Search results for: vector density
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4532

Search results for: vector density

2402 Evaluation of Drilling-Induced Delamination of Flax/Epoxy Composites by Non-Destructive Testing Methods

Authors: Hadi Rezghimaleki, Masatoshi Kubouchi, Yoshihiko Arao

Abstract:

The use of natural fiber composites (NFCs) is growing at a fast rate regarding industrial applications and principle researches due to their eco-friendly, renewable nature, and low density/costs. Drilling is one of the most important machining operations that are carried out on natural fiber composites. Delamination is a major concern in the drilling process of NFCs that affects the structural integrity and long-term reliability of the machined components. Flax fiber reinforced epoxy composite laminates were prepared by hot press technique. In this research, we evaluated drilling-induced delamination of flax/epoxy composites by X-ray computed tomography (CT), ultrasonic testing (UT), and optical methods and compared the results.

Keywords: natural fiber composites, flax/epoxy, X-ray CT, ultrasonic testing

Procedia PDF Downloads 299
2401 Intelligent Recognition of Diabetes Disease via FCM Based Attribute Weighting

Authors: Kemal Polat

Abstract:

In this paper, an attribute weighting method called fuzzy C-means clustering based attribute weighting (FCMAW) for classification of Diabetes disease dataset has been used. The aims of this study are to reduce the variance within attributes of diabetes dataset and to improve the classification accuracy of classifier algorithm transforming from non-linear separable datasets to linearly separable datasets. Pima Indians Diabetes dataset has two classes including normal subjects (500 instances) and diabetes subjects (268 instances). Fuzzy C-means clustering is an improved version of K-means clustering method and is one of most used clustering methods in data mining and machine learning applications. In this study, as the first stage, fuzzy C-means clustering process has been used for finding the centers of attributes in Pima Indians diabetes dataset and then weighted the dataset according to the ratios of the means of attributes to centers of theirs. Secondly, after weighting process, the classifier algorithms including support vector machine (SVM) and k-NN (k- nearest neighbor) classifiers have been used for classifying weighted Pima Indians diabetes dataset. Experimental results show that the proposed attribute weighting method (FCMAW) has obtained very promising results in the classification of Pima Indians diabetes dataset.

Keywords: fuzzy C-means clustering, fuzzy C-means clustering based attribute weighting, Pima Indians diabetes, SVM

Procedia PDF Downloads 414
2400 Analysis of Roll-Forming for High-Density Wire of Reed

Authors: Yujeong Shin, Seong Jin Cho, Jin Ho Kim

Abstract:

In the textile-weaving machine, the reed is the core component to separate thousands of strands of yarn and to produce the fabric in a continuous high-speed movement. In addition, the reed affects the quality of the fiber. Therefore, the wire forming analysis of the main raw materials of the reed needs to be considered. Roll-forming is a key technology among the manufacturing process of reed wire using textile machine. A simulation of roll-forming line in accordance with the reduction rate is performed using LS-DYNA. The upper roller, fixed roller and reed wire are modeled by finite element. The roller is set to be rigid body and the wire of SUS430 is set to be flexible body. We predict the variation of the cross-sectional shape of the wire depending on the reduction ratio.

Keywords: textile machine, reed, rolling, reduction ratio, wire

Procedia PDF Downloads 375
2399 A Machine Learning Model for Predicting Students’ Academic Performance in Higher Institutions

Authors: Emmanuel Osaze Oshoiribhor, Adetokunbo MacGregor John-Otumu

Abstract:

There has been a need in recent years to predict student academic achievement prior to graduation. This is to assist them in improving their grades, especially for those who have struggled in the past. The purpose of this research is to use supervised learning techniques to create a model that predicts student academic progress. Many scholars have developed models that predict student academic achievement based on characteristics including smoking, demography, culture, social media, parent educational background, parent finances, and family background, to mention a few. This element, as well as the model used, could have misclassified the kids in terms of their academic achievement. As a prerequisite to predicting if the student will perform well in the future on related courses, this model is built using a logistic regression classifier with basic features such as the previous semester's course score, attendance to class, class participation, and the total number of course materials or resources the student is able to cover per semester. With a 96.7 percent accuracy, the model outperformed other classifiers such as Naive bayes, Support vector machine (SVM), Decision Tree, Random forest, and Adaboost. This model is offered as a desktop application with user-friendly interfaces for forecasting student academic progress for both teachers and students. As a result, both students and professors are encouraged to use this technique to predict outcomes better.

Keywords: artificial intelligence, ML, logistic regression, performance, prediction

Procedia PDF Downloads 109
2398 The Influence of Water Content on the Shear Resistance of Silty Sands

Authors: Mohamed Boualem Salah

Abstract:

This work involves an experimental study of the behavior of chlef sand under effect of various parameters influencing on shear strength. Because of their distinct nature, sands, silts and clays exhibit completely different behavior (shear strength, the contracting and dilatancy, the angle of internal friction and cohesion etc.). By cons when these materials are mixed, their behavior will become different from each considered alone. The behavior of these mixtures (silty sands etc.) is currently the state of several studies to better use. We studied in this work: The influence of the following factors on the shear strength: (The density, the fines content, the water content). The apparatus used for the tests is the shear box casagrande. This device, although one may have some disadvantages and modern instrumentation is appropriate used to study the shear strength of soils.

Keywords: behavior, shear strength, sand, silt, friction angle, cohesion, fines content, moisture content

Procedia PDF Downloads 409
2397 Effect of Laminating Sequence of MWCNTs and Fe₂O₃ Filled Nanocomposites on Emi Shielding Effectiveness

Authors: Javeria Ahmad, Ayesha Maryam, Zahid Rizwan, Nadeem Nasir, Yasir Nawab, Hafiz Shehbaz Ahmad

Abstract:

Mitigation of electromagnetic interference (EMI) through thin, lightweight, and cost-effective materials is critical for electronic appliances as well as human health. The present research work discusses the design of composites that are suitable to minimize EMI through various stacking sequences. The carbon fibers reinforced composite structures impregnated with dielectric (MWCNTs) and magnetic nanofillers (Fe₂O₃) were developed to investigate their microwave absorption properties. The composite structure comprising a single type of nanofillers, each of MWCNTs & Fe₂O₃, was developed, and then their layers were stacked over each other with various stacking sequences to investigate the best stacking sequence, which presents good microwave absorption characteristics. A vector network analyzer (VNA) was used to analyze the microwave absorption properties of these developed composite structures. The composite structures impregnated with the layers of a dielectric nanofiller and sandwiched between the layers of a magnetic nanofiller show the highest EMI shielding value of 59 dB and a dielectric conductivity of 35 S/cm in the frequency range of 0.1 to 13.6 GHz. The results also demonstrate that the microwave absorption properties of the developed composite structures were dominant over reflection properties. The absence of an external peak in X-ray diffraction (XRD), marked the purity of the added nanofillers.

Keywords: nanocomposites, microwave absorption, EMI shielding, skin depth, reflection loss

Procedia PDF Downloads 52
2396 Major Depressive Disorder: Diagnosis based on Electroencephalogram Analysis

Authors: Wajid Mumtaz, Aamir Saeed Malik, Syed Saad Azhar Ali, Mohd Azhar Mohd Yasin

Abstract:

In this paper, a technique based on electroencephalogram (EEG) analysis is presented, aiming for diagnosing major depressive disorder (MDD) among a potential population of MDD patients and healthy controls. EEG is recognized as a clinical modality during applications such as seizure diagnosis, index for anesthesia, detection of brain death or stroke. However, its usability for psychiatric illnesses such as MDD is less studied. Therefore, in this study, for the sake of diagnosis, 2 groups of study participants were recruited, 1) MDD patients, 2) healthy people as controls. EEG data acquired from both groups were analyzed involving inter-hemispheric asymmetry and composite permutation entropy index (CPEI). To automate the process, derived quantities from EEG were utilized as inputs to classifier such as logistic regression (LR) and support vector machine (SVM). The learning of these classification models was tested with a test dataset. Their learning efficiency is provided as accuracy of classifying MDD patients from controls, their sensitivities and specificities were reported, accordingly (LR =81.7 % and SVM =81.5 %). Based on the results, it is concluded that the derived measures are indicators for diagnosing MDD from a potential population of normal controls. In addition, the results motivate further exploring other measures for the same purpose.

Keywords: major depressive disorder, diagnosis based on EEG, EEG derived features, CPEI, inter-hemispheric asymmetry

Procedia PDF Downloads 546
2395 Implementation of a Multimodal Biometrics Recognition System with Combined Palm Print and Iris Features

Authors: Rabab M. Ramadan, Elaraby A. Elgallad

Abstract:

With extensive application, the performance of unimodal biometrics systems has to face a diversity of problems such as signal and background noise, distortion, and environment differences. Therefore, multimodal biometric systems are proposed to solve the above stated problems. This paper introduces a bimodal biometric recognition system based on the extracted features of the human palm print and iris. Palm print biometric is fairly a new evolving technology that is used to identify people by their palm features. The iris is a strong competitor together with face and fingerprints for presence in multimodal recognition systems. In this research, we introduced an algorithm to the combination of the palm and iris-extracted features using a texture-based descriptor, the Scale Invariant Feature Transform (SIFT). Since the feature sets are non-homogeneous as features of different biometric modalities are used, these features will be concatenated to form a single feature vector. Particle swarm optimization (PSO) is used as a feature selection technique to reduce the dimensionality of the feature. The proposed algorithm will be applied to the Institute of Technology of Delhi (IITD) database and its performance will be compared with various iris recognition algorithms found in the literature.

Keywords: iris recognition, particle swarm optimization, feature extraction, feature selection, palm print, the Scale Invariant Feature Transform (SIFT)

Procedia PDF Downloads 235
2394 The Impact of Natural Resources on Financial Development: The Global Perspective

Authors: Remy Jonkam Oben

Abstract:

Using a time series approach, this study investigates how natural resources impact financial development from a global perspective over the 1980-2019 period. Some important determinants of financial development (economic growth, trade openness, population growth, and investment) have been added to the model as control variables. Unit root tests have revealed that all the variables are integrated into order one. Johansen's cointegration test has shown that the variables are in a long-run equilibrium relationship. The vector error correction model (VECM) has estimated the coefficient of the error correction term (ECT), which suggests that the short-run values of natural resources, economic growth, trade openness, population growth, and investment contribute to financial development converging to its long-run equilibrium level by a 23.63% annual speed of adjustment. The estimated coefficients suggest that global natural resource rent has a statistically-significant negative impact on global financial development in the long-run (thereby validating the financial resource curse) but not in the short-run. Causality test results imply that neither global natural resource rent nor global financial development Granger-causes each other.

Keywords: financial development, natural resources, resource curse hypothesis, time series analysis, Granger causality, global perspective

Procedia PDF Downloads 170
2393 Physico-Chemical and Biotechnological Characterization of Sheep’s Milk (Ovis aries) by Three Medicinal Plants Extracts

Authors: Fatima Bouazza, Khadija Khedid, Lamiae Amallah, Aziz Mouhaddach, Basma Boukour, Jihane Ennadir, Rachida Hassikou

Abstract:

In order to combine milk and its derived products conservation and flavoring, Moroccans often used aromatic and medicinal plants. These plant extracts are endowed with several nutritive and therapeutic properties. This study constitutes a first national assessment of physico-chemical quality of sheep’s milk from moroccan Sardi breed and the evaluation of the antibacterial effect of three medicinal plants extracts: Aloe barbadensis Miller, Thymus satureioides and Mentha pulegium on flora isolated from this sheep's milk. 100 milk samples were collected in four regions of Morocco. The bacteria isolated were identified by classical and molecular methods (16S rRNA sequencing) and tested, according to the disk method, for their sensitivity to several antibiotics. The physico-chemical analyzes of sheep’s milk concerned the pH, titratable acidity, density, dry extract, freezing point and contents of: fat, proteins, lactose and calcium. The essential oils (EOs) of T. satureioides and M .pulegium were extracted by hydrodistillation and analyzed by GC / MS, while the Aloe vera leaf pulp was analyzed by the methods of Harborne and HPLC. A total number of 125 bacteria have been identified. Significant resistance to chemical antibiotics has been noted in LABs. The average temperature value of milk is around 57.15 °C, the pH is 6.56, the titratable acidity is around 3.4 ° D, the density is 1.035g / cm³ , the total dry extract is around 169.5g / l, the ash (9.8g / l), the freezing point (- 0.556 °C) while the average fat content is 67.85g / l . The samples richest in fat belong to the region of Settat, cradle of the Sardi breed, with a maximum average value of 74.4g / l. The average protein is 56g / l, lactose (39.92g / l), and calcium (1.855g / l). Analysis of the major components of EOs revealed the dominance of borneol in the case of T. satureioides and of pulegone in M. pulegium. Aloe vera gel contains alkaloids, flavonoids, catechic tannins, saponins and 1.60 µg / ml of aloin. The plant extracts have a bactericidal effect on E. coli, Klebsiellaoxytoca and Staphylococci and bacteriostatic effect on LABs of technological interest (Lactobacillus). As a result of this study, it is believed that the consumption of sardi sheep’s milk would be of nutritional benefit. Its richness in fat and proteins predisposes it for biotechnological development in the manufacture of cheese and yogurt. Also, the use of aromatic and medicinal plants, as natural additives would be of great benefit to flavor and maintain its quality.

Keywords: sheep’s milk, lactic flora, antimicrobial power, aloe barbadensis miller, thymus satureioides, mentha pulegium

Procedia PDF Downloads 125
2392 High-Performance Non-aqueous Organic Redox Flow Battery in Ambient Condition

Authors: S. K. Mohapatra, K. Ramanujam, S. Sankararaman

Abstract:

Redox flow battery (RFB) is a preferred energy storage option for grid stabilisation and energy arbitrage as it offers energy and power decoupling. In contrast to aqueous RFBs (ARFBs), nonaqueous RFBs (NARFBs) could offer high energy densities due to the wider electrochemical window of the solvents used, which could handle high and low voltage organic redox couples without undergoing electrolysis. In this study, a RFB based on benzyl viologen hexafluorophosphate [BV(PF6)2] as anolyte and N-hexyl phenothiazine [HPT] as catholyte demonstrated. A cell operated with mixed electrolyte (1:1) containing 0.2 M [BV(PF₆)₂] and 0.2 M [HPT] delivered a coulombic efficiency (CE) of 95.3 % and energy efficiency (EE) 53%, with nearly 68.9% material utilisation at 40 mA cm-2 current density.

Keywords: non-aqueous redox flow battery, benzyl viologen, N-hexyl phenothiazine, mixed electrolyte

Procedia PDF Downloads 76
2391 Assessing Antimicrobial Activity of Various Plant Extracts on Midgutmicroflora of Aedesaegypti

Authors: V. Baweja, K. K. Gupta, V. Dubey, C. Keshavam

Abstract:

Antimicrobial activity of six indigenous plants such as Tulsi Ocimum sanctum, Neem Azadirachta indica, Aloe vera, Turmeric Curcuma longa, Lantana Lantana camara, and Clove Syzygium aromaticum was assessed against the gut microbiota of the dengue fever mosquito Aedes aegypti, keeping in view that the presence of midgut bacteria may affect the ability of the vector to transmit pathogens. Eleven different types of bacterial clones were isolated from the midgut of lab-reared fourth instar larvae of Aedes aegypti and were grown on LB agar medium at an optimum temperature of 25 ºC. Identification of these bacteria was done on the basis of their colony characteristic such as colony size, shape, opacity, elevation, consistency, and growth. Light microscopic studies of the gut microbiota revealed dominance of Gram-negative cocci over gram positive cocci and bacilli and Gram-negative bacilli. Identification of species was done by chemical characterization of the colonies. Crude extracts of all test plants were screened for their antimicrobial activities against gut microbiota by disc diffusion assay. The zone of exclusion seen after 24 hr of incubation in different assays revealed the most potent antibacterial activities in neem followed by clove and turmeric. Lantana and Aloe vera were least effective.

Keywords: plant extract, aedes, dengue, antimicrobial activity

Procedia PDF Downloads 404
2390 A Psychophysiological Evaluation of an Effective Recognition Technique Using Interactive Dynamic Virtual Environments

Authors: Mohammadhossein Moghimi, Robert Stone, Pia Rotshtein

Abstract:

Recording psychological and physiological correlates of human performance within virtual environments and interpreting their impacts on human engagement, ‘immersion’ and related emotional or ‘effective’ states is both academically and technologically challenging. By exposing participants to an effective, real-time (game-like) virtual environment, designed and evaluated in an earlier study, a psychophysiological database containing the EEG, GSR and Heart Rate of 30 male and female gamers, exposed to 10 games, was constructed. Some 174 features were subsequently identified and extracted from a number of windows, with 28 different timing lengths (e.g. 2, 3, 5, etc. seconds). After reducing the number of features to 30, using a feature selection technique, K-Nearest Neighbour (KNN) and Support Vector Machine (SVM) methods were subsequently employed for the classification process. The classifiers categorised the psychophysiological database into four effective clusters (defined based on a 3-dimensional space – valence, arousal and dominance) and eight emotion labels (relaxed, content, happy, excited, angry, afraid, sad, and bored). The KNN and SVM classifiers achieved average cross-validation accuracies of 97.01% (±1.3%) and 92.84% (±3.67%), respectively. However, no significant differences were found in the classification process based on effective clusters or emotion labels.

Keywords: virtual reality, effective computing, effective VR, emotion-based effective physiological database

Procedia PDF Downloads 233
2389 Classification of Potential Biomarkers in Breast Cancer Using Artificial Intelligence Algorithms and Anthropometric Datasets

Authors: Aref Aasi, Sahar Ebrahimi Bajgani, Erfan Aasi

Abstract:

Breast cancer (BC) continues to be the most frequent cancer in females and causes the highest number of cancer-related deaths in women worldwide. Inspired by recent advances in studying the relationship between different patient attributes and features and the disease, in this paper, we have tried to investigate the different classification methods for better diagnosis of BC in the early stages. In this regard, datasets from the University Hospital Centre of Coimbra were chosen, and different machine learning (ML)-based and neural network (NN) classifiers have been studied. For this purpose, we have selected favorable features among the nine provided attributes from the clinical dataset by using a random forest algorithm. This dataset consists of both healthy controls and BC patients, and it was noted that glucose, BMI, resistin, and age have the most importance, respectively. Moreover, we have analyzed these features with various ML-based classifier methods, including Decision Tree (DT), K-Nearest Neighbors (KNN), eXtreme Gradient Boosting (XGBoost), Logistic Regression (LR), Naive Bayes (NB), and Support Vector Machine (SVM) along with NN-based Multi-Layer Perceptron (MLP) classifier. The results revealed that among different techniques, the SVM and MLP classifiers have the most accuracy, with amounts of 96% and 92%, respectively. These results divulged that the adopted procedure could be used effectively for the classification of cancer cells, and also it encourages further experimental investigations with more collected data for other types of cancers.

Keywords: breast cancer, diagnosis, machine learning, biomarker classification, neural network

Procedia PDF Downloads 136
2388 Effects of Positron Concentration and Temperature on Ion-Acoustic Solitons in Magnetized Electron-Positron-Ion Plasma

Authors: S. K. Jain, M. K. Mishra

Abstract:

Oblique propagation of ion-acoustic solitons in magnetized electron-positron-ion (EPI) plasma with warm adiabatic ions and isothermal electrons has been studied. Korteweg-de Vries (KdV) equation using reductive perturbation method has been derived for the system, which admits an obliquely propagating soliton solution. It is found that for the selected set of parameter values, the system supports only compressive solitons. Investigations reveal that an increase in positron concentration diminishes the amplitude as well as the width of the soliton. It is also found that the temperature ratio of electron to positron (γ) affects the amplitude of the solitary wave. An external magnetic field do not affect the amplitude of ion-acoustic solitons, but obliqueness angle (θ), the angle between wave vector and magnetic field affects the amplitude. The amplitude of the ion-acoustic solitons increases with increase in angle of obliqueness. Magnetization and obliqueness drastically affect the width of the soliton. An increase in ionic temperature decreases the amplitude and width. For the fixed set of parameters, profiles have been drawn to study the combined effect with variation of two parameters on the characteristics of the ion-acoustic solitons (i.e., amplitude and width). The result may be applicable to plasma in the laboratory as well as in the magnetospheric region of the earth.

Keywords: ion-acoustic solitons, Korteweg-de Vries (KdV) equation, magnetized electron-positron-ion (EPI) plasma, reductive perturbation method

Procedia PDF Downloads 293
2387 Thermal Properties of the Ground in Cyprus and Their Correlations and Effect on the Efficiency of Ground Heat Exchangers

Authors: G. A. Florides, E. Theofanous, I. Iosif-Stylianou, P. Christodoulides, S. Kalogirou, V. Messarites, Z. Zomeni, E. Tsiolakis, P. D. Pouloupatis, G. P. Panayiotou

Abstract:

Ground Coupled Heat Pumps (GCHPs) exploit effectively the heat capacity of the ground, with the use of Ground Heat Exchangers (GHE). Depending on the mode of operation of the GCHPs, GHEs dissipate or absorb heat from the ground. For sizing the GHE the thermal properties of the ground need to be known. This paper gives information about the density, thermal conductivity, specific heat and thermal diffusivity of various lithologies encountered in Cyprus with various relations between these properties being examined through comparison and modeling. The results show that the most important correlation is the one encountered between thermal conductivity and thermal diffusivity with both properties showing similar response to the inlet and outlet flow temperature of vertical and horizontal heat exchangers.

Keywords: ground heat exchangers, ground thermal conductivity, ground thermal diffusivity, ground thermal properties

Procedia PDF Downloads 380
2386 Binary Programming for Manufacturing Material and Manufacturing Process Selection Using Genetic Algorithms

Authors: Saleem Z. Ramadan

Abstract:

The material selection problem is concerned with the determination of the right material for a certain product to optimize certain performance indices in that product such as mass, energy density, and power-to-weight ratio. This paper is concerned about optimizing the selection of the manufacturing process along with the material used in the product under performance indices and availability constraints. In this paper, the material selection problem is formulated using binary programming and solved by genetic algorithm. The objective function of the model is to minimize the total manufacturing cost under performance indices and material and manufacturing process availability constraints.

Keywords: optimization, material selection, process selection, genetic algorithm

Procedia PDF Downloads 420
2385 A Neural Approach for Color-Textured Images Segmentation

Authors: Khalid Salhi, El Miloud Jaara, Mohammed Talibi Alaoui

Abstract:

In this paper, we present a neural approach for unsupervised natural color-texture image segmentation, which is based on both Kohonen maps and mathematical morphology, using a combination of the texture and the image color information of the image, namely, the fractal features based on fractal dimension are selected to present the information texture, and the color features presented in RGB color space. These features are then used to train the network Kohonen, which will be represented by the underlying probability density function, the segmentation of this map is made by morphological watershed transformation. The performance of our color-texture segmentation approach is compared first, to color-based methods or texture-based methods only, and then to k-means method.

Keywords: segmentation, color-texture, neural networks, fractal, watershed

Procedia PDF Downloads 347
2384 Quality Assessment Of Instant Breakfast Cereals From Yellow Maize (Zea mays), Sesame (Sesamum indicium), And Mushroom (Pleurotusostreatus) Flour Blends

Authors: Mbaeyi-Nwaoha, Ifeoma Elizabeth, Orngu, Africa Orngu

Abstract:

Composite flours were processed from blends of yellow maize (Zea mays), sesame seed (Sesamum indicum) and oyster mushroom (Pleurotus ostreatus) powder in the ratio of 80:20:0; 75:20:5; 70:20:10; 65:20:10 and 60:20:20, respectively to produce the breakfast cereal coded as YSB, SMB, TMB, PMB and OMB with YSB as the control. The breakfast cereals were produced by hydration and toasting of yellow maize and sesame to 160oC for 25 minutes and blended together with oven dried and packaged oyster mushroom. The developed products (flours and breakfast cereals) were analyzed for proximate composition, vitamins, minerals, anti-nutrients, phytochemicals, functional, microbial and sensory properties. Results for the flours showed: proximate composition (%): moisture (2.59-7.27), ash (1.29-7.57), crude fat (0.98-14.91), fibre (1.03-16.02), protein (10.13-35.29), carbohydrate (75.48-38.18) and energy (295.18-410.75kcal). Vitamins ranged as: vitamin A (0.14-9.03 ug/100g), vitamin B1 (0.14-0.38), vitamin B2 (0.07-0.15), vitamin B3(0.89-4.88) and Vitamin C (0.03-4.24). Minerals (mg/100g) were reported thus: calcium (8.01-372.02), potassium (1.40-1.85), magnesium (12.09-13.15), iron (1.23-5.25) and zinc (0.85-2.20). The results for anti-nutrients and phytochemical ranged from: tannin (1.50-1.61mg/g), Phytate (0.40-0.71mg/g), Oxalate(1.81-2.02mg/g), Flavonoid (0.21-1.27%) and phenolic (1.12-2.01%). Functional properties showed: bulk density (0.51-0.77g/ml), water absorption capacity (266.0-301.5%), swelling capacity (136.0-354.0%), least Gelation (0.55-1.45g/g) and reconstitution index (35.20-69.60%). The total viable count ranged from 6.4× 102to1.0× 103cfu/g while the total mold count was from 1.0× 10to 3.0× 10 cfu/g. For the breakfast cereals, proximate composition (%) ranged thus: moisture (4.07-7.08), ash (3.09-2.28), crude fat(16.04-12.83), crude fibre(4.30-8.22), protein(16.14-22.54), carbohydrate(56.34-47.04) and energy (434.34-393.83Kcal).Vitamin A (7.99-5.98 ug/100g), vitamin B1(0.08-0.42mg/100g), vitamin B2(0.06-0.15 mg/100g), vitamin B3(1.91-4.52 mg/100g) and Vitamin C(3.55-3.32 mg/100g) were reported while Minerals (mg/100g) were: calcium (75.31-58.02), potassium (0.65-4.01), magnesium(12.25-12.62), iron (1.21-4.15) and zinc (0.40-1.32). The anti-nutrients and phytochemical revealed the range (mg/g) as: tannin (1.12-1.21), phytate (0.69-0.53), oxalate (1.21-0.43), flavonoid (0.23-1.22%) and phenolic (0.23-1.23%). The bulk density (0.77-0.63g/ml), water absorption capacity (156.5-126.0%), swelling capacity (309.5-249.5%), least gelation (1.10-0.75g/g) and reconstitution index (49.95-39.95%) were recorded. From the total viable count, it ranged from 3.3× 102to4.2× 102cfu/g but no mold growth was detected. Sensory scores revealed that the breakfast cereals were acceptable to the panelist with oyster mushroom supplementation up to 10%.

Keywords: oyster mushroom (Pleurotus ostreatus), sesame seed (Sesamum indicum), yellow maize (Zea mays, instant breakfast cereals

Procedia PDF Downloads 203
2383 A Finite Element Based Predictive Stone Lofting Simulation Methodology for Automotive Vehicles

Authors: Gaurav Bisht, Rahul Rathnakumar, Ravikumar Duggirala

Abstract:

Predictive simulations are one of the key focus areas in safety-critical industries such as aerospace and high-performance automotive engineering. The stone-chipping study is one such effort taken up by the industry to predict and evaluate the damage caused due to gravel impact on vehicles. This paper describes a finite elements based method that can simulate the ejection of gravel chips from a vehicle tire. The FE simulations were used to obtain the initial ejection velocity of the stones for various driving conditions using a computational contact mechanics approach. To verify the accuracy of the tire model, several parametric studies were conducted. The FE simulations resulted in stone loft velocities ranging from 0–8 m/s, regardless of tire speed. The stress on the tire at the instant of initial contact with the stone increased linearly with vehicle speed. Mesh convergence studies indicated that a highly resolved tire mesh tends to result in better momentum transfer between the tire and the stone. A fine tire mesh also showed a linearly increasing relationship between the tire forward speed and stone lofting speed, which was not observed in coarser meshes. However, it also highlighted a potential challenge, in that the ejection velocity vector of the stone seemed to be sensitive to the mesh, owing to the FE-based contact mechanical formulation of the problem.

Keywords: abaqus, contact mechanics, foreign object debris, stone chipping

Procedia PDF Downloads 263
2382 Dynamic Fault Diagnosis for Semi-Batch Reactor Under Closed-Loop Control via Independent RBFNN

Authors: Abdelkarim M. Ertiame, D. W. Yu, D. L. Yu, J. B. Gomm

Abstract:

In this paper, a new robust fault detection and isolation (FDI) scheme is developed to monitor a multivariable nonlinear chemical process called the Chylla-Haase polymerization reactor when it is under the cascade PI control. The scheme employs a radial basis function neural network (RBFNN) in an independent mode to model the process dynamics and using the weighted sum-squared prediction error as the residual. The recursive orthogonal Least Squares algorithm (ROLS) is employed to train the model to overcome the training difficulty of the independent mode of the network. Then, another RBFNN is used as a fault classifier to isolate faults from different features involved in the residual vector. The several actuator and sensor faults are simulated in a nonlinear simulation of the reactor in Simulink. The scheme is used to detect and isolate the faults on-line. The simulation results show the effectiveness of the scheme even the process is subjected to disturbances and uncertainties including significant changes in the monomer feed rate, fouling factor, impurity factor, ambient temperature and measurement noise. The simulation results are presented to illustrate the effectiveness and robustness of the proposed method.

Keywords: Robust fault detection, cascade control, independent RBF model, RBF neural networks, Chylla-Haase reactor, FDI under closed-loop control

Procedia PDF Downloads 498
2381 Experimental Study of Various Sandwich Composites

Authors: R. Naveen, E. Vanitha, S. Gayathri

Abstract:

The use of Sandwich composite materials in aerospace and civil infrastructure application has been increasing especially due to their enormously low weight that leads to a reduction in the total weight and fuel consumption, high flexural and transverse shear stiffness, and corrosion resistance. The essential properties of sandwich materials vary according to the application area of the structure. The objectives of this study are to identify the mechanical behaviour and failure mechanisms of sandwich structures made of bamboo, V- board and metal (Aluminium as face sheet and Foam as Core material). The three-point bending test and UTM (Universal testing machine) experimental tests are done for three specimens for each type of sandwich composites. From the experiment results of three sandwich composites, bamboo shows high Young’s modulus of elasticity and low density.

Keywords: bamboo sandwich composite, metal sandwich composite, sandwich composite, v-board sandwich composite

Procedia PDF Downloads 257
2380 Effect of Thermal Annealing Used in the Hydrothermal Synthesis of Titanium Dioxide on Its Electrochemical Properties As Li-Ion Electrode

Authors: Gabouze Nourredine, Saloua Merazga

Abstract:

Due to their exceptional durability, low-cost, high-power density, and reliability, cathodes based on titanium dioxide, and more specifically spinel LTO (Li4Ti5O12), present an attractive alternative to conventional lithium cathode materials for multiple applications. The aim of this work is to synthesize and characterize the nanopowders of titanium dioxide (TiO₂) and lithium titanate (Li₄Ti5O₁₂) by the hydrothermal method and to use them as a cathode in a lithium-ion battery. The structural and morphological characterizations of the synthesized powders were performed by XRD, SEM, EDS, and FTIR-ATR. Nevertheless, the study of the electrochemical performances of the elaborated electrode materials was carried out by: cyclic voltametry (CV) and galvanostatic charge/discharge (CDG). The prepared electrode by the powder annealed at 800 °C has a good specific capacity of about 173 mAh/g and a good cyclic stability

Keywords: lithuim-ion, battery, LTO, tio2, capacity

Procedia PDF Downloads 85
2379 Movie Genre Preference Prediction Using Machine Learning for Customer-Based Information

Authors: Haifeng Wang, Haili Zhang

Abstract:

Most movie recommendation systems have been developed for customers to find items of interest. This work introduces a predictive model usable by small and medium-sized enterprises (SMEs) who are in need of a data-based and analytical approach to stock proper movies for local audiences and retain more customers. We used classification models to extract features from thousands of customers’ demographic, behavioral and social information to predict their movie genre preference. In the implementation, a Gaussian kernel support vector machine (SVM) classification model and a logistic regression model were established to extract features from sample data and their test error-in-sample were compared. Comparison of error-out-sample was also made under different Vapnik–Chervonenkis (VC) dimensions in the machine learning algorithm to find and prevent overfitting. Gaussian kernel SVM prediction model can correctly predict movie genre preferences in 85% of positive cases. The accuracy of the algorithm increased to 93% with a smaller VC dimension and less overfitting. These findings advance our understanding of how to use machine learning approach to predict customers’ preferences with a small data set and design prediction tools for these enterprises.

Keywords: computational social science, movie preference, machine learning, SVM

Procedia PDF Downloads 260
2378 Release of Calcein from Liposomes Using Low and High Frequency Ultrasound

Authors: Ghaleb A. Husseini, Salma E. Ahmed, Hesham G. Moussa, Ana M. Martins, Mohammad Al-Sayah, Nasser Qaddoumi

Abstract:

This abstract aims to investigate the use of targeted liposomes as anticancer drug carriers in vitro in combination with ultrasound applied as drug trigger; in order to reduce the side effects caused by traditional chemotherapy. Pegylated liposomes were used to encapsulate calcein and then release this model drug when 20-kHz, 40-kHz, 1-MHz and 3-MHz ultrasound were applied at different acoustic power densities. Fluorescence techniques were then used to measure the percent drug release of calcein from these targeted liposomes. Results showed that as the power density increases, at the four frequencies studied, the release of calcein also increased. Based on these results, we believe that ultrasound can be used to increase the rate and amount of chemotherapeutics release from liposomes.

Keywords: liposomes, calcein release, high frequency ultrasound, low frequency ultrasound, fluorescence techniques

Procedia PDF Downloads 426
2377 Target and Equalizer Design for Perpendicular Heat-Assisted Magnetic Recording

Authors: P. Tueku, P. Supnithi, R. Wongsathan

Abstract:

Heat-Assisted Magnetic Recording (HAMR) is one of the leading technologies identified to enable areal density beyond 1 Tb/in2 of magnetic recording systems. A key challenge to HAMR designing is accuracy of positioning, timing of the firing laser, power of the laser, thermo-magnetic head, head-disk interface and cooling system. We study the effect of HAMR parameters on transition center and transition width. The HAMR is model using Thermal Williams-Comstock (TWC) and microtrack model. The target and equalizer are designed by the minimum mean square error (MMSE). The result shows that the unit energy constraint outperforms other constraints.

Keywords: heat-assisted magnetic recording, thermal Williams-Comstock equation, microtrack model, equalizer

Procedia PDF Downloads 352
2376 The Gasification of Acetone via Partial Oxidation in Supercritical Water

Authors: Shyh-Ming Chern, Kai-Ting Hsieh

Abstract:

Organic solvents find various applications in many industrial sectors and laboratories as dilution solvents, dispersion solvents, cleaners and even lubricants. Millions of tons of Spent Organic Solvents (SOS) are generated each year worldwide, prompting the need for more efficient, cleaner and safer methods for the treatment and resource recovery of SOS. As a result, acetone, selected as a model compound for SOS, was gasified in supercritical water to assess the feasibility of resource recovery of SOS by means of supercritical water processes. Experiments were conducted with an autoclave reactor. Gaseous product is mainly consists of H2, CO, CO2 and CH4. The effects of three major operating parameters, the reaction temperature, from 673 to 773K, the dosage of oxidizing agent, from 0.3 to 0.5 stoichiometric oxygen, and the concentration of acetone in the feed, 0.1 and 0.2M, on the product gas composition, yield and heating value were evaluated with the water density fixed at about 0.188g/ml.

Keywords: acetone, gasification, SCW, supercritical water

Procedia PDF Downloads 386
2375 Pyramidal Lucas-Kanade Optical Flow Based Moving Object Detection in Dynamic Scenes

Authors: Hyojin Lim, Cuong Nguyen Khac, Yeongyu Choi, Ho-Youl Jung

Abstract:

In this paper, we propose a simple moving object detection, which is based on motion vectors obtained from pyramidal Lucas-Kanade optical flow. The proposed method detects moving objects such as pedestrians, the other vehicles and some obstacles at the front-side of the host vehicle, and it can provide the warning to the driver. Motion vectors are obtained by using pyramidal Lucas-Kanade optical flow, and some outliers are eliminated by comparing the amplitude of each vector with the pre-defined threshold value. The background model is obtained by calculating the mean and the variance of the amplitude of recent motion vectors in the rectangular shaped local region called the cell. The model is applied as the reference to classify motion vectors of moving objects and those of background. Motion vectors are clustered to rectangular regions by using the unsupervised clustering K-means algorithm. Labeling method is applied to label groups which is close to each other, using by distance between each center points of rectangular. Through the simulations tested on four kinds of scenarios such as approaching motorbike, vehicle, and pedestrians to host vehicle, we prove that the proposed is simple but efficient for moving object detection in parking lots.

Keywords: moving object detection, dynamic scene, optical flow, pyramidal optical flow

Procedia PDF Downloads 349
2374 Physico-Chemical, GC-MS Analysis and Cold Saponification of Onion (Allium cepa L) Seed Oil

Authors: A. A Warra, S. Fatima

Abstract:

The experimental investigation revealed that the hexane extract of onion seed oil has acid value, iodine value, peroxide value, saponification value, relative density and refractive index of 0.03±0.01 mgKOH/g, 129.80±0.21 gI2/100g, 3.00± 0.00 meq H2O2 203.00±0.71 mgKOH/g, 0.82±0.01and 1.44±0.00 respectively. The percentage yield was 50.28±0.01%. The colour of the oil was light green. We restricted our GC-MS spectra interpretation to compounds identification, particularly fatty acids and they are identified as palmitic acid, linolelaidic acid, oleic acid, stearic acid, behenic acid, linolenic acid and eicosatetraenoic acid. The pH , foam ability (cm³), total fatty matter, total alkali and percentage chloride of the onion oil soap were 11.03± 0.02, 75.13±0.15 (cm³), 36.66 ± 0.02 %, 0.92 ± 0.02% and 0.53 ± 0.15 % respectively. The texture was soft and the colour was lighter green. The results indicated that the hexane extract of the onion seed oil has potential for cosmetic industries.

Keywords: onion seeds, soxhlet extraction, physicochemical, GC-MS, cold saponification

Procedia PDF Downloads 316
2373 Volumetric Properties of Binary Mixtures of Glycerol +1-Butanol or +2-Butanol at Several Temperatures

Authors: Y. Chabouni, F. Amireche

Abstract:

Densities of glycerol + 1-butanol or 2-butanol mixtures were measured over the temperature range 293.15 to 303.15 K at atmospheric pressure, over the entire composition range, with a vibrating tube densimeter. Excess molar volumes, apparent and partial molar volumes of glycerol and butanol, thermal isobaric expansivities of the mixture and partial molar expansivities of the components were calculated. The excess molar volumes of the mixtures are negative at all temperatures, and deviations from ideality increase with increasing temperature. Excess molar volumes were fitted to the Redlich–Kister equation. Partial molar volumes of glycerol decrease with increasing butanol concentration.

Keywords: 1-Butanol, 2-Butanol, density, excess molar volume, glycerol, partial molar property, thermal isobaric expansivities

Procedia PDF Downloads 190