Search results for: temperature and humidity sensor (PTH)
6228 The Agroclimatic Atlas of Croatia for the Periods 1981-2010 and 1991-2020
Authors: Višnjica Vučetić, Mislav Anić, Jelena Bašić, Petra Sviličić, Ivana Tomašević
Abstract:
The Agroclimatic Atlas of Croatia (Atlas) for the periods 1981–2010 and 1991–2020 is monograph of six chapters in digital form. Detailed descriptions of particular agroclimatological data are given in separate chapters as follows: agroclimatic indices based on air temperature (degree days, Huglin heliothermal index), soil temperature, water balance components (precipitation, potential evapotranspiration, actual evapotranspiration, soil moisture content, runoff, recharge and soil moisture loss) and fire weather indices. The last chapter is a description of the digital methods for the spatial interpolations (R and GIS). The Atlas comprises textual description of the relevant climate characteristic, maps of the spatial distribution of climatological elements at 109 stations (26 stations for soil temperature) and tables of the 30-year mean monthly, seasonal and annual values of climatological parameters at 24 stations. The Atlas was published in 2021, on the seventieth anniversary of the agrometeorology development at the Meteorological and Hydrological Service of Croatia. It is intended to support improvement of sustainable system of agricultural production and forest protection from fire and as a rich source of information for agronomic and forestry experts, but also for the decision-making bodies to use it for the development of strategic plans.Keywords: agrometeorology, agroclimatic indices, soil temperature, water balance components, fire weather index, meteorological and hydrological service of Croatia
Procedia PDF Downloads 1276227 Similarity Solutions of Nonlinear Stretched Biomagnetic Flow and Heat Transfer with Signum Function and Temperature Power Law Geometries
Authors: M. G. Murtaza, E. E. Tzirtzilakis, M. Ferdows
Abstract:
Biomagnetic fluid dynamics is an interdisciplinary field comprising engineering, medicine, and biology. Bio fluid dynamics is directed towards finding and developing the solutions to some of the human body related diseases and disorders. This article describes the flow and heat transfer of two dimensional, steady, laminar, viscous and incompressible biomagnetic fluid over a non-linear stretching sheet in the presence of magnetic dipole. Our model is consistent with blood fluid namely biomagnetic fluid dynamics (BFD). This model based on the principles of ferrohydrodynamic (FHD). The temperature at the stretching surface is assumed to follow a power law variation, and stretching velocity is assumed to have a nonlinear form with signum function or sign function. The governing boundary layer equations with boundary conditions are simplified to couple higher order equations using usual transformations. Numerical solutions for the governing momentum and energy equations are obtained by efficient numerical techniques based on the common finite difference method with central differencing, on a tridiagonal matrix manipulation and on an iterative procedure. Computations are performed for a wide range of the governing parameters such as magnetic field parameter, power law exponent temperature parameter, and other involved parameters and the effect of these parameters on the velocity and temperature field is presented. It is observed that for different values of the magnetic parameter, the velocity distribution decreases while temperature distribution increases. Besides, the finite difference solutions results for skin-friction coefficient and rate of heat transfer are discussed. This study will have an important bearing on a high targeting efficiency, a high magnetic field is required in the targeted body compartment.Keywords: biomagnetic fluid, FHD, MHD, nonlinear stretching sheet
Procedia PDF Downloads 1616226 Computational Fluid Dynamics Simulations of Thermal and Flow Fields inside a Desktop Personal Computer Cabin
Authors: Mohammad Salehi, Mohammad Erfan Doraki
Abstract:
In this paper, airflow analysis inside a desktop computer case is performed by simulating computational fluid dynamics. The purpose is to investigate the cooling process of the central processing unit (CPU) with thermal capacities of 80 and 130 watts. The airflow inside the computer enclosure, selected from the microATX model, consists of the main components of heat production such as CPU, hard disk drive, CD drive, floppy drive, memory card and power supply unit; According to the amount of thermal power produced by the CPU with 80 and 130 watts of power, two different geometries have been used for a direct and radial heat sink. First, the independence of the computational mesh and the validation of the solution were performed, and after ensuring the correctness of the numerical solution, the results of the solution were analyzed. The simulation results showed that changes in CPU temperature and other components linearly increased with increasing CPU heat output. Also, the ambient air temperature has a significant effect on the maximum processor temperature.Keywords: computational fluid dynamics, CPU cooling, computer case simulation, heat sink
Procedia PDF Downloads 1226225 An Inverse Heat Transfer Algorithm for Predicting the Thermal Properties of Tumors during Cryosurgery
Authors: Mohamed Hafid, Marcel Lacroix
Abstract:
This study aimed at developing an inverse heat transfer approach for predicting the time-varying freezing front and the temperature distribution of tumors during cryosurgery. Using a temperature probe pressed against the layer of tumor, the inverse approach is able to predict simultaneously the metabolic heat generation and the blood perfusion rate of the tumor. Once these parameters are predicted, the temperature-field and time-varying freezing fronts are determined with the direct model. The direct model rests on one-dimensional Pennes bioheat equation. The phase change problem is handled with the enthalpy method. The Levenberg-Marquardt Method (LMM) combined to the Broyden Method (BM) is used to solve the inverse model. The effect (a) of the thermal properties of the diseased tissues; (b) of the initial guesses for the unknown thermal properties; (c) of the data capture frequency; and (d) of the noise on the recorded temperatures is examined. It is shown that the proposed inverse approach remains accurate for all the cases investigated.Keywords: cryosurgery, inverse heat transfer, Levenberg-Marquardt method, thermal properties, Pennes model, enthalpy method
Procedia PDF Downloads 2006224 Using Geo-Statistical Techniques and Machine Learning Algorithms to Model the Spatiotemporal Heterogeneity of Land Surface Temperature and its Relationship with Land Use Land Cover
Authors: Javed Mallick
Abstract:
In metropolitan areas, rapid changes in land use and land cover (LULC) have ecological and environmental consequences. Saudi Arabia's cities have experienced tremendous urban growth since the 1990s, resulting in urban heat islands, groundwater depletion, air pollution, loss of ecosystem services, and so on. From 1990 to 2020, this study examines the variance and heterogeneity in land surface temperature (LST) caused by LULC changes in Abha-Khamis Mushyet, Saudi Arabia. LULC was mapped using the support vector machine (SVM). The mono-window algorithm was used to calculate the land surface temperature (LST). To identify LST clusters, the local indicator of spatial associations (LISA) model was applied to spatiotemporal LST maps. In addition, the parallel coordinate (PCP) method was used to investigate the relationship between LST clusters and urban biophysical variables as a proxy for LULC. According to LULC maps, urban areas increased by more than 330% between 1990 and 2018. Between 1990 and 2018, built-up areas had an 83.6% transitional probability. Furthermore, between 1990 and 2020, vegetation and agricultural land were converted into built-up areas at a rate of 17.9% and 21.8%, respectively. Uneven LULC changes in built-up areas result in more LST hotspots. LST hotspots were associated with high NDBI but not NDWI or NDVI. This study could assist policymakers in developing mitigation strategies for urban heat islandsKeywords: land use land cover mapping, land surface temperature, support vector machine, LISA model, parallel coordinate plot
Procedia PDF Downloads 786223 Polygeneration Solar Thermal System
Authors: S. K. Deb, B. C. Sarma
Abstract:
The concentrating solar thermal devices using low cost thin metallic reflector sheet of moderate reflectance can generate heat both at higher temperature for the receiver at it’s focus and at moderate temperature through direct solar irradiative heat absorption by the reflector sheet itself. Investigation on well insulated rear surface of the concentrator with glass covers at it’s aperture plane for waste heat recovery against the conventional radiative, convective & conductive heat losses for a bench model with a thermal analysis is the prime motivation of this study along with an effort to popularize a compact solar thermal polygeneration system.Keywords: concentrator, polygeneration, aperture, renewable energy, exergy, solar energy
Procedia PDF Downloads 5286222 Stagnation Point Flow Over a Stretching Cylinder with Variable Thermal Conductivity and Slip Conditions
Authors: M. Y. Malik, Farzana Khan
Abstract:
In this article, we discuss the behavior of viscous fluid near stagnation point over a stretching cylinder with variable thermal conductivity. The effects of slip conditions are also encountered. Thermal conductivity is considered as a linear function of temperature. By using homotopy analysis method and Fehlberg method we compare the graphical results for both momentum and energy equations. The effect of different parameters on velocity and temperature fields are shown graphically.Keywords: slip conditions, stretching cylinder, heat generation/absorption, stagnation point flow, variable thermal conductivity
Procedia PDF Downloads 4236221 Numerical Studies on the Performance of the Finned-Tube Heat Exchanger
Authors: S. P. Praveen Kumar, Bong-Su Sin, Kwon-Hee Lee
Abstract:
Finned-tube heat exchangers are predominantly used in space conditioning systems, as well as other applications requiring heat exchange between two fluids. The design of finned-tube heat exchangers requires the selection of over a dozen design parameters by the designer such as tube pitch, tube diameter, tube thickness, etc. Finned-tube heat exchangers are common devices; however, their performance characteristics are complicated. In this paper, numerical studies have been carried out to analyze the performances of finned tube heat exchanger (without fins considered for experimental purpose) by predicting the characteristics of temperature difference and pressure drop. In this study, a design considering 5 design variables, maximizing the temperature difference and minimizing the pressure drop was suggested by applying DOE. In this process, L18 orthogonal array was adopted. Parametric analytical studies have been carried out using Analysis of Variance (ANOVA) to determine the relative importance of each variable with respect to the temperature difference and the pressure drop. Following the results, the final design was suggested by predicting the optimum design therefore confirming the optimized condition.Keywords: heat exchanger, fluid analysis, heat transfer, design of experiment, analysis of variance
Procedia PDF Downloads 4466220 Modeling and Analysis the Effects of Temperature and Pressure on the Gas-Crossover in Polymer Electrolyte Membrane Electrolyzer
Authors: Abdul Hadi Bin Abdol Rahim, Alhassan Salami Tijani
Abstract:
Hydrogen produced by means of polymer electrolyte membrane electrolyzer (PEME) is one of the most promising methods due to clean and renewable energy source. In the process, some energy loss due to mass transfer through a PEM is caused by diffusion, electro-osmotic drag, and the pressure difference between the cathode channel and anode channel. In PEME water molecules and ionic particles transferred between the electrodes from anode to cathode, Extensive mixing of the hydrogen and oxygen at anode channel due to gases cross-over must be avoided. In recent times the consciousness of safety issue in high pressure PEME where the oxygen mix with hydrogen at anode channel could create, explosive conditions have generated a lot of concern. In this paper, the steady state and simulation analysis of gases crossover in PEME on the temperature and pressure effect are presented. The simulations have been analysis in MATLAB based on the well-known Fick’s Law of molecular diffusion. The simulation results indicated that as temperature increases, there is a significant decrease in operating voltage.Keywords: diffusion, gases crosover, steady state, Fick’s law
Procedia PDF Downloads 3306219 Effect of Fire on Structural Behavior of Normal and High Strength Concrete Beams
Authors: Alaa I. Arafa, Hemdan O. A. Said. Marwa A. M. Ali
Abstract:
This paper investigates and evaluates experimentally the structural behavior of high strength concrete (HSC) beams under fire and compares it with that of Normal strength concrete (NSC) beams. The main investigated parameters are: concrete compressive strength (300 or 600 kg/cm2); the concrete cover thickness (3 or 5 cm); the degree of temperature (room temperature or 600 oC); the type of cooling (air or water); and the fire exposure time (3 or 5 hours). Test results showed that the concrete compressive strength decreases significantly as the exposure time to fire increases.Keywords: experimental, fire, high strength concrete beams, monotonic loading
Procedia PDF Downloads 4026218 RFID Logistic Management with Cold Chain Monitoring: Cold Store Case Study
Authors: Mira Trebar
Abstract:
Logistics processes of perishable food in the supply chain include the distribution activities and the real time temperature monitoring to fulfil the cold chain requirements. The paper presents the use of RFID (Radio Frequency Identification) technology as an identification tool of receiving and shipping activities in the cold store. At the same time, the use of RFID data loggers with temperature sensors is presented to observe and store the temperatures for the purpose of analyzing the processes and having the history data available for traceability purposes and efficient recall management.Keywords: logistics, warehouse, RFID device, cold chain
Procedia PDF Downloads 6316217 Exfoliation of Functionalized High Structural Integrity Graphene Nanoplatelets at Extremely Low Temperature
Authors: Mohannad N. H. Al-Malichi
Abstract:
Because of its exceptional properties, graphene has become the most promising nanomaterial for the development of a new generation of advanced materials from battery electrodes to structural composites. However, current methods to meet requirements for the mass production of high-quality graphene are limited by harsh oxidation, high temperatures, and tedious processing steps. To extend the scope of the bulk production of graphene, herein, a facile, reproducible and cost-effective approach has been developed. This involved heating a specific mixture of chemical materials at an extremely low temperature (70 C) for a short period (7 minutes) to exfoliate functionalized graphene platelets with high structural integrity. The obtained graphene platelets have an average thickness of 3.86±0.71 nm and a lateral size less than ~2 µm with a low defect intensity ID/IG ~0.06. The thin film (~2 µm thick) exhibited a low surface resistance of ~0.63 Ω/sq⁻¹, confirming its high electrical conductivity. Additionally, these nanoplatelets were decorated with polar functional groups (epoxy and carboxyl groups), thus have the potential to toughen and provide multifunctional polymer nanocomposites. Moreover, such a simple method can be further exploited for the novel exfoliation of other layered two-dimensional materials such as MXenes.Keywords: functionalized graphene nanoplatelets, high structural integrity graphene, low temperature exfoliation of graphene, functional graphene platelets
Procedia PDF Downloads 1206216 Optimization of Reaction Parameters' Influences on Production of Bio-Oil from Fast Pyrolysis of Oil Palm Empty Fruit Bunch Biomass in a Fluidized Bed Reactor
Authors: Chayanoot Sangwichien, Taweesak Reungpeerakul, Kyaw Thu
Abstract:
Oil palm mills in Southern Thailand produced a large amount of biomass solid wastes. Lignocellulose biomass is the main source for production of biofuel which can be combined or used as an alternative to fossil fuels. Biomass composed of three main constituents of cellulose, hemicellulose, and lignin. Thermochemical conversion process applied to produce biofuel from biomass. Pyrolysis of biomass is the best way to thermochemical conversion of biomass into pyrolytic products (bio-oil, gas, and char). Operating parameters play an important role to optimize the product yields from fast pyrolysis of biomass. This present work concerns with the modeling of reaction kinetics parameters for fast pyrolysis of empty fruit bunch in the fluidized bed reactor. A global kinetic model used to predict the product yields from fast pyrolysis of empty fruit bunch. The reaction temperature and vapor residence time parameters are mainly affected by product yields of EFB pyrolysis. The reaction temperature and vapor residence time parameters effects on empty fruit bunch pyrolysis are considered at the reaction temperature in the range of 450-500˚C and at a vapor residence time of 2 s, respectively. The optimum simulated bio-oil yield of 53 wt.% obtained at the reaction temperature and vapor residence time of 450˚C and 2 s, 500˚C and 1 s, respectively. The simulated data are in good agreement with the reported experimental data. These simulated data can be applied to the performance of experiment work for the fast pyrolysis of biomass.Keywords: kinetics, empty fruit bunch, fast pyrolysis, modeling
Procedia PDF Downloads 2146215 The Effects of Anapana Meditation Training Program Monitored by Skin Conductance and Temperature (SC/ST) Biofeedback on Stress in Bachelor’s Degree Students
Authors: Ormanee Patarathipakorn
Abstract:
Background: Stress was the major psychological problem that affecting to physical and mental health among undergraduate students. Aim of study was to determine the effective of meditation training program (MTP) for stress reduction measured by biofeedback (BB) machine. Material and Methods: This was quasi-experimental study conducted in Faculty of Dentistry, Thammasat University, Thailand. Study period was between August and December 2023. Participants were the first-year Dentistry students. MTP was concentration meditation (Anapana meditation). Stress measurement was evaluated by using Thai version perceived stress scale (T-PSS-10) was performed at one week before study, 14 and 18 weeks. Stress evaluation by biofeedback machine (skin conductance: SC and skin temperature: ST) were performed at one week before study, 4, 8, 14 and 18 weeks. Data from T-PSS-10 and SC/ST biofeedback were collected and analyzed. Results: A total of 28 subjects were recruited. The mean age of participant was 18.4 years old. Two-thirds (19/28) was female. Stress reduction from MTP was detected since 4 and 8 weeks by STBB and SCBB, respectively. T-PSS 10 scores before MTP, 14 and 18 weeks were 17.7± 5.4, 9.8 ± 3.1 and 8.4 ± 3.1 with statistical significance. Conclusion: Meditation training program could reduce stress and measured by skin conductance and temperature biofeedback.Keywords: stress, meditation, biofeedback, student
Procedia PDF Downloads 376214 Optimization of Oxygen Plant Parameters Simulating with MATLAB
Authors: B. J. Sonani, J. K. Ratnadhariya, Srinivas Palanki
Abstract:
Cryogenic engineering is the fast growing branch of the modern technology. There are various applications of the cryogenic engineering such as liquefaction in gas industries, metal industries, medical science, space technology, and transportation. The low-temperature technology developed superconducting materials which lead to reduce the friction and wear in various components of the systems. The liquid oxygen, hydrogen and helium play vital role in space application. The liquefaction process is produced very low temperature liquid for various application in research and modern application. The air liquefaction system for oxygen plants in gas industries is based on the Claude cycle. The effect of process parameters on the overall system is difficult to be analysed by manual calculations, and this provides the motivation to use process simulators for understanding the steady state and dynamic behaviour of such systems. The parametric study of this system via MATLAB simulations provide useful guidelines for preliminary design of air liquefaction system based on the Claude cycle. Every organization is always trying for reduce the cost and using the optimum performance of the plant for the staying in the competitive market.Keywords: cryogenic, liquefaction, low -temperature, oxygen, claude cycle, optimization, MATLAB
Procedia PDF Downloads 3226213 Production of Size-Selected Tin Nanoclusters for Device Applications
Authors: Ahmad I. Ayesh
Abstract:
This work reports on the fabrication of tin nanoclusters by sputtering and inert-gas condensation inside an ultra-high vacuum compatible system. This technique allows to fine tune the size and yield of nanoclusters by controlling the nanocluster source parameters. The produced nanoclusters are deposited on SiO2/Si substrate with pre-formed electrical electrodes to produce a nanocluster device. Those devices can be potentially used for gas sensor applications.Keywords: tin, nanoclusters, inert-gas condensation, nanotechnology
Procedia PDF Downloads 3666212 Induced Bone Tissue Temperature in Drilling Procedures: A Comparative Laboratory Study with and without Lubrication
Authors: L. Roseiro, C. Veiga, V. Maranha, A. Neto, N. Laraqi, A. Baïri, N. Alilat
Abstract:
In orthopedic surgery there are various situations in which the surgeon needs to implement methods of cutting and drilling the bone. With this type of procedure the generated friction leads to a localized increase in temperature, which may lead to the bone necrosis. Recognizing the importance of studying this phenomenon, an experimental evaluation of the temperatures developed during the procedure of drilling bone has been done. Additionally the influence of the use of the procedure with / without additional lubrication during drilling of bone has also been done. The obtained results are presented and discussed and suggests an advantage in using additional lubrication as a way to minimize the appearance of bone tissue necrosis during bone drilling procedures.Keywords: bone necrosis, bone drilling, thermography, surgery
Procedia PDF Downloads 5976211 Thermodynamic Analysis and Experimental Study of Agricultural Waste Plasma Processing
Authors: V. E. Messerle, A. B. Ustimenko, O. A. Lavrichshev
Abstract:
A large amount of manure and its irrational use negatively affect the environment. As compared with biomass fermentation, plasma processing of manure enhances makes it possible to intensify the process of obtaining fuel gas, which consists mainly of synthesis gas (CO + H₂), and increase plant productivity by 150–200 times. This is achieved due to the high temperature in the plasma reactor and a multiple reduction in waste processing time. This paper examines the plasma processing of biomass using the example of dried mixed animal manure (dung with a moisture content of 30%). Characteristic composition of dung, wt.%: Н₂О – 30, С – 29.07, Н – 4.06, О – 32.08, S – 0.26, N – 1.22, P₂O₅ – 0.61, K₂O – 1.47, СаО – 0.86, MgO – 0.37. The thermodynamic code TERRA was used to numerically analyze dung plasma gasification and pyrolysis. Plasma gasification and pyrolysis of dung were analyzed in the temperature range 300–3,000 K and pressure 0.1 MPa for the following thermodynamic systems: 100% dung + 25% air (plasma gasification) and 100% dung + 25% nitrogen (plasma pyrolysis). Calculations were conducted to determine the composition of the gas phase, the degree of carbon gasification, and the specific energy consumption of the processes. At an optimum temperature of 1,500 K, which provides both complete gasification of dung carbon and the maximum yield of combustible components (99.4 vol.% during dung gasification and 99.5 vol.% during pyrolysis), and decomposition of toxic compounds of furan, dioxin, and benz(a)pyrene, the following composition of combustible gas was obtained, vol.%: СО – 29.6, Н₂ – 35.6, СО₂ – 5.7, N₂ – 10.6, H₂O – 17.9 (gasification) and СО – 30.2, Н₂ – 38.3, СО₂ – 4.1, N₂ – 13.3, H₂O – 13.6 (pyrolysis). The specific energy consumption of gasification and pyrolysis of dung at 1,500 K is 1.28 and 1.33 kWh/kg, respectively. An installation with a DC plasma torch with a rated power of 100 kW and a plasma reactor with a dung capacity of 50 kg/h was used for dung processing experiments. The dung was gasified in an air (or nitrogen during pyrolysis) plasma jet, which provided a mass-average temperature in the reactor volume of at least 1,600 K. The organic part of the dung was gasified, and the inorganic part of the waste was melted. For pyrolysis and gasification of dung, the specific energy consumption was 1.5 kWh/kg and 1.4 kWh/kg, respectively. The maximum temperature in the reactor reached 1,887 K. At the outlet of the reactor, a gas of the following composition was obtained, vol.%: СO – 25.9, H₂ – 32.9, СO₂ – 3.5, N₂ – 37.3 (pyrolysis in nitrogen plasma); СO – 32.6, H₂ – 24.1, СO₂ – 5.7, N₂ – 35.8 (air plasma gasification). The specific heat of combustion of the combustible gas formed during pyrolysis and plasma-air gasification of agricultural waste is 10,500 and 10,340 kJ/kg, respectively. Comparison of the integral indicators of dung plasma processing showed satisfactory agreement between the calculation and experiment.Keywords: agricultural waste, experiment, plasma gasification, thermodynamic calculation
Procedia PDF Downloads 406210 Electronics Thermal Management Driven Design of an IP65-Rated Motor Inverter
Authors: Sachin Kamble, Raghothama Anekal, Shivakumar Bhavi
Abstract:
Thermal management of electronic components packaged inside an IP65 rated enclosure is of prime importance in industrial applications. Electrical enclosure protects the multiple board configurations such as inverter, power, controller board components, busbars, and various power dissipating components from harsh environments. Industrial environments often experience relatively warm ambient conditions, and the electronic components housed in the enclosure dissipate heat, due to which the enclosures and the components require thermal management as well as reduction of internal ambient temperatures. Design of Experiments based thermal simulation approach with MOSFET arrangement, Heat sink design, Enclosure Volume, Copper and Aluminum Spreader, Power density, and Printed Circuit Board (PCB) type were considered to optimize air temperature inside the IP65 enclosure to ensure conducive operating temperature for controller board and electronic components through the different modes of heat transfer viz. conduction, natural convection and radiation using Ansys ICEPAK. MOSFET’s with the parallel arrangement, IP65 enclosure molded heat sink with rectangular fins on both enclosures, specific enclosure volume to satisfy the power density, Copper spreader to conduct heat to the enclosure, optimized power density value and selecting Aluminum clad PCB which improves the heat transfer were the contributors towards achieving a conducive operating temperature inside the IP-65 rated Motor Inverter enclosure. A reduction of 52 ℃ was achieved in internal ambient temperature inside the IP65 enclosure between baseline and final design parameters, which met the operative temperature requirements of the electronic components inside the IP-65 rated Motor Inverter.Keywords: Ansys ICEPAK, aluminium clad PCB, IP 65 enclosure, motor inverter, thermal simulation
Procedia PDF Downloads 1226209 Common Ragweed (Ambrosia artemisiifolia): Changing Proteomic Patterns of Pollen under Elevated NO₂ Concentration and/or Future Rising Temperature Scenario
Authors: Xiaojie Cheng, Ulrike Frank, Feng Zhao, Karin Pritsch
Abstract:
Ragweed (Ambrosia artemisiifolia) is an invasive weed that has become an increasing global problem. In addition to affecting land use and crop yields, ragweed has a strong impact on human health as it produces highly allergenic pollen. Global warming will result in an earlier and longer pollen season enhanced pollen production and an increase in pollen allergenicity with a negative effect on atopic patients. The aims of this study were to investigate the effects of increasing temperature, the future climate scenario in the Munich area, southern Germany, predicted on the basis of RCP8.5 until the end of 2050s, or/and NO₂, a major air pollutant, 1) on the vegetative and reproductive characteristics of ragweed plants, 2) on the total allergenicity of ragweed pollen, 3) on the total pollen proteomic patterns. Ragweed plants were cultivated for the whole plant vegetation period under controlled conditions either under ambient climate conditions or 4°C higher temperatures with or without additional NO₂. Higher temperature resulted in bigger plant sizes, longer male inflorescences, and longer pollen seasons. The total allergenic potential of the pollen was accessed by dot blot using serum from ragweed pollen sensitized patients. The comparative immunoblot analysis revealed that the in vivo fumigation of ragweed plants with elevated NO₂-concentrations significantly increased the allergenic potential of the pollen, and in combination with increased temperature, the allergenic potential was even higher. On the other hand, label-free protein quantification by liquid chromatography-tandem mass spectrometry (LC-MS/MS) was performed. The results showed that more proteins were significantly up- and down-regulated under higher temperatures with/without elevated NO₂ conditions. Most of the highly expressed proteins were participating intensively in the metabolic process, the cellular process, and the stress defense process. These findings suggest that rising temperature and elevated NO₂ are important environmental factors for higher abiotic stress activities, catalytic activities, and thus higher allergenic potential observed in pollen proteins.Keywords: climate change, NO₂, pollen proteome, ragweed, temperature
Procedia PDF Downloads 1916208 Densities and Viscosities of Binary Mixture Containing Diethylamine and 2-Alkanol
Authors: Elham jassemi Zargani, Mohammad almasi
Abstract:
Densities and viscosities for binary mixtures of diethylamine + 2 Alkanol (2 propanol up to 2 pentanol) were measured over the entire composition range and temperature interval of 293.15 to 323.15 K. Excess molar volumes V_m^E and viscosity deviations Δη were calculated and correlated by the Redlich−Kister type function to derive the coefficients and estimate the standard error. For mixtures of diethylamine with used 2-alkanols, V_m^E and Δη are negative over the entire range of mole fraction. The observed variations of these parameters, with alkanols chain length and temperature, are discussed in terms of the inter-molecular interactions between the unlike molecules of the binary mixtures.Keywords: densities, viscosities, diethylamine, 2-alkanol, Redlich-Kister
Procedia PDF Downloads 3886207 Determination of Alkali Treatment Conditions Effects That Influence the Variability of Kenaf Fiber Mean Cross-Sectional Area
Authors: Mohd Yussni Hashim, Mohd Nazrul Roslan, Shahruddin Mahzan Mohd Zin, Saparudin Ariffin
Abstract:
Fiber cross-sectional area value is a crucial factor in determining the strength properties of natural fiber. Furthermore, unlike synthetic fiber, a diameter and cross-sectional area of natural fiber has a large variation along and between the fibers. This study aims to determine the main and interaction effects of alkali treatment conditions that influence kenaf bast fiber mean cross-sectional area. Three alkali treatment conditions at two different levels were selected. The conditions setting were alkali concentrations at two and ten w/v %; fiber immersed temperature at room temperature and 1000C; and fiber immersed duration for 30 and 480 minute. Untreated kenaf fiber was used as a control unit. Kenaf bast fiber bundle mounting tab was prepared according to ASTM C1557-03. The cross-sectional area was measured using a Leica video analyzer. The study result showed that kenaf fiber bundle mean cross-sectional area was reduced 6.77% to 29.88% after alkali treatment. From the analysis of variance, it shows that the interaction of alkali concentration and immersed time has a higher magnitude at 0.1619 compared to alkali concentration and immersed temperature interaction that was 0.0896. For the main effect, alkali concentration factor contributes to the higher magnitude at 0.1372 which indicated the decrease pattern of variability when the level changed from lower to the higher level. Then, it was followed by immersed temperature at 0.1261 and immersed time at 0.0696 magnitudes.Keywords: natural fiber, kenaf bast fiber bundles, alkali treatment, cross-sectional area
Procedia PDF Downloads 4276206 Unsteady and Steady State in Natural Convection
Authors: Syukri Himran, Erwin Eka Putra, Nanang Roni
Abstract:
This study explains the natural convection of viscous fluid flowing on semi-infinite vertical plate. A set of the governing equations describing the continuity, momentum and energy, have been reduced to dimensionless forms by introducing the references variables. To solve the problems, the equations are formulated by explicit finite-difference in time dependent form and computations are performed by Fortran program. The results describe velocity, temperature profiles both in transient and steady state conditions. An approximate value of heat transfer coefficient and the effects of Pr on convection flow are also presented.Keywords: natural convection, vertical plate, velocity and temperature profiles, steady and unsteady
Procedia PDF Downloads 4896205 Influences of Plunge Speed on Axial Force and Temperature of Friction Stir Spot Welding in Thin Aluminum A1100
Authors: Suwarsono, Ario S. Baskoro, Gandjar Kiswanto, Budiono
Abstract:
Friction Stir Welding (FSW) is a relatively new technique for joining metal. In some cases on aluminum joining, FSW gives better results compared with the arc welding processes, including the quality of welds and produces less distortion.FSW welding process for a light structure and thin materials requires small forces as possible, to avoid structure deflection. The joining process on FSW occurs because of melting temperature and compressive forces, the temperature generation of caused by material deformation and friction between the cutting tool and material. In this research, High speed rotation of spindle was expected to reduce the force required for deformation. The welding material was Aluminum A1100, with thickness of 0.4 mm. The tool was made of HSS material which was shaped by micro grinding process. Tool shoulder diameter is 4 mm, and the length of pin was 0.6 mm (with pin diameter= 1.5 mm). The parameters that varied were the plunge speed (2 mm/min, 3 mm/min, 4 mm/min). The tool speed is fixed at 33,000 rpm. Responses of FSSW parameters to analyze were Axial Force (Z-Force), Temperature and the Shear Strength of welds. Research found the optimum µFSSW parameters, it can be concluded that the most important parameters in the μFSSW process was plunge speed. lowest plunge speed (2 mm / min) causing the lowest axial force (110.40 Newton). The increases of plunge speed will increase the axial force (maximum Z-Farce= 236.03 Newton), and decrease the shear strength of welds.Keywords: friction stir spot welding, aluminum A1100, plunge speed, axial force, shear strength
Procedia PDF Downloads 3106204 Design and Optimization of an Electromagnetic Vibration Energy Converter
Authors: Slim Naifar, Sonia Bradai, Christian Viehweger, Olfa Kanoun
Abstract:
Vibration provides an interesting source of energy since it is available in many indoor and outdoor applications. Nevertheless, in order to have an efficient design of the harvesting system, vibration converters have to satisfy some criterion in terms of robustness, compactness and energy outcome. In this work, an electromagnetic converter based on mechanical spring principle is proposed. The designed harvester is formed by a coil oscillating around ten ring magnets using a mechanical spring. The proposed design overcomes one of the main limitation of the moving coil by avoiding the contact between the coil wires with the mechanical spring which leads to a better robustness for the converter. In addition, the whole system can be implemented in a cavity of a screw. Different parameters in the harvester were investigated by finite element method including the magnet size, the coil winding number and diameter and the excitation frequency and amplitude. A prototype was realized and tested. Experiments were performed for 0.5 g to 1 g acceleration. The used experimental setup consists of an electrodynamic shaker as an external artificial vibration source controlled by a laser sensor to measure the applied displacement and frequency excitation. Together with the laser sensor, a controller unit, and an amplifier, the shaker is operated in a closed loop which allows controlling the vibration amplitude. The resonance frequency of the proposed designs is in the range of 24 Hz. Results indicate that the harvester can generate 612 mV and 1150 mV maximum open circuit peak to peak voltage at resonance for 0.5 g and 1 g acceleration respectively which correspond to 4.75 mW and 1.34 mW output power. Tuning the frequency to other values is also possible due to the possibility to add mass to the moving part of the or by changing the mechanical spring stiffness.Keywords: energy harvesting, electromagnetic principle, vibration converter, moving coil
Procedia PDF Downloads 2986203 High Temperature Oxidation Resistance of NiCrAl Bond Coat Produced by Spark Plasma Sintering as Thermal Barrier Coatings
Authors: Folorunso Omoniyi, Peter Olubambi, Rotimi Sadiku
Abstract:
Thermal barrier coating (TBC) system is used in both aero engines and other gas turbines to offer oxidation protection to superalloy substrate component. In the present work, it shows the ability of a new fabrication technique to develop rapidly new coating composition and microstructure. The compact powders were prepared by Powder Metallurgy method involving powder mixing and the bond coat was synthesized through the application of Spark Plasma Sintering (SPS) at 10500C to produce a fully dense (97%) NiCrAl bulk samples. The influence of sintering temperature on the hardness of NiCrAl, done by Micro Vickers hardness tester, was investigated. And Oxidation test was carried out at 1100oC for 20h, 40h, and 100h. The resulting coat was characterized with optical microscopy, scanning electron microscopy (SEM), energy dispersive x-ray analysis (EDAX) and x-ray diffraction (XRD). Micro XRD analysis after the oxidation test revealed the formation of protective oxides and non-protective oxides.Keywords: high-temperature oxidation, powder metallurgy, spark plasma sintering, thermal barrier coating
Procedia PDF Downloads 5076202 Combustion Analysis of Suspended Sodium Droplet
Authors: T. Watanabe
Abstract:
Combustion analysis of suspended sodium droplet is performed by solving numerically the Navier-Stokes equations and the energy conservation equations. The combustion model consists of the pre-ignition and post-ignition models. The reaction rate for the pre-ignition model is based on the chemical kinetics, while that for the post-ignition model is based on the mass transfer rate of oxygen. The calculated droplet temperature is shown to be in good agreement with the existing experimental data. The temperature field in and around the droplet is obtained as well as the droplet shape variation, and the present numerical model is confirmed to be effective for the combustion analysis.Keywords: analysis, combustion, droplet, sodium
Procedia PDF Downloads 2116201 Thermodynamic Performance of a Low-Cost House Coated with Transparent Infrared Reflective Paint
Authors: Ochuko K. Overen, Edson L. Meyer
Abstract:
Uncontrolled heat transfer between the inner and outer space of low-cost housings through the thermal envelope result in indoor thermal discomfort. As a result, an excessive amount of energy is consumed for space heating and cooling. Thermo-optical properties are the ability of paints to reduce the rate of heat transfer through the thermal envelope. The aim of this study is to analyze the thermal performance of a low-cost house with its walls inner surface coated with transparent infrared reflective paint. The thermo-optical properties of the paint were analyzed using Scanning Electron Microscopy/ Energy Dispersive X-ray spectroscopy (SEM/EDX), Fourier Transform Infra-Red (FTIR) and thermal photographic technique. Meteorological indoor and ambient parameters such as; air temperature, relative humidity, solar radiation, wind speed and direction of a low-cost house in Golf-course settlement, South Africa were monitored. The monitoring period covers both winter and summer period before and after coating. The thermal performance of the coated walls was evaluated using time lag and decrement factor. The SEM image shows that the coat is transparent to light. The presence of Al as Al2O and other elements were revealed by the EDX spectrum. Before coating, the average decrement factor of the walls in summer was found to be 0.773 with a corresponding time lag of 1.3 hours. In winter, the average decrement factor and corresponding time lag were 0.467 and 1.6 hours, respectively. After coating, the average decrement factor and corresponding time lag were 0.533 and 2.3 hour, respectively in summer. In winter, an average decrement factor of 1.120 and corresponding time lag of 3 hours was observed. The findings show that the performance of the coats is influenced by the seasons. With a 74% reduction in decrement factor and 1.4 time lag increase in winter, it implies that the coatings have more ability to retain heat within the inner space of the house than preventing heat flow into the house. In conclusion, the results have shown that transparent infrared reflective paint has the ability to reduce the propagation of heat flux through building walls. Hence, it can serve as a remedy to the poor thermal performance of low-cost housings in South Africa.Keywords: energy efficiency, decrement factor, low-cost housing, paints, rural development, thermal comfort, time lag
Procedia PDF Downloads 2836200 Intensification of Heat Transfer in Magnetically Assisted Reactor
Authors: Dawid Sołoducha, Tomasz Borowski, Marian Kordas, Rafał Rakoczy
Abstract:
The magnetic field in the past few years became an important part of many studies. Magnetic field (MF) may be used to affect the process in many ways; for example, it can be used as a factor to stabilize the system. We can use MF to steer the operation, to activate or inhibit the process, or even to affect the vital activity of microorganisms. Using various types of magnetic field generators is always connected with the delivery of some heat to the system. Heat transfer is a very important phenomenon; it can influence the process positively and negatively, so it’s necessary to measure heat stream transferred from the place of generation and prevent negative influence on the operation. The aim of the presented work was to apply various types of magnetic fields and to measure heat transfer phenomena. The results were obtained by continuous measurement at several measuring points with temperature probes. Results were compilated in the form of temperature profiles. The study investigated the undetermined heat transfer in a custom system equipped with a magnetic field generator. Experimental investigations are provided for the explanation of the influence of the various type of magnetic fields on the heat transfer process. The tested processes are described by means of the criteria which defined heat transfer intensification under the action of magnetic field.Keywords: heat transfer, magnetic field, undetermined heat transfer, temperature profile
Procedia PDF Downloads 1966199 Advanced Mouse Cursor Control and Speech Recognition Module
Authors: Prasad Kalagura, B. Veeresh kumar
Abstract:
We constructed an interface system that would allow a similarly paralyzed user to interact with a computer with almost full functional capability. A real-time tracking algorithm is implemented based on adaptive skin detection and motion analysis. The clicking of the mouse is activated by the user's eye blinking through a sensor. The keyboard function is implemented by voice recognition kit.Keywords: embedded ARM7 processor, mouse pointer control, voice recognition
Procedia PDF Downloads 578