. Methods: A case-control study was conducted at King Abdullah University Hospital in Irbid, north Jordan in 2019/2020. A total number of 163 Acne cases were collected and interviewed by the author; on the other hand, there were 162 control cases. Anthropometric measures for Acne patients and control individuals were taken, and BMI was calculated. Both groups were asked about smoking habits. Data on subjects between 14 and 33 years of age were extracted. The characteristics of people who reported acne were compared with those with no acne using univariate and multivariate analysis. The Statistical Package for Social Sciences (SPSS) was relied on to analyze the collected data. The crosstabs methods (chi-square) and odd ratios were relied on to test the study hypothesis. Results: Cigarette smoking was highly associated with no-acne, with an odds ratio of 0.4 (95% CI: 0.2–0.9), P-value = 0.018. BMI and waterpipe smoking were not significantly associated with acne in the multivariate analysis. Conclusion: Cigarette smoking was found to be protective from Acne. No significant relation between BMI nor waterpipe smoking and the development of Acne Vulgaris.

Keywords: acne, BMI, smoking, case-control

Procedia PDF Downloads 75
781 Pattern of ICU Admission due to Drug Problems

Authors: Kamel Abd Elaziz Mohamed

Abstract:

Introduction: Drug related problems (DRPs) are of major concern, affecting patients of both sex. They impose considerable economic burden on the society and the health-care systems. Aim of the work: The aim of this work was to identify and categorize drug-related problems in adult intensive care unit. Patients and methods: The study was a prospective, observational study as eighty six patients were included. They were consecutively admitted to ICU through the emergency room or transferred from the general ward due to DRPs. Parameters included in the study as length of stay in ICU, need for cardiovascular support or mechanical ventilation, dialysis, as well as APACHE II score were recorded. Results: Drug related problems represent 3.6% of the total ICU admission. The median (range) of APACHE II score for 86 patients included in the study was 17 (10-23), and length of ICU stay was 2.4 (1.5-4.2) days. In 45 patients (52%), DRP was drug over dose (group 1), while other DRP was present in the other 41 patients (48%, group 11). Patients in group 1 were older (39 years versus 32 years in group 11), with significant impaired renal function. The need of inotropic drugs and mechanical ventilation as well as the length of stay (LOS) in ICU was significantly higher in group 1. There were no significant difference in GCS between both groups, however APACHE II score was significantly higher in group 1. Only four patients (4.6%) were admitted by suicidal attempt as well as three patients (3.4%) due to trauma drug-related admissions, all were in (group 1). Nineteen percent of the patients had drug related problem due to hypoglycaemic medication followed by tranquilizer (15%). Adverse drug effect followed by failure to receive medication were the most causes of drug problem in (group11).The total mortality rate was 4.6%, all of them were eventually non preventable. Conclusion: The critically ill patients admitted due to drug related problems represented a small proportion (3.6%) of admissions to the ICU. Hypoglycaemic medication was one of the most common causes of admission by drug related problems.

Keywords: drug related problems, ICU, cost, safety

Procedia PDF Downloads 319
780 Olive Stone Valorization to Its Application on the Ceramic Industry

Authors: M. Martín-Morales, D. Eliche-Quesada, L. Pérez-Villarejo, M. Zamorano

Abstract:

Olive oil is a product of particular importance within the Mediterranean and Spanish agricultural food system, and more specifically in Andalusia, owing to be the world's main production area. Olive oil processing generates olive stones which are dried and cleaned to remove pulp and olive stones fines to produce biofuel characterized to have high energy efficiency in combustion processes. Olive stones fine fraction is not too much appreciated as biofuel, so it is important the study of alternative solutions to be valorized. Some researchers have studied recycling different waste to produce ceramic bricks. The main objective of this study is to investigate the effects of olive stones addition on the properties of fired clay bricks for building construction. Olive stones were substituted by volume (7.5%, 15%, and 25%) to brick raw material in three different sizes (lower than 1 mm, lower than 2 mm and between 1 and 2 mm). In order to obtain comparable results, a series without olive stones was also prepared. The prepared mixtures were compacted in laboratory type extrusion under a pressure of 2.5MPa for rectangular shaped (30 mm x 60 mm x 10 mm). Dried and fired industrial conditions were applied to obtain laboratory brick samples. Mass loss after sintering, bulk density, porosity, water absorption and compressive strength of fired samples were investigated and compared with a sample manufactured without biomass. Results obtained have shown that olive stone addition decreased mechanical properties due to the increase in water absorption, although values tested satisfied the requirements in EN 772-1 about methods of test for masonry units (Part 1: Determination of compressive strength). Finally, important advantages related to the properties of bricks as well as their environmental effects could be obtained with the use of biomass studied to produce ceramic bricks. The increasing of the percentage of olive stones incorporated decreased bulk density and then increased the porosity of bricks. On the one hand, this lower density supposes a weight reduction of bricks to be transported, handled as well as the lightening of building; on the other hand, biomass in clay contributes to auto thermal combustion which involves lower fuel consumption during firing step. Consequently, the production of porous clay bricks using olive stones could reduce atmospheric emissions and improve their life cycle assessment, producing eco-friendly clay bricks.

Keywords: clay bricks, olive stones, sustainability, valorization

Procedia PDF Downloads 140
779 Lessons Learnt from a Patient with Pseudohyperkalaemia Secondary to Polycythaemia Rubra Vera in a Neuro-ICU Patient Resulting in Dangerous Interventions: Lessons Learnt on Patient Safety Improvement

Authors: Dinoo Kirthinanda, Sujani Wijeratne

Abstract:

Pseudohyperkalaemia is a common benign in vitro phenomenon caused by the release of potassium ions (K+) from cells during specimen processing. Analysis of haemolysed blood samples for predominantly intracellular electrolytes may lead to re-investigation and potentially harmful interventions. We report a case of a 52-year male with myeloproliferative disease manifested as Polycythaemia Rubra Vera, Hypertension and hypertensive nephropathy with stage 3 chronic kidney disease admitted to Neuro-intensive care unit (NICU) with an intra-cerebral haemorrhage secondary to hypertensive bleed. His initial blood investigations showed hyperkalemia with serum K+ 6.2 mmol/L yet the bedside arterial blood gas analysis yielded K+ of 4.6 mmol/L. The patient was however given hyperkalemia regime twice based on venous electrolyte analysis. The discrepancy between the bedside electrolyte analysis using arterial blood and venous blood prompted further evaluation. The 12 lead Electrocardiogram showed U waves and sinus bradycardia corresponding to the serum K+ of 2.8 mmol/L on arterial blood gas analysis. Immediate K+ replacement ensured the patient did not develop life-threatening cardiac complications. Pseudohyperkalaemia may pose diagnostic challenges in the absence of detectable haemolysis and should be suspected in susceptible patients with normal Electrocardiogram and Glomerular Filtration Rate to avoid potentially life-threatening interventions. When in doubt, rapid analysis of arterial blood gas may be useful for accurate quantification of potassium.

Keywords: patient safety, pseudohyperkalaemia, haemolysis, myeloproliferative disorder

Procedia PDF Downloads 131
778 Assessing the Spatial Distribution of Urban Parks Using Remote Sensing and Geographic Information Systems Techniques

Authors: Hira Jabbar, Tanzeel-Ur Rehman

Abstract:

Urban parks and open spaces play a significant role in improving physical and mental health of the citizens, strengthen the societies and make the cities more attractive places to live and work. As the world’s cities continue to grow, continuing to value green space in cities is vital but is also a challenge, particularly in developing countries where there is pressure for space, resources, and development. Offering equal opportunity of accessibility to parks is one of the important issues of park distribution. The distribution of parks should allow all inhabitants to have close proximity to their residence. Remote sensing and Geographic information systems (GIS) can provide decision makers with enormous opportunities to improve the planning and management of Park facilities. This study exhibits the capability of GIS and RS techniques to provide baseline knowledge about the distribution of parks, level of accessibility and to help in identification of potential areas for such facilities. For this purpose Landsat OLI imagery for year 2016 was acquired from USGS Earth Explorer. Preprocessing models were applied using Erdas Imagine 2014v for the atmospheric correction and NDVI model was developed and applied to quantify the land use/land cover classes including built up, barren land, water, and vegetation. The parks amongst total public green spaces were selected based on their signature in remote sensing image and distribution. Percentages of total green and parks green were calculated for each town of Lahore City and results were then synchronized with the recommended standards. ANGSt model was applied to calculate the accessibility from parks. Service area analysis was performed using Network Analyst tool. Serviceability of these parks has been evaluated by employing statistical indices like service area, service population and park area per capita. Findings of the study may contribute in helping the town planners for understanding the distribution of parks, demands for new parks and potential areas which are deprived of parks. The purpose of present study is to provide necessary information to planners, policy makers and scientific researchers in the process of decision making for the management and improvement of urban parks.

Keywords: accessible natural green space standards (ANGSt), geographic information systems (GIS), remote sensing (RS), United States geological survey (USGS)

Procedia PDF Downloads 314
777 ChaQra: A Cellular Unit of the Indian Quantum Network

Authors: Shashank Gupta, Iteash Agarwal, Vijayalaxmi Mogiligidda, Rajesh Kumar Krishnan, Sruthi Chennuri, Deepika Aggarwal, Anwesha Hoodati, Sheroy Cooper, Ranjan, Mohammad Bilal Sheik, Bhavya K. M., Manasa Hegde, M. Naveen Krishna, Amit Kumar Chauhan, Mallikarjun Korrapati, Sumit Singh, J. B. Singh, Sunil Sud, Sunil Gupta, Sidhartha Pant, Sankar, Neha Agrawal, Ashish Ranjan, Piyush Mohapatra, Roopak T., Arsh Ahmad, Nanjunda M., Dilip Singh

Abstract:

Major research interests on quantum key distribution (QKD) are primarily focussed on increasing 1. point-to-point transmission distance (1000 Km), 2. secure key rate (Mbps), 3. security of quantum layer (device-independence). It is great to push the boundaries on these fronts, but these isolated approaches are neither scalable nor cost-effective due to the requirements of specialised hardware and different infrastructure. Current and future QKD network requires addressing different sets of challenges apart from distance, key rate, and quantum security. In this regard, we present ChaQra -a sub-quantum network with core features as 1) Crypto agility (integration in the already deployed telecommunication fibres), 2) Software defined networking (SDN paradigm for routing different nodes), 3) reliability (addressing denial-of-service with hybrid quantum safe cryptography), 4) upgradability (modules upgradation based on scientific and technological advancements), 5) Beyond QKD (using QKD network for distributed computing, multi-party computation etc). Our results demonstrate a clear path to create and accelerate quantum secure Indian subcontinent under the national quantum mission.

Keywords: quantum network, quantum key distribution, quantum security, quantum information

Procedia PDF Downloads 24
776 Investigating the Aerosol Load of Eastern Mediterranean Basin with Sentinel-5p Satellite

Authors: Deniz Yurtoğlu

Abstract:

Aerosols directly affect the radiative balance of the earth by absorbing and/or scattering the sun rays reaching the atmosphere and indirectly affect the balance by acting as a nucleus in cloud formation. The composition, physical, and chemical properties of aerosols vary depending on their sources and the time spent in the atmosphere. The Eastern Mediterranean Basin has a high aerosol load that is formed from different sources; such as anthropogenic activities, desert dust outbreaks, and the spray of sea salt; and the area is subjected to atmospheric transport from other locations on the earth. This region, which includes the deserts of Africa, the Middle East, and the Mediterranean sea, is one of the most affected areas by climate change due to its location and the chemistry of the atmosphere. This study aims to investigate the spatiotemporal deviation of aerosol load in the Eastern Mediterranean Basin between the years 2018-2022 with the help of a new pioneer satellite of ESA (European Space Agency), Sentinel-5P. The TROPOMI (The TROPOspheric Monitoring Instrument) traveling on this low-Earth orbiting satellite is a UV (Ultraviolet)-sensing spectrometer with a resolution of 5.5 km x 3.5 km, which can make measurements even in a cloud-covered atmosphere. By using Absorbing Aerosol Index data produced by this spectrometer and special scripts written in Python language that transforms this data into images, it was seen that the majority of the aerosol load in the Eastern Mediterranean Basin is sourced from desert dust and anthropogenic activities. After retrieving the daily data, which was separated from the NaN values, seasonal analyses match with the normal aerosol variations expected, which are high in warm seasons and lower in cold seasons. Monthly analyses showed that in four years, there was an increase in the amount of Absorbing Aerosol Index in spring and winter by 92.27% (2019-2021) and 39.81% (2019-2022), respectively. On the other hand, in the summer and autumn seasons, a decrease has been observed by 20.99% (2018-2021) and 0.94% (2018-2021), respectively. The overall variation of the mean absorbing aerosol index from TROPOMI between April 2018 to April 2022 reflects a decrease of 115.87% by annual mean from 0.228 to -0.036. However, when the data is analyzed by the annual mean values of the years which have the data from January to December, meaning from 2019 to 2021, there was an increase of 57.82% increase (0.108-0.171). This result can be interpreted as the effect of climate change on the aerosol load and also, more specifically, the effect of forest fires that happened in the summer months of 2021.

Keywords: aerosols, eastern mediterranean basin, sentinel-5p, tropomi, aerosol index, remote sensing

Procedia PDF Downloads 48
775 Exergy Analysis of a Green Dimethyl Ether Production Plant

Authors: Marcello De Falco, Gianluca Natrella, Mauro Capocelli

Abstract:

CO₂ capture and utilization (CCU) is a promising approach to reduce GHG(greenhouse gas) emissions. Many technologies in this field are recently attracting attention. However, since CO₂ is a very stable compound, its utilization as a reagent is energetic intensive. As a consequence, it is unclear whether CCU processes allow for a net reduction of environmental impacts from a life cycle perspective and whether these solutions are sustainable. Among the tools to apply for the quantification of the real environmental benefits of CCU technologies, exergy analysis is the most rigorous from a scientific point of view. The exergy of a system is the maximum obtainable work during a process that brings the system into equilibrium with its reference environment through a series of reversible processes in which the system can only interact with such an environment. In other words, exergy is an “opportunity for doing work” and, in real processes, it is destroyed by entropy generation. The exergy-based analysis is useful to evaluate the thermodynamic inefficiencies of processes, to understand and locate the main consumption of fuels or primary energy, to provide an instrument for comparison among different process configurations and to detect solutions to reduce the energy penalties of a process. In this work, the exergy analysis of a process for the production of Dimethyl Ether (DME) from green hydrogen generated through an electrolysis unit and pure CO₂ captured from flue gas is performed. The model simulates the behavior of all units composing the plant (electrolyzer, carbon capture section, DME synthesis reactor, purification step), with the scope to quantify the performance indices based on the II Law of Thermodynamics and to identify the entropy generation points. Then, a plant optimization strategy is proposed to maximize the exergy efficiency.

Keywords: green DME production, exergy analysis, energy penalties, exergy efficiency

Procedia PDF Downloads 224
774 Bridging the Divide: Mixed-Method Analysis of Student Engagement and Outcomes in Diverse Postgraduate Cohorts

Authors: A.Knox

Abstract:

Student diversity in postgraduate classes puts major challenges on educators seeking to encourage student engagement and desired to learn outcomes. This paper outlines the impact of a set of teaching initiatives aimed at addressing challenges associated with teaching and learning in an environment characterized by diversity in the student cohort. The study examines postgraduate students completing the core capstone unit within a specialized business degree. Although relatively small, the student cohort is highly diverse in terms of cultural backgrounds represented, prior learning and/or qualifications, as well as duration and type of work experience relevant to the degree, is completed. The wide range of cultures, existing knowledge and experience create enormous challenges with respect to students’ learning needs and outcomes. Subsequently, a suite of teaching innovations has been adopted to enhance curriculum content/delivery and the design of assessments. This paper explores the impact of these specific teaching and learning practices, examining the ways they have supported students’ diverse needs and enhanced students’ learning outcomes. Data from surveys and focus groups are used to assess the effectiveness of these practices. The results highlight the effectiveness of peer-assisted learning, cultural competence-building, and advanced assessment options in addressing diverse student needs and enhancing student engagement and learning outcomes. These findings suggest that such practices would benefit students’ learning in environments marked by diversity in the student cohort. Specific recommendations are offered for other educators working with diverse classes.

Keywords: assessment design, curriculum content, curriculum delivery, student diversity

Procedia PDF Downloads 90
773 Management of Interdependence in Manufacturing Networks

Authors: Atour Taghipour

Abstract:

In the real world each manufacturing company is an independent business unit. These business units are linked to each other through upstream and downstream linkages. The management of these linkages is called coordination which, could be considered as a difficult engineering task. The degree of difficulty of coordination depends on the type and the nature of information exchanged between partners as well as the structure of relationship from mutual to the network structure. The literature of manufacturing systems comprises a wide range of varieties of methods and approaches of coordination. In fact, two main streams of research can be distinguished: central coordination versus decentralized coordination. In the centralized systems a high degree of information exchanges is required. The high degree of information exchanges sometimes leads to difficulties when independent members do not want to share information. In order to address these difficulties, decentralized approaches of coordination of operations planning decisions based on some minimal information sharing have been proposed in many academic disciplines. This paper first proposes a framework of analysis in order to analyze the proposed approaches in the literature, based on this framework which includes the similarities between approaches we categorize the existing approaches. This classification can be used as a research map for future researches. The result of our paper highlights several opportunities for future research. First, it is proposed to develop more dynamic and stochastic mechanisms of planning coordination of manufacturing units. Second, in order to exploit the complementarities of approaches proposed by diverse science discipline, we propose to integrate the techniques of coordination. Finally, based on our approach we proposed to develop coordination standards to guaranty both the complementarity of these approaches as well as the freedom of companies to adopt any planning tools.

Keywords: network coordination, manufacturing, operations planning, supply chain

Procedia PDF Downloads 260
772 Comparative Life Cycle Assessment of High Barrier Polymer Packaging for Selecting Resource Efficient and Environmentally Low-Impact Materials

Authors: D. Kliaugaitė, J. K, Staniškis

Abstract:

In this study tree types of multilayer gas barrier plastic packaging films were compared using life cycle assessment as a tool for resource efficient and environmentally low-impact materials selection. The first type of multilayer packaging film (PET-AlOx/LDPE) consists of polyethylene terephthalate with barrier layer AlOx (PET-AlOx) and low density polyethylene (LDPE). The second type of polymer film (PET/PE-EVOH-PE) is made of polyethylene terephthalate (PET) and co-extrusion film PE-EVOH-PE as barrier layer. And the third one type of multilayer packaging film (PET-PVOH/LDPE) is formed from polyethylene terephthalate with barrier layer PVOH (PET-PVOH) and low density polyethylene (LDPE). All of analyzed packaging has significant impact to resource depletion, because of raw materials extraction and energy use and production of different kind of plastics. Nevertheless the impact generated during life cycle of functional unit of II type of packaging (PET/PE-EVOH-PE) was about 25% lower than impact generated by I type (PET-AlOx/LDPE) and III type (PET-PVOH/LDPE) of packaging. Result revealed that the contribution of different gas barrier type to the overall environmental problem of packaging is not significant. The impact are mostly generated by using energy and materials during raw material extraction and production of different plastic materials as plastic polymers material as PE, LDPE and PET, but not gas barrier materials as AlOx, PVOH and EVOH. The LCA results could be useful in different decision-making processes, for selecting resource efficient and environmentally low-impact materials.

Keywords: life cycle assessment, polymer packaging, resource efficiency, materials extraction, polyethylene terephthalate

Procedia PDF Downloads 340
771 Ontology based Fault Detection and Diagnosis system Querying and Reasoning examples

Authors: Marko Batic, Nikola Tomasevic, Sanja Vranes

Abstract:

One of the strongholds in the ubiquitous efforts related to the energy conservation and energy efficiency improvement is represented by the retrofit of high energy consumers in buildings. In general, HVAC systems represent the highest energy consumers in buildings. However they usually suffer from mal-operation and/or malfunction, causing even higher energy consumption than necessary. Various Fault Detection and Diagnosis (FDD) systems can be successfully employed for this purpose, especially when it comes to the application at a single device/unit level. In the case of more complex systems, where multiple devices are operating in the context of the same building, significant energy efficiency improvements can only be achieved through application of comprehensive FDD systems relying on additional higher level knowledge, such as their geographical location, served area, their intra- and inter- system dependencies etc. This paper presents a comprehensive FDD system that relies on the utilization of common knowledge repository that stores all critical information. The discussed system is deployed as a test-bed platform at the two at Fiumicino and Malpensa airports in Italy. This paper aims at presenting advantages of implementation of the knowledge base through the utilization of ontology and offers improved functionalities of such system through examples of typical queries and reasoning that enable derivation of high level energy conservation measures (ECM). Therefore, key SPARQL queries and SWRL rules, based on the two instantiated airport ontologies, are elaborated. The detection of high level irregularities in the operation of airport heating/cooling plants is discussed and estimation of energy savings is reported.

Keywords: airport ontology, knowledge management, ontology modeling, reasoning

Procedia PDF Downloads 512
770 Use of Satellite Altimetry and Moderate Resolution Imaging Technology of Flood Extent to Support Seasonal Outlooks of Nuisance Flood Risk along United States Coastlines and Managed Areas

Authors: Varis Ransibrahmanakul, Doug Pirhalla, Scott Sheridan, Cameron Lee

Abstract:

U.S. coastal areas and ecosystems are facing multiple sea level rise threats and effects: heavy rain events, cyclones, and changing wind and weather patterns all influence coastal flooding, sedimentation, and erosion along critical barrier islands and can strongly impact habitat resiliency and water quality in protected habitats. These impacts are increasing over time and have accelerated the need for new tracking techniques, models and tools of flood risk to support enhanced preparedness for coastal management and mitigation. To address this issue, NOAA National Ocean Service (NOS) evaluated new metrics from satellite altimetry AVISO/Copernicus and MODIS IR flood extents to isolate nodes atmospheric variability indicative of elevated sea level and nuisance flood events. Using de-trended time series of cross-shelf sea surface heights (SSH), we identified specific Self Organizing Maps (SOM) nodes and transitions having a strongest regional association with oceanic spatial patterns (e.g., heightened downwelling favorable wind-stress and enhanced southward coastal transport) indicative of elevated coastal sea levels. Results show the impacts of the inverted barometer effect as well as the effects of surface wind forcing; Ekman-induced transport along broad expanses of the U.S. eastern coastline. Higher sea levels and corresponding localized flooding are associated with either pattern indicative of enhanced on-shore flow, deepening cyclones, or local- scale winds, generally coupled with an increased local to regional precipitation. These findings will support an integration of satellite products and will inform seasonal outlook model development supported through NOAAs Climate Program Office and NOS office of Center for Operational Oceanographic Products and Services (CO-OPS). Overall results will prioritize ecological areas and coastal lab facilities at risk based on numbers of nuisance flood projected and inform coastal management of flood risk around low lying areas subjected to bank erosion.

Keywords: AVISO satellite altimetry SSHA, MODIS IR flood map, nuisance flood, remote sensing of flood

Procedia PDF Downloads 124
769 Geostatistical Analysis of Contamination of Soils in an Urban Area in Ghana

Authors: S. K. Appiah, E. N. Aidoo, D. Asamoah Owusu, M. W. Nuonabuor

Abstract:

Urbanization remains one of the unique predominant factors which is linked to the destruction of urban environment and its associated cases of soil contamination by heavy metals through the natural and anthropogenic activities. These activities are important sources of toxic heavy metals such as arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), and lead (Pb), nickel (Ni) and zinc (Zn). Often, these heavy metals lead to increased levels in some areas due to the impact of atmospheric deposition caused by their proximity to industrial plants or the indiscriminately burning of substances. Information gathered on potentially hazardous levels of these heavy metals in soils leads to establish serious health and urban agriculture implications. However, characterization of spatial variations of soil contamination by heavy metals in Ghana is limited. Kumasi is a Metropolitan city in Ghana, West Africa and is challenged with the recent spate of deteriorating soil quality due to rapid economic development and other human activities such as “Galamsey”, illegal mining operations within the metropolis. The paper seeks to use both univariate and multivariate geostatistical techniques to assess the spatial distribution of heavy metals in soils and the potential risk associated with ingestion of sources of soil contamination in the Metropolis. Geostatistical tools have the ability to detect changes in correlation structure and how a good knowledge of the study area can help to explain the different scales of variation detected. To achieve this task, point referenced data on heavy metals measured from topsoil samples in a previous study, were collected at various locations. Linear models of regionalisation and coregionalisation were fitted to all experimental semivariograms to describe the spatial dependence between the topsoil heavy metals at different spatial scales, which led to ordinary kriging and cokriging at unsampled locations and production of risk maps of soil contamination by these heavy metals. Results obtained from both the univariate and multivariate semivariogram models showed strong spatial dependence with range of autocorrelations ranging from 100 to 300 meters. The risk maps produced show strong spatial heterogeneity for almost all the soil heavy metals with extremely risk of contamination found close to areas with commercial and industrial activities. Hence, ongoing pollution interventions should be geared towards these highly risk areas for efficient management of soil contamination to avert further pollution in the metropolis.

Keywords: coregionalization, heavy metals, multivariate geostatistical analysis, soil contamination, spatial distribution

Procedia PDF Downloads 279
768 A Proposal of a Method to Measure the Satisfaction Indicator of the Local Community Concerning Tourism: A Case Study of Jalapão State Park, Tocantins

Authors: Veruska C. Dutra, Mary L. G. S. Senna, Afonso R. Aquino

Abstract:

Tourists bring many benefits to a local community, encouraging it to be involved in that activity; however, it may also have detrimental effects like garbage, noise, violence, external culture and the damaging of the natural environment among others, which may promote community dissatisfaction. The contact between the tourist and the local community is a concern, especially when the community is located near protected areas. In this case, the community must know the tourist destination well, so it can collaborate in the tourism development without harming the environment. In this context, the present article aims to demonstrate the results of a research study conducted as part of a doctorate program in Sciences from the University of Sao Paulo, Brazil. It had as an objective to elaborate a methodology proposal to measure the local community satisfaction indicator, with applicability on a case study in the Mateiros community located in the surrounding area of the Parque Estadual do Jalapão –PEJ conservation unit in the state of Tocantins, Brazil. This is a study of an interdisciplinary nature that had the deductive method as its guide. The indicator result is going to be presented in this study. It pointed out as negative factors: there is no involvement between the local community and the tourism sector, and there is also dissatisfaction with regard to the town’s basic services. The study showed as positive the local community knowledge about the various attractions in the surrounding area and that the group recognizes the importance of the tourism for the town and life. Concerning the methodology that was used, the results showed that it can collaborate in seeking actions of improvement and involvement of the community in the planning and development of the local tourism. It comes out as an efficient analysis tool, thus enabling the perceiving of the local community point of view.

Keywords: satisfaction indicator, tourism, community, Jalapão

Procedia PDF Downloads 320
767 CAGE Questionnaire as a Screening Tool for Hazardous Drinking in an Acute Admissions Ward: Frequency of Application and Comparison with AUDIT-C Questionnaire

Authors: Ammar Ayad Issa Al-Rifaie, Zuhreya Muazu, Maysam Ali Abdulwahid, Dermot Gleeson

Abstract:

The aim of this audit was to examine the efficiency of alcohol history documentation and screening for hazardous drinkers at the Medical Admission Unit (MAU) of Northern General Hospital (NGH), Sheffield, to identify any potential for enhancing clinical practice. Data were collected from medical clerking sheets, ICE system and directly from 82 patients by three junior medical doctors using both CAGE questionnaire and AUDIT-C tool for newly admitted patients to MAU in NGH, in the period between January and March 2015. Alcohol consumption was documented in around two-third of the patient sample and this was documented fairly accurately by health care professionals. Some used subjective words such as 'social drinking' in the alcohol units’ section of the history. CAGE questionnaire was applied to only four patients and none of the patients had documented advice, education or referral to an alcohol liaison team. AUDIT-C tool had identified 30.4%, while CAGE 10.9%, of patients admitted to the NGH MAU as hazardous drinkers. The amount of alcohol the patient consumes positively correlated with the score of AUDIT-C (Pearson correlation 0.83). Re-audit is planned to be carried out after integrating AUDIT-C tool as labels in the notes and presenting a brief teaching session to junior doctors. Alcohol misuse screening is not adequately undertaken and no appropriate action is being offered to hazardous drinkers. CAGE questionnaire is poorly applied to patients and when satisfactory and adequately used has low sensitivity to detect hazardous drinkers in comparison with AUDIT-C tool. Re-audit of alcohol screening practice after introducing AUDIT-C tool in clerking sheets (as labels) is required to compare the findings and conclude the audit cycle.

Keywords: alcohol screening, AUDIT-C, CAGE, hazardous drinking

Procedia PDF Downloads 386
766 Impact of Economic Globalization on Ecological Footprint in India: Evidenced with Dynamic ARDL Simulations

Authors: Muhammed Ashiq Villanthenkodath, Shreya Pal

Abstract:

Purpose: This study scrutinizes the impact of economic globalization on ecological footprint while endogenizing economic growth and energy consumption from 1990 to 2018 in India. Design/methodology/approach: The standard unit root test has been employed for time series analysis to unveil the integration order. Then, the cointegration was confirmed using autoregressive distributed lag (ARDL) analysis. Further, the study executed the dynamic ARDL simulation model to estimate long-run and short-run results along with simulation and robotic prediction. Findings: The cointegration analysis confirms the existence of a long-run association among variables. Further, economic globalization reduces the ecological footprint in the long run. Similarly, energy consumption decreases the ecological footprint. In contrast, economic growth spurs the ecological footprint in India. Originality/value: This study contributes to the literature in many ways. First, unlike studies that employ CO2 emissions and globalization nexus, this study employs ecological footprint for measuring environmental quality; since it is the broader measure of environmental quality, it can offer a wide range of climate change mitigation policies for India. Second, the study executes a multivariate framework with updated series from 1990 to 2018 in India to explore the link between EF, economic globalization, energy consumption, and economic growth. Third, the dynamic autoregressive distributed lag (ARDL) model has been used to explore the short and long-run association between the series. Finally, to our limited knowledge, this is the first study that uses economic globalization in the EF function of India amid facing a trade-off between sustainable economic growth and the environment in the era of globalization.

Keywords: economic globalization, ecological footprint, India, dynamic ARDL simulation model

Procedia PDF Downloads 106
765 Design of Hybrid Auxetic Metamaterials for Enhanced Energy Absorption under Compression

Authors: Ercan Karadogan, Fatih Usta

Abstract:

Auxetic materials have a negative Poisson’s ratio (NPR), which is not often found in nature. They are metamaterials that have potential applications in many engineering fields. Mechanical metamaterials are synthetically designed structures with unusual mechanical properties. These mechanical properties are dependent on the properties of the matrix structure. They have the following special characteristics, i.e., improved shear modulus, increased energy absorption, and intensive fracture toughness. Non-auxetic materials compress transversely when they are stretched. The system naturally is inclined to keep its density constant. The transversal compression increases the density to balance the loss in the longitudinal direction. This study proposes to improve the crushing performance of hybrid auxetic materials. The re-entrant honeycomb structure has been combined with a star honeycomb, an S-shaped unit cell, a double arrowhead, and a structurally hexagonal re-entrant honeycomb by 9 X 9 cells, i.e., the number of cells is 9 in the lateral direction and 9 in the vertical direction. The Finite Element (FE) and experimental methods have been used to determine the compression behavior of the developed hybrid auxetic structures. The FE models have been developed by using Abaqus software. The specimens made of polymer plastic materials have been 3D printed and subjected to compression loading. The results are compared in terms of specific energy absorption and strength. This paper describes the quasi-static crushing behavior of two types of hybrid lattice structures (auxetic + auxetic and auxetic + non-auxetic). The results show that the developed hybrid structures can be useful to control collapse mechanisms and present larger energy absorption compared to conventional re-entrant auxetic structures.

Keywords: auxetic materials, compressive behavior, metamaterials, negative Poisson’s ratio

Procedia PDF Downloads 77
764 Investigating the Suitability of Utilizing Lyophilized Gels to Improve the Stability of Ufasomes

Authors: Mona Hassan Aburahma, Alaa Hamed Salama

Abstract:

Ufasomes “unsaturated fatty acids liposomes” are unique nano-sized self-assembled bilayered vesicles that can be easily created from the readily available unsaturated fatty acid. Ufasomes are formed due to weak associative interaction of the fully ionized and unionized fatty acids into bilayers structures. In the ufasomes constructs, the fatty acid molecules are oriented with their hydrocarbon tails directed toward the membrane interior and the carboxyl groups are in contact with water. Although ufasomes can be employed as a safe vesicular carrier for drugs, the extreme instability of their aqueous dispersions hinders their effective use in drug delivery field. Accordingly, in our study, lyophilized gels containing ufasomes were prepared using a simple assembling technique form the readily available oleic acid to overcome the colloidal instability of the ufasomes dispersions and convert them into accurate unit dosage forms. The influence of changing cholesterol percentage relative to oleic acid on the ufasomes vesicles were investigated using factorial design. The optimized oleic acid ufasomes comprised nanoscaled spherical vesicles. Scanning electron micrographs of the lyophilized gels revealed that the included ufasomes were intact, non-aggregating, and preserved their spherical morphology. Rheological characterization (viscosity and shear stress versus shear rate) of reconstituted ufasomal lyophilized gel ensured the ease of application. The capability of the ufasomes, included in the gel, to penetrate deep through the mucosa layers was illustrated using ex-vivo confocal laser imaging, thereby, highlighting the feasibility of stabilizing ufasomes using lyophilized gel platforms.

Keywords: ufasomes, lyophilized gel, confocal scanning microscopy, rheological characterization, oleic acid

Procedia PDF Downloads 388
763 Trend Analysis of Annual Total Precipitation Data in Konya

Authors: Naci Büyükkaracığan

Abstract:

Hydroclimatic observation values ​​are used in the planning of the project of water resources. Climate variables are the first of the values ​​used in planning projects. At the same time, the climate system is a complex and interactive system involving the atmosphere, land surfaces, snow and bubbles, the oceans and other water structures. The amount and distribution of precipitation, which is an important climate parameter, is a limiting environmental factor for dispersed living things. Trend analysis is applied to the detection of the presence of a pattern or trend in the data set. Many trends work in different parts of the world are usually made for the determination of climate change. The detection and attribution of past trends and variability in climatic variables is essential for explaining potential future alteration resulting from anthropogenic activities. Parametric and non-parametric tests are used for determining the trends in climatic variables. In this study, trend tests were applied to annual total precipitation data obtained in period of 1972 and 2012, in the Konya Basin. Non-parametric trend tests, (Sen’s T, Spearman’s Rho, Mann-Kendal, Sen’s T trend, Wald-Wolfowitz) and parametric test (mean square) were applied to annual total precipitations of 15 stations for trend analysis. The linear slopes (change per unit time) of trends are calculated by using a non-parametric estimator developed by Sen. The beginning of trends is determined by using the Mann-Kendall rank correlation test. In addition, homogeneities in precipitation trends are tested by using a method developed by Van Belle and Hughes. As a result of tests, negative linear slopes were found in annual total precipitations in Konya.

Keywords: trend analysis, precipitation, hydroclimatology, Konya

Procedia PDF Downloads 197
762 Elite Child Athletes Are Our Future: Cardiac Adaptation to Monofin Training in Prepubertal Egyptian Athletes

Authors: Magdy Abouzeid, Nancy Abouzeid, Afaf Salem

Abstract:

Background: The elite child athletes are one who has superior athletic talent. Monofin (a single surface swim fin) swimming already proved to be the most efficient method of swimming for human being. This is a novel descriptive study examining myocardial function indices in prepubertal monofin children. The aim of the present study was to determine the influence of long-term monofin training (LTMT), 36 weeks, 6 times per week, 90 min per unit on Myocardial function adaptation in elite child monofin athletes. Methods: 14 elite monofin children aged 11.95 years (± 1.09 yr) took part for (LTMT). All subjects underwent two-dimension, M-mode, and Doppler echocardiography before and after training to evaluate cardiac dimensions and function; septal and posterior wall thickness. Statistical methods of SPSS, means ± SD and paired t test, % of improvement were used. Findings: There was significant difference (p<0.01) and % improvement for all echocardiography parameter after (LTMT). Inter ventricular septal thickness in diastole and in systole increased by 27.9 % and 42.75 %. Left ventricular end systolic dimension and diastole increased by 16.81 % and 42.7 % respectively. Posterior wall thickness in systole very highly increased by 283.3 % and in diastole increased by 51.78 %. Left ventricular mass in diastole and in systole increased by 44.8 % and 40.1 % respectively. Stroke volume (SV) and resting heart rate (HR) significant changed (sv) 25 %, (HR) 14.7 %. Interpretation: the unique swim fin tool and create propulsion and overcome resistance. Further researches are needed to determine the effects of monofin training on right ventricular in child athletes.

Keywords: prepubertal, monofin training, heart athlete's, elite child athlete, echocardiography

Procedia PDF Downloads 322
761 Impact of Social Distancing on the Correlation Between Adults’ Participation in Learning and Acceptance of Technology

Authors: Liu Yi Hui

Abstract:

The COVID-19 pandemic in 2020 has globally affected all aspects of life, with social distancing and quarantine orders causing turmoil and learning in community colleges being temporarily paused. In fact, this is the first time that adult education has faced such a severe challenge. It forces researchers to reflect on the impact of pandemics on adult education and ways to respond. Distance learning appears to be one of the pedagogical tools capable of dealing with interpersonal isolation and social distancing caused by the pandemic. This research aims to examine whether the impact of social distancing during COVID-19 will lead to increased acceptance of technology and, subsequently, an increase in adults ’ willingness to participate in distance learning. The hypothesis that social distancing and the desire to participate in distance learning affects learners’ tendency to accept technology is investigated. Teachers ’ participation in distance education and acceptance of technology are used as adjustment variables with the relationship to “social distancing,” “participation in distance learning,” and “acceptance of technology” of learners. A questionnaire survey was conducted over a period of twelve months for teachers and learners at all community colleges in Taiwan who enrolled in a basic unit course. Community colleges were separated using multi-stage cluster sampling, with their locations being metropolitan, non-urban, south, and east as criteria. Using the G*power software, 660 samples were selected and analyzed. The results show that through appropriate pedagogical strategies or teachers ’ own acceptance of technology, adult learners’ willingness to participate in distance learning could be influenced. A diverse model of participation can be developed, improving adult education institutions’ ability to plan curricula to be flexible to avoid the risk associated with epidemic diseases.

Keywords: social distancing, adult learning, community colleges, technology acceptance model

Procedia PDF Downloads 120
760 Economic Analysis of Coffee Cultivation in Kodagu District of Karnataka State, India

Authors: P. S. Dhananjaya Swamy, B. Chinnappa, G. B. Ramesh, Naveen P. Kumar

Abstract:

Kodagu district is one of the most densely forested districts in the India as around sixty five per cent of geographical areas under tree cover. Nearly 53 per cent of the flora of Kodagu is endemic. The district is also a hotspot of endemic orchids found mainly in the Thadiandamol. Shade grown, eco-friendly coffee farms are perhaps a selected few places on this planet where nature runs wild. The Kodagu accounts for more than 8.8 per cent of floral diversity of Karnataka state. Estimation of unit cost of cultivation plays a vital role in determining the governmental program their market intervention policies. On an average, planters incurred around Rs. 17041 per acre. The extent of production risk was highest among small category of planters (66 %) compared to other two exhibiting production instability. The result shows that, the coffee productivity in medium plantations was 1051.2 kg per acre as against 758.5 and 789.2 kg in the case of small and large plantations. An annual net return per acre was highest in the case of medium planters (Rs. 26109.3) as against Rs. 20566.7 and Rs. 18572.7 in the case of small and large planters. Cost of production was lowest in the case of small planters (Rs. 18.9 per kg of output) followed by medium planters (Rs. 21.2 per kg of output) and large planters (Rs. 22.5 per kg of output). The productivity of coffee is less whenever it is grown under high shade and native tree cover; it is around 6 quintals per acre when compared with low shade conditions, which is around 8.9 quintals per acre, without a significant difference in the amount invested for growing coffee. Net gain was lower by Rs. 15.5 per kg for the planters growing under high shade and native trees cover when compared with low shade and exotic trees cover.

Keywords: coffee, cultivation, economics, Kodagu

Procedia PDF Downloads 169
759 Use of Concept Maps as a Tool for Evaluating Students' Understanding of Science

Authors: Aregamalage Sujeewa Vijayanthi Polgampala, Fang Huang

Abstract:

This study explores the genesis and development of concept mapping as a useful tool for science education and its effectiveness as technique for teaching and learning and evaluation for secondary science in schools and the role played by National College of Education science teachers. Concept maps, when carefully employed and executed serves as an integral part of teaching method and measure of effectiveness of teaching and tool for evaluation. Research has shown that science concept maps can have positive influence on student learning and motivation. The success of concept maps played in an instruction class depends on the type of theme selected, the development of learning outcomes, and the flexibility of instruction in providing library unit that is equipped with multimedia equipment where learners can interact. The study was restricted to 6 male and 9 female respondents' teachers in third-year internship pre service science teachers in Gampaha district Sri Lanka. Data were collected through 15 item questionnaire provided to learners and in depth interviews and class observations of 18 science classes. The two generated hypotheses for the study were rejected, while the results revealed that significant difference exists between factors influencing teachers' choice of concept maps, its usefulness and problems hindering the effectiveness of concept maps for teaching and learning process of secondary science in schools. It was examined that concept maps can be used as an effective measure to evaluate students understanding of concepts and misconceptions. Even the teacher trainees could not identify, key concept is on top, and subordinate concepts fall below. It is recommended that pre service science teacher trainees should be provided a thorough training using it as an evaluation instrument.

Keywords: concept maps, evaluation, learning science, misconceptions

Procedia PDF Downloads 263