Search results for: optical coating
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2367

Search results for: optical coating

237 A Study on ZnO Nanoparticles Properties: An Integration of Rietveld Method and First-Principles Calculation

Authors: Kausar Harun, Ahmad Azmin Mohamad

Abstract:

Zinc oxide (ZnO) has been extensively used in optoelectronic devices, with recent interest as photoanode material in dye-sensitize solar cell. Numerous methods employed to experimentally synthesized ZnO, while some are theoretically-modeled. Both approaches provide information on ZnO properties, but theoretical calculation proved to be more accurate and timely effective. Thus, integration between these two methods is essential to intimately resemble the properties of synthesized ZnO. In this study, experimentally-grown ZnO nanoparticles were prepared by sol-gel storage method with zinc acetate dihydrate and methanol as precursor and solvent. A 1 M sodium hydroxide (NaOH) solution was used as stabilizer. The optimum time to produce ZnO nanoparticles were recorded as 12 hours. Phase and structural analysis showed that single phase ZnO produced with wurtzite hexagonal structure. Further work on quantitative analysis was done via Rietveld-refinement method to obtain structural and crystallite parameter such as lattice dimensions, space group, and atomic coordination. The lattice dimensions were a=b=3.2498Å and c=5.2068Å which were later used as main input in first-principles calculations. By applying density-functional theory (DFT) embedded in CASTEP computer code, the structure of synthesized ZnO was built and optimized using several exchange-correlation functionals. The generalized-gradient approximation functional with Perdew-Burke-Ernzerhof and Hubbard U corrections (GGA-PBE+U) showed the structure with lowest energy and lattice deviations. In this study, emphasize also given to the modification of valence electron energy level to overcome the underestimation in DFT calculation. Both Zn and O valance energy were fixed at Ud=8.3 eV and Up=7.3 eV, respectively. Hence, the following electronic and optical properties of synthesized ZnO were calculated based on GGA-PBE+U functional within ultrasoft-pseudopotential method. In conclusion, the incorporation of Rietveld analysis into first-principles calculation was valid as the resulting properties were comparable with those reported in literature. The time taken to evaluate certain properties via physical testing was then eliminated as the simulation could be done through computational method.

Keywords: density functional theory, first-principles, Rietveld-refinement, ZnO nanoparticles

Procedia PDF Downloads 296
236 Analysis of Structural and Photocatalytical Properties of Anatase, Rutile and Mixed Phase TiO2 Films Deposited by Pulsed-Direct Current and Radio Frequency Magnetron Co-Sputtering

Authors: S. Varnagiris, M. Urbonavicius, S. Tuckute, M. Lelis, K. Bockute

Abstract:

Amongst many water purification techniques, TiO2 photocatalysis is recognized as one of the most promising sustainable methods. It is known that for photocatalytical applications anatase is the most suitable TiO2 phase, however heterojunction of anatase/rutile phases could improve the photocatalytical activity of TiO2 even further. Despite the relative simplicity of TiO2 different synthesis methods lead to the highly dispersed crystal phases and photocatalytic activity of the corresponding samples. Accordingly, suggestions and investigations of various innovative methods of TiO2 synthesis are still needed. In this work structural and photocatalytical properties of TiO2 films deposited by the unconventional method of simultaneous co-sputtering from two magnetrons powered by pulsed-Direct Current (pDC) and Radio Frequency (RF) power sources with negative bias voltage have been studied. More specifically, TiO2 film thickness, microstructure, surface roughness, crystal structure, optical transmittance and photocatalytical properties were investigated by profilometer, scanning electron microscope, atomic force microscope, X-ray diffractometer and UV-Vis spectrophotometer respectively. The proposed unconventional two magnetron co-sputtering based TiO2 film formation method showed very promising results for crystalline TiO2 film formation while keeping process temperatures below 100 °C. XRD analysis revealed that by using proper combination of power source type and bias voltage various TiO2 phases (amorphous, anatase, rutile or their mixture) can be synthesized selectively. Moreover, strong dependency between power source type and surface roughness, as well as between the bias voltage and band gap value of TiO2 films was observed. Interestingly, TiO2 films deposited by two magnetron co-sputtering without bias voltage had one of the highest band gap values between the investigated films but its photocatalytic activity was superior compared to all other samples. It is suggested that this is due to the dominating nanocrystalline anatase phase with various exposed surfaces including photocatalytically the most active {001}.

Keywords: films, magnetron co-sputtering, photocatalysis, TiO₂

Procedia PDF Downloads 104
235 A Comparative Study of the Techno-Economic Performance of the Linear Fresnel Reflector Using Direct and Indirect Steam Generation: A Case Study under High Direct Normal Irradiance

Authors: Ahmed Aljudaya, Derek Ingham, Lin Ma, Kevin Hughes, Mohammed Pourkashanian

Abstract:

Researchers, power companies, and state politicians have given concentrated solar power (CSP) much attention due to its capacity to generate large amounts of electricity whereas overcoming the intermittent nature of solar resources. The Linear Fresnel Reflector (LFR) is a well-known CSP technology type for being inexpensive, having a low land use factor, and suffering from low optical efficiency. The LFR was considered a cost-effective alternative option to the Parabolic Trough Collector (PTC) because of its simplistic design, and this often outweighs its lower efficiency. The LFR has been found to be a promising option for directly producing steam to a thermal cycle in order to generate low-cost electricity, but also it has been shown to be promising for indirect steam generation. The purpose of this important analysis is to compare the annual performance of the Direct Steam Generation (DSG) and Indirect Steam Generation (ISG) of LFR power plants using molten salt and other different Heat Transfer Fluids (HTF) to investigate their technical and economic effects. A 50 MWe solar-only system is examined as a case study for both steam production methods in extreme weather conditions. In addition, a parametric analysis is carried out to determine the optimal solar field size that provides the lowest Levelized Cost of Electricity (LCOE) while achieving the highest technical performance. As a result of optimizing the optimum solar field size, the solar multiple (SM) is found to be between 1.2 – 1.5 in order to achieve as low as 9 Cent/KWh for the direct steam generation of the linear Fresnel reflector. In addition, the power plant is capable of producing around 141 GWh annually and up to 36% of the capacity factor, whereas the ISG produces less energy at a higher cost. The optimization results show that the DSG’s performance overcomes the ISG in producing around 3% more annual energy, 2% lower LCOE, and 28% less capital cost.

Keywords: concentrated solar power, levelized cost of electricity, linear Fresnel reflectors, steam generation

Procedia PDF Downloads 93
234 Optimising Post-Process Heat Treatments of Selective Laser Melting-Produced Ti-6Al-4V Parts to Achieve Superior Mechanical Properties

Authors: Gerrit Ter Haar, Thorsten Becker, Deborah Blaine

Abstract:

The Additive Manufacturing (AM) process of Selective Laser Melting (SLM) has seen an exponential growth in sales and development in the past fifteen years. Whereas the capability of SLM was initially limited to rapid prototyping, progress in research and development (R&D) has allowed SLM to be capable of fully functional parts. This technology is still at a primitive stage and technical knowledge of the vast number of variables influencing final part quality is limited. Ongoing research and development of the sensitive printing process and post processes is of utmost importance in order to qualify SLM parts to meet international standards. Quality concerns in Ti-6Al-4V manufactured through SLM has been identified, which include: high residual stresses, part porosity, low ductility and anisotropic mechanical properties. Whereas significant quality improvements have been made through optimising printing parameters, research indicates as-produced part ductility to be a major limiting factor when compared to its wrought counterpart. This study aims at achieving an in-depth understanding of the underlining links between SLM produced Ti-6Al-4V microstructure and its mechanical properties. Knowledge of microstructural transformation kinetics of Ti-6Al-4V allows for the optimisation of post-process heat treatments thereby achieving the required process route to manufacture high quality SLM produced Ti-6Al-4V parts. Experimental methods used to evaluate the kinematics of microstructural transformation of SLM Ti-6Al-4V are: optical microscopy and electron backscatter diffraction. Results show that a low-temperature heat treatment is capable of transforming the as-produced, martensitic microstructure into a duel-phase microstructure exhibiting both a high strength and improved ductility. Furthermore, isotropy of mechanical properties can be achieved through certain annealing routes. Mechanical properties identical to that of wrought Ti-6Al-4V can, therefore, be achieved through an optimised process route.

Keywords: EBSD analysis, heat treatments, microstructural characterisation, selective laser melting, tensile behaviour, Ti-6Al-4V

Procedia PDF Downloads 399
233 Sexual Dimorphism in the Sensorial Structures of the Antenna of Thygater aethiops (Hymenoptera: Apidae) and Its Relation with Some Corporal Parameters

Authors: Wendy Carolina Gomez Ramirez, Rodulfo Ospina Torres

Abstract:

Thygater aethiops is a species of solitary bee with a neotropical distribution that has been adapted to live in urban environments. This species of bee presents a marked sexual dimorphism since the males have antenna almost as long as their body different from the females that present antenna with smaller size. In this work, placoid sensilla were studied, which are structures that appear in the antenna and are involved in the detection of substances both, for reproduction and for the search of food. The aim of this study was to evaluate the differences between these sensory structures in the different sexes, for which males and females were captured. Later some body measures were taken such as fresh weight with abdomen and without it, since the weight could be modified by the stomach content; other measures were taken as the total antenna length and length of the flagellum and flagelomere. After negative imprints of the antenna were made using nail polish, the imprint was cut with a microblade and mounted onto a microscope slide. The placoid sensilla were visible on the imprint, so they were counted manually on the 100x objective lens of the optical microscope. Initially, the males presented a specific distribution pattern in two types of sensilla: trichoid and placoid, the trichoid were found aligned in the dorsal face of the antenna and the placoid were distributed along the entire antenna; that was different to the females since they did not present a distribution pattern the sensilla were randomly organized. It was obtained that the males, because they have a longer antenna, have a greater number of sensilla in relation to the females. Additionally, it was found that there was no relationship between the weight and the number of sensilla, but there was a positive relationship between the length of the antenna, the length of the flagellum and the number of sensilla. The relationship between the number of sensilla per unit area in each of the sexes was also calculated, which showed that, on average, males have 4.2 ± 0.38 sensilla per unit area and females present 2.2 ± 0.20 and likewise a significant difference between sexes. This dimorphism found may be related to the sexual behavior of the species, since it has been demonstrated that males are more adapted to the perception of substances related to reproduction than to the search of food.

Keywords: antenna, olfactory organ, sensilla, sexual dimorphism, solitary bees

Procedia PDF Downloads 152
232 Atomic Layer Deposition Of Metal Oxide Inverse Opals: A Promising Strategy For Photocatalytic Applications

Authors: Hamsasew Hankebo Lemago, Dóra Hessz, Tamás Igricz, Zoltán Erdélyi, , Imre Miklós Szilágyi

Abstract:

Metal oxide inverse opals are a promising class of photocatalysts with a unique hierarchical structure. Atomic layer deposition (ALD) is a versatile technique for the synthesis of high-precision metal oxide thin films, including inverse opals. In this study, we report the synthesis of TiO₂, ZnO, and Al₂O₃ inverse opal and their composites photocatalysts using thermal or plasma-enhanced ALD. The synthesized photocatalysts were characterized using a variety of techniques, including scanning electron microscopy (SEM)-energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Raman spectroscopy, photoluminescence (PL), ellipsometry, and UV-visible spectroscopy. The results showed that the ALD-synthesized metal oxide inverse opals had a highly ordered structure and a tunable pore size. The PL spectroscopy results showed low recombination rates of photogenerated electron-hole pairs, while the ellipsometry and UV-visible spectroscopy results showed tunable optical properties and band gap energies. The photocatalytic activity of the samples was evaluated by the degradation of methylene blue under visible light irradiation. The results showed that the ALD-synthesized metal oxide inverse opals exhibited high photocatalytic activity, even under visible light irradiation. The composites photocatalysts showed even higher activity than the individual metal oxide inverse opals. The enhanced photocatalytic activity of the composites can be attributed to the synergistic effect between the different metal oxides. For example, Al₂O₃ can act as a charge carrier scavenger, which can reduce the recombination of photogenerated electron-hole pairs. The ALD-synthesized metal oxide inverse opals and their composites are promising photocatalysts for a variety of applications, such as wastewater treatment, air purification, and energy production. The ALD-synthesized metal oxide inverse opals and their composites are promising photocatalysts for a variety of applications, such as wastewater treatment, air purification, and energy production.

Keywords: ALD, metal oxide inverse opals, photocatalysis, composites

Procedia PDF Downloads 60
231 One-Step Synthesis and Characterization of Biodegradable ‘Click-Able’ Polyester Polymer for Biomedical Applications

Authors: Wadha Alqahtani

Abstract:

In recent times, polymers have seen a great surge in interest in the field of medicine, particularly chemotherapeutics. One recent innovation is the conversion of polymeric materials into “polymeric nanoparticles”. These nanoparticles can be designed and modified to encapsulate and transport drugs selectively to cancer cells, minimizing collateral damage to surrounding healthy tissues, and improve patient quality of life. In this study, we have synthesized pseudo-branched polyester polymers from bio-based small molecules, including sorbitol, glutaric acid and a propargylic acid derivative to further modify the polymer to make it “click-able" with an azide-modified target ligand. Melt polymerization technique was used for this polymerization reaction, using lipase enzyme catalyst NOVO 435. This reaction was conducted between 90- 95 °C for 72 hours. The polymer samples were collected in 24-hour increments for characterization and to monitor reaction progress. The resulting polymer was purified with the help of methanol dissolving and filtering with filter paper then characterized via NMR, GPC, FTIR, DSC, TGA and MALDI-TOF. Following characterization, these polymers were converted to a polymeric nanoparticle drug delivery system using solvent diffusion method, wherein DiI optical dye and chemotherapeutic drug Taxol can be encapsulated simultaneously. The efficacy of the nanoparticle’s apoptotic effects were analyzed in-vitro by incubation with prostate cancer (LNCaP) and healthy (CHO) cells. MTT assays and fluorescence microscopy were used to assess the cellular uptake and viability of the cells after 24 hours at 37 °C and 5% CO2 atmosphere. Results of the assays and fluorescence imaging confirmed that the nanoparticles were successful in both selectively targeting and inducing apoptosis in 80% of the LNCaP cells within 24 hours without affecting the viability of the CHO cells. These results show the potential of using biodegradable polymers as a vehicle for receptor-specific drug delivery and a potential alternative for traditional systemic chemotherapy. Detailed experimental results will be discussed in the e-poster.

Keywords: chemotherapeutic drug, click chemistry, nanoparticle, prostat cancer

Procedia PDF Downloads 97
230 Engineering Microstructural Evolution during Arc Wire Directed Energy Deposition of Magnesium Alloy (AZ31)

Authors: Nivatha Elangovan, Lakshman Neelakantan, Murugaiyan Amirthalingam

Abstract:

Magnesium and its alloys are widely used for various lightweight engineering and biomedical applications as they render high strength to low weight ratio and excellent corrosion resistance. These alloys possess good bio-compatibility and similar mechanical properties to natural bone. However, manufacturing magnesium alloy components by conventional formative and subtractive methods is challenging due to their poor castability, oxidation potential, and machinability. Therefore, efforts are made to produce complex-design containing magnesium alloy components by additive manufacturing (AM). Arc-wire directed energy deposition (AW-DED), also known as wire arc additive manufacturing (WAAM), is more attractive to produce large volume components with increased productivity than any other AM technique. In this research work, efforts were made to optimise the deposition parameters to build thick-walled (about 10 mm) AZ31 magnesium alloy components by a gas metal arc (GMA) based AW-DED process. By using controlled dip short-circuiting metal transfer in a GMA process, depositions were carried out without defects and spatter formation. Current and voltage waveforms were suitably modified to achieve stable metal transfer. Moreover, the droplet transfer behaviour was analysed using high-speed image analysis and correlated with arc energy. Optical and scanning electron microscopy analyses were carried out to correlate the influence of deposition parameters with the microstructural evolution during deposition. The investigation reveals that by carefully controlling the current-voltage waveform and droplet transfer behaviour, it is possible to stabilise equiaxed grain microstructures in the deposited AZ31 components. The printed component exhibited an improved mechanical property as equiaxed grains improve the ductility and enhance the toughness. The equiaxed grains in the component improved the corrosion-resistant behaviour of other conventionally manufactured components.

Keywords: arc wire directed energy deposition, AZ31 magnesium alloy, equiaxed grain, corrosion

Procedia PDF Downloads 103
229 Antibacterial Bioactive Glasses in Orthopedic Surgery and Traumatology

Authors: V. Schmidt, L. Janovák, N. Wiegand, B. Patczai, K. Turzó

Abstract:

Large bone defects are not able to heal spontaneously. Bioactive glasses seem to be appropriate (bio)materials for bone reconstruction. Bioactive glasses are osteoconductive and osteoinductive, therefore, play a useful role in bony regeneration and repair. Because of their not optimal mechanical properties (e.g., brittleness, low bending strength, and fracture toughness), their applications are limited. Bioactive glass can be used as a coating material applied on metal surfaces. In this way -when using them as implants- the excellent mechanical properties of metals and the biocompatibility and bioactivity of glasses will be utilized. Furthermore, ion release effects of bioactive glasses regarding osteogenic and angiogenic responses have been shown. Silicate bioactive glasses (45S5 Bioglass) induce the release and exchange of soluble Si, Ca, P, and Na ions on the material surface. This will lead to special cellular responses inducing bone formation, which is favorable in the biointegration of the orthopedic prosthesis. The incorporation of other additional elements in the silicate network such as fluorine, magnesium, iron, silver, potassium, or zinc has been shown, as the local delivery of these ions is able to enhance specific cell functions. Although hip and knee prostheses present a high success rate, bacterial infections -mainly implant associated- are serious and frequent complications. Infection can also develop after implantation of hip prostheses, the elimination of which means more surgeries for the patient and additional costs for the clinic. Prosthesis-related infection is a severe complication of orthopedic surgery, which often causes prolonged illness, pain, and functional loss. While international efforts are made to reduce the risk of these infections, orthopedic surgical infections (SSIs) continue to occur in high numbers. It is currently estimated that up to 2.5% of primary hip and knee surgeries and up to 20% of revision arthroplasties are complicated by periprosthetic joint infection (PJIs). According to some authors, these numbers are underestimated, and they are also increasing. Staphylococcus aureus is the leading cause of both SSIs and PJIs, and the prevalence of methicillin-resistant S. aureus (MRSA) is on the rise, particularly in the United States. These deep infections lead to implant removal and consequently increase morbidity and mortality. The study targets this clinical problem using our experience so far with the Ag-doped polymer coatings on Titanium implants. Non-modified or modified (e.g., doped with antibacterial agents, like Ag) bioactive glasses could play a role in the prevention of infections or the therapy of infected tissues. Bioactive glasses have excellent biocompatibility, proved by in vitro cell culture studies of human osteoblast-like MG-63 cells. Ag-doped bioactive glass-scaffold has a good antibacterial ability against Escherichia coli and other bacteria. It may be concluded that these scaffolds have great potential in the prevention and therapy of implant-associated bone infection.

Keywords: antibacterial agents, bioactive glass, hip and knee prosthesis, medical implants

Procedia PDF Downloads 166
228 Rhizobium leguminosarum: Selecting Strain and Exploring Delivery Systems for White Clover

Authors: Laura Villamizar, David Wright, Claudia Baena, Marie Foxwell, Maureen O'Callaghan

Abstract:

Leguminous crops can be self-sufficient for their nitrogen requirements when their roots are nodulated with an effective Rhizobium strain and for this reason seed or soil inoculation is practiced worldwide to ensure nodulation and nitrogen fixation in grain and forage legumes. The most widely used method of applying commercially available inoculants is using peat cultures which are coated onto seeds prior to sowing. In general, rhizobia survive well in peat, but some species die rapidly after inoculation onto seeds. The development of improved formulation methodology is essential to achieve extended persistence of rhizobia on seeds, and improved efficacy. Formulations could be solid or liquid. Most popular solid formulations or delivery systems are: wettable powders (WP), water dispersible granules (WG), and granules (DG). Liquid formulation generally are: suspension concentrates (SC) or emulsifiable concentrates (EC). In New Zealand, R. leguminosarum bv. trifolii strain TA1 has been used as a commercial inoculant for white clover over wide areas for many years. Seeds inoculation is carried out by mixing the seeds with inoculated peat, some adherents and lime, but rhizobial populations on stored seeds decline over several weeks due to a number of factors including desiccation and antibacterial compounds produced by the seeds. In order to develop a more stable and suitable delivery system to incorporate rhizobia in pastures, two strains of R. leguminosarum (TA1 and CC275e) and several formulations and processes were explored (peat granules, self-sticky peat for seed coating, emulsions and a powder containing spray dried microcapsules). Emulsions prepared with fresh broth of strain TA1 were very unstable under storage and after seed inoculation. Formulations where inoculated peat was used as the active ingredient were significantly more stable than those prepared with fresh broth. The strain CC275e was more tolerant to stress conditions generated during formulation and seed storage. Peat granules and peat inoculated seeds using strain CC275e maintained an acceptable loading of 108 CFU/g of granules or 105 CFU/g of seeds respectively, during six months of storage at room temperature. Strain CC275e inoculated on peat was also microencapsulated with a natural biopolymer by spray drying and after optimizing operational conditions, microparticles containing 107 CFU/g and a mean particle size between 10 and 30 micrometers were obtained. Survival of rhizobia during storage of the microcapsules is being assessed. The development of a stable product depends on selecting an active ingredient (microorganism), robust enough to tolerate some adverse conditions generated during formulation, storage, and commercialization and after its use in the field. However, the design and development of an adequate formulation, using compatible ingredients, optimization of the formulation process and selecting the appropriate delivery system, is possibly the best tool to overcome the poor survival of rhizobia and provide farmers with better quality inoculants to use.

Keywords: formulation, Rhizobium leguminosarum, storage stability, white clover

Procedia PDF Downloads 138
227 Superoleophobic Nanocellulose Aerogel Membrance as Bioinspired Cargo Carrier on Oil by Sol-Gel Method

Authors: Zulkifli, I. W. Eltara, Anawati

Abstract:

Understanding the complementary roles of surface energy and roughness on natural nonwetting surfaces has led to the development of a number of biomimetic superhydrophobic surfaces, which exhibit apparent contact angles with water greater than 150 degrees and low contact angle hysteresis. However, superoleophobic surfaces—those that display contact angles greater than 150 degrees with organic liquids having appreciably lower surface tensions than that of water—are extremely rare. In addition to chemical composition and roughened texture, a third parameter is essential to achieve superoleophobicity, namely, re-entrant surface curvature in the form of overhang structures. The overhangs can be realized as fibers. Superoleophobic surfaces are appealing for example, antifouling, since purely superhydrophobic surfaces are easily contaminated by oily substances in practical applications, which in turn will impair the liquid repellency. On the other studied have demonstrate that such aqueous nanofibrillar gels are unexpectedly robust to allow formation of highly porous aerogels by direct water removal by freeze-drying, they are flexible, unlike most aerogels that suffer from brittleness, and they allow flexible hierarchically porous templates for functionalities, e.g. for electrical conductivity. No crosslinking, solvent exchange nor supercritical drying are required to suppress the collapse during the aerogel preparation, unlike in typical aerogel preparations. The aerogel used in current work is an ultralight weight solid material composed of native cellulose nanofibers. The native cellulose nanofibers are cleaved from the self-assembled hierarchy of macroscopic cellulose fibers. They have become highly topical, as they are proposed to show extraordinary mechanical properties due to their parallel and grossly hydrogen bonded polysaccharide chains. We demonstrate that superoleophobic nanocellulose aerogels coating by sol-gel method, the aerogel is capable of supporting a weight nearly 3 orders of magnitude larger than the weight of the aerogel itself. The load support is achieved by surface tension acting at different length scales: at the macroscopic scale along the perimeter of the carrier, and at the microscopic scale along the cellulose nanofibers by preventing soaking of the aerogel thus ensuring buoyancy. Superoleophobic nanocellulose aerogels have recently been achieved using unmodified cellulose nanofibers and using carboxy methylated, negatively charged cellulose nanofibers as starting materials. In this work, the aerogels made from unmodified cellulose nanofibers were subsequently treated with fluorosilanes. To complement previous work on superoleophobic aerogels, we demonstrate their application as cargo carriers on oil, gas permeability, plastrons, and drag reduction, and we show that fluorinated nanocellulose aerogels are high-adhesive superoleophobic surfaces. We foresee applications including buoyant, gas permeable, dirt-repellent coatings for miniature sensors and other devices floating on generic liquid surfaces.

Keywords: superoleophobic, nanocellulose, aerogel, sol-gel

Procedia PDF Downloads 335
226 Airborne Particulate Matter Passive Samplers for Indoor and Outdoor Exposure Monitoring: Development and Evaluation

Authors: Kholoud Abdulaziz, Kholoud Al-Najdi, Abdullah Kadri, Konstantinos E. Kakosimos

Abstract:

The Middle East area is highly affected by air pollution induced by anthropogenic and natural phenomena. There is evidence that air pollution, especially particulates, greatly affects the population health. Many studies have raised a warning of the high concentration of particulates and their affect not just around industrial and construction areas but also in the immediate working and living environment. One of the methods to study air quality is continuous and periodic monitoring using active or passive samplers. Active monitoring and sampling are the default procedures per the European and US standards. However, in many cases they have been inefficient to accurately capture the spatial variability of air pollution due to the small number of installations; which eventually is attributed to the high cost of the equipment and the limited availability of users with expertise and scientific background. Another alternative has been found to account for the limitations of the active methods that is the passive sampling. It is inexpensive, requires no continuous power supply, and easy to assemble which makes it a more flexible option, though less accurate. This study aims to investigate and evaluate the use of passive sampling for particulate matter pollution monitoring in dry tropical climates, like in the Middle East. More specifically, a number of field measurements have be conducted, both indoors and outdoors, at Qatar and the results have been compared with active sampling equipment and the reference methods. The samples have been analyzed, that is to obtain particle size distribution, by applying existing laboratory techniques (optical microscopy) and by exploring new approaches like the white light interferometry to. Then the new parameters of the well-established model have been calculated in order to estimate the atmospheric concentration of particulates. Additionally, an extended literature review will investigate for new and better models. The outcome of this project is expected to have an impact on the public, as well, as it will raise awareness among people about the quality of life and about the importance of implementing research culture in the community.

Keywords: air pollution, passive samplers, interferometry, indoor, outdoor

Procedia PDF Downloads 384
225 Supramolecular Approach towards Novel Applications: Battery, Band Gap and Gas Separation

Authors: Sudhakara Naidu Neppalli, Tejas S. Bhosale

Abstract:

It is well known that the block copolymer (BCP) can form a complex molecule, through non-covalent bonds such as hydrogen bond, ionic bond and co-ordination bond, with low molecular weight compound as well as with macromolecules, which provide vast applications, includes the alteration of morphology and properties of polymers. Hence we covered the research that, the importance of non-covalent bonds in increasing the non-favourable segmental interactions of the blocks was well examined by attaching and detaching the bonds between the BCP and additive. We also monitored the phase transition of block copolymer and effective interaction parameter (χeff) for Li-doped polymers using small angle x-ray scattering and transmission electron microscopy. The effective interaction parameter (χeff) between two block components was evaluated using Leibler theory based on the incompressible random phase approximation (RPA) for ionized BCP in a disordered state. Furthermore, conductivity experiments demonstrate that the ionic conductivity in the samples quenched from the different structures is morphology-independent, while it increases with increasing ion salt concentration. Morphological transitions, interaction parameter, and thermal stability also examined in quarternized block copolymer. D-spacing was used to estimate effective interaction parameter (χeff) of block components in weak and strong segregation regimes of ordered phase. Metal-containing polymer has been the topic of great attention in recent years due to their wide range of potential application. Similarly, metal- ligand complex is used as a supramolecular linker between the polymers giving rise to a ‘Metallo-Supramolecule assembly. More precisely, functionalized polymer end capped with 2, 2’:6’, 2”- terpyridine ligand can be selectively complexed with wide range of transition metal ions and then subsequently attached to other terpyridine terminated polymer block. In compare to other supramolecular assembly, BCP involved metallo-supramolecule assembly offers vast applications such as optical activity, electrical conductivity, luminescence and photo refractivity.

Keywords: band gap, block copolymer, conductivity, interaction parameter, phase transition

Procedia PDF Downloads 148
224 Encapsulation of Venlafaxine-Dowex® Resinate: A Once Daily Multiple Unit Formulation

Authors: Salwa Mohamed Salah Eldin, Howida Kamal Ibrahim

Abstract:

Introduction: Major depressive disorder affects high proportion of the world’s population presenting cost load in health care. Extended release venlafaxine is more convenient and could reduce discontinuation syndrome. The once daily dosing also reduces the potential for adverse events such as nausea due to reduced Cmax. Venlafaxine is an effective first-line agent in the treatment of depression. A once daily formulation was designed to enhance patient compliance. Complexing with a resin was suggested to improve loading of the water soluble drug. The formulated systems were thoroughly evaluated in vitro to prove superiority to previous trials and were compared to the commercial extended release product in experimental animals. Materials and Methods: Venlafaxine-resinates were prepared using Dowex®50WX4-400 and Dowex®50WX8-100 at drug to resin weight ratio of 1: 1. The prepared resinates were evaluated for their drug content, particle shape and surface properties and in vitro release profile in gradient pH. The release kinetics and mechanism were evaluated. Venlafaxine-Dowex® resinates were encapsulated using O/W solvent evaporation technique. Poly-ε-caprolactone, Poly(D, L-lactide-co-glycolide) ester, Poly(D, L-lactide) ester and Eudragit®RS100 were used as coating polymers alone and in combination. Drug-resinate microcapsules were evaluated for morphology, entrapment efficiency and in-vitro release profile. The selected formula was tested in rabbits using a randomized, single-dose, 2-way crossover study against Effexor-XR tablets under fasting condition. Results and Discussion: The equilibrium time was 30 min for Dowex®50WX4-400 and 90 min for Dowex®50WX8-100. The percentage drug loaded was 93.96 and 83.56% for both resins, respectively. Both drug-Dowex® resintes were efficient in sustaining venlafaxine release in comparison to the free drug (up to 8h.). Dowex®50WX4-400 based venlafaxine-resinate was selected for further encapsulation to optimize the release profile for once daily dosing and to lower the burst effect. The selected formula (coated with a mixture of Eudragit RS and PLGA in a ratio of 50/50) was chosen by applying a group of mathematical equations according to targeted values. It recorded the minimum burst effect, the maximum MDT (Mean dissolution time) and a Q24h (percentage drug released after 24 hours) between 95 and 100%. The 90% confidence intervals for the test/reference mean ratio of the log-transformed data of AUC0–24 and AUC0−∞ are within (0.8–1.25), which satisfies the bioequivalence criteria. Conclusion: The optimized formula could be a promising extended release form of the water soluble, short half lived venlafaxine. Being a multiple unit formulation, it lowers the probability of dose dumping and reduces the inter-subject variability in absorption.

Keywords: biodegradable polymers, cation-exchange resin, microencapsulation, venlafaxine hcl

Procedia PDF Downloads 384
223 Observationally Constrained Estimates of Aerosol Indirect Radiative Forcing over Indian Ocean

Authors: Sofiya Rao, Sagnik Dey

Abstract:

Aerosol-cloud-precipitation interaction continues to be one of the largest sources of uncertainty in quantifying the aerosol climate forcing. The uncertainty is increasing from global to regional scale. This problem remains unresolved due to the large discrepancy in the representation of cloud processes in the climate models. Most of the studies on aerosol-cloud-climate interaction and aerosol-cloud-precipitation over Indian Ocean (like INDOEX, CAIPEEX campaign etc.) are restricted to either particular to one season or particular to one region. Here we developed a theoretical framework to quantify aerosol indirect radiative forcing using Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol and cloud products of 15 years (2000-2015) period over the Indian Ocean. This framework relies on the observationally constrained estimate of the aerosol-induced change in cloud albedo. We partitioned the change in cloud albedo into the change in Liquid Water Path (LWP) and Effective Radius of Clouds (Reff) in response to an aerosol optical depth (AOD). Cloud albedo response to an increase in AOD is most sensitive in the range of LWP between 120-300 gm/m² for a range of Reff varying from 8-24 micrometer, which means aerosols are most sensitive to this range of LWP and Reff. Using this framework, aerosol forcing during a transition from indirect to semi-direct effect is also calculated. The outcome of this analysis shows best results over the Arabian Sea in comparison with the Bay of Bengal and the South Indian Ocean because of heterogeneity in aerosol spices over the Arabian Sea. Over the Arabian Sea during Winter Season the more absorbing aerosols are dominating, during Pre-monsoon dust (coarse mode aerosol particles) are more dominating. In winter and pre-monsoon majorly the aerosol forcing is more dominating while during monsoon and post-monsoon season meteorological forcing is more dominating. Over the South Indian Ocean, more or less same types of aerosol (Sea salt) are present. Over the Arabian Sea the Aerosol Indirect Radiative forcing are varying from -5 ± 4.5 W/m² for winter season while in other seasons it is reducing. The results provide observationally constrained estimates of aerosol indirect forcing in the Indian Ocean which can be helpful in evaluating the climate model performance in the context of such complex interactions.

Keywords: aerosol-cloud-precipitation interaction, aerosol-cloud-climate interaction, indirect radiative forcing, climate model

Procedia PDF Downloads 152
222 Enhancing the Structural and Electrochemical Performance of Li-Rich Layered Metal Oxides Cathodes for Li-Ion Battery by Coating with the Active Material

Authors: Cyril O. Ehi-Eromosele, Ajayi Kayode

Abstract:

The Li-rich layered metal oxides (LLO) are the most promising candidates for promising electrodes of high energy Li-ion battery (LIB). In literature, these electrode system has either been designed as a hetero-structure of the primary components (composite) or as a core-shell structure with improved electrochemistry reported for both configurations when compared with its primary components. With the on-going efforts to improve on the electrochemical performance of the LIB, it is important to investigate comparatively the structural and electrochemical characteristics of the core-shell like and ‘composite’ forms of these materials with the same compositions and synthesis conditions which could influence future engineering of these materials. Therefore, this study concerns the structural and electrochemical properties of the ‘composite’ and core-shell like LLO cathode materials with the same nominal composition of 0.5Li₂MnO₃-0.5LiNi₀.₅Mn₀.₃Co₀.₂O₂ (LiNi₀.₅Mn₀.₃Co₀.₂O₂ as core and Li₂MnO₃ as the shell). The results show that the core-shell sample (–CS) gave better electrochemical performance than the ‘composite’ sample (–C). Both samples gave the same initial charge capacity of ~300 mAh/g when cycled at 10 mA/g and comparable charge capacity (246 mAh/g for the –CS sample and 240 mAh/g for the –C sample) when cycled at 200 mA/g. However, the –CS sample gave a higher initial discharge capacity at both current densities. The discharge capacity of the –CS sample was 232 mAh/g and 164 mAh/g while the –C sample is 208 mAh/g and 143 mAh/g at the current densities of 10 mA/g and 200 mA/g, respectively. Electrochemical impedance spectroscopy (EIS) results show that the –CS sample generally exhibited a smaller resistance than the –C sample both for the uncycled and after 50th cycle. Detailed structural analysis is on-going, but preliminary results show that the –CS sample had bigger unit cell volume and a higher degree of cation mixing. The thermal stability of the –CS sample was higher than the –C sample. XPS investigation also showed that the pristine –C sample gave a more reactive surface (showing formation of carbonate species to a greater degree) which could result in the greater resistance seen in the EIS result. To reinforce the results obtained for the 0.5Li₂MnO₃-0.5LiNi₀.₅Mn₀.₃Co₀.₃O₂ composition, the same investigations were extended to another ‘composite’ and core-shell like LLO cathode materials also with the same nominal composition of 0.5Li₂MnO₃-0.5LiNi₀.₃Mn₀.₃Co₀.₃O₂. In this case, the aim was to determine the electrochemical performance of the material using a low Ni content (LiNi₀.₃Mn₀.₃Co₀.₃O₂) as the core to clarify the contributions of the core-shell configuration to the electrochemical performance of these materials. Ni-rich layered oxides show active catalytic surface leading to electrolyte oxidation resulting in poor thermal stability and cycle life. Here, the core-shell sample also gave better electrochemical performance than the ‘composite’ sample with 0.5Li₂MnO₃-0.5LiNi₀.₃Mn₀.₃Co₀.₃O₂ composition. Furthermore, superior electrochemical performance was also recorded for the core-shell like spinel modified LLO (0.5Li₂MnO₃-0.45LiNi₀.₅Mn₀.₃Co₀.₂O₂-0.05LiNi₀.₅Mn₁.₅O₄) when compared to the composite system. These results show that the core-shell configuration can generally be used to improve the structural and electrochemical properties of the LLO and spinel modified LLO materials.

Keywords: lithium-ion battery, lithium rich oxide cathode, core-shell structure, composite structure

Procedia PDF Downloads 108
221 Remote Sensing Reversion of Water Depths and Water Management for Waterbird Habitats: A Case Study on the Stopover Site of Siberian Cranes at Momoge, China

Authors: Chunyue Liu, Hongxing Jiang

Abstract:

Traditional water depth survey of wetland habitats used by waterbirds needs intensive labor, time and money. The optical remote sensing image relies on passive multispectral scanner data has been widely employed to study estimate water depth. This paper presents an innovative method for developing the water depth model based on the characteristics of visible and thermal infrared spectra of Landsat ETM+ image, combing with 441 field water depth data at Etoupao shallow wetland. The wetland is located at Momoge National Nature Reserve of Northeast China, where the largest stopover habitat along the eastern flyway of globally, critically-endangered Siberian Cranes are. The cranes mainly feed on the tubers of emergent aquatic plants such as Scirpus planiculmis and S. nipponicus. The effective water control is a critical step for maintaining the production of tubers and food availability for this crane. The model employing multi-band approach can effectively simulate water depth for this shallow wetland. The model parameters of NDVI and GREEN indicated the vegetation growth and coverage affecting the reflectance from water column change are uneven. Combining with the field-observed water level at the same date of image acquisition, the digital elevation model (DEM) for the underwater terrain was generated. The wetland area and water volume of different water levels were then calculated from the DEM using the function of Area and Volume Statistics under the 3D Analyst of ArcGIS 10.0. The findings provide good references to effectively monitor changes in water level and water demand, develop practical plan for water level regulation and water management, and to create best foraging habitats for the cranes. The methods here can be adopted for the bottom topography simulation and water management in waterbirds’ habitats, especially in the shallow wetlands.

Keywords: remote sensing, water depth reversion, shallow wetland habitat management, siberian crane

Procedia PDF Downloads 242
220 Carbon Nanotube Field Effect Transistor - a Review

Authors: P. Geetha, R. S. D. Wahida Banu

Abstract:

The crowning advances in Silicon based electronic technology have dominated the computation world for the past decades. The captivating performance of Si devices lies in sustainable scaling down of the physical dimensions, by that increasing device density and improved performance. But, the fundamental limitations due to physical, technological, economical, and manufacture features restrict further miniaturization of Si based devices. The pit falls are due to scaling down of the devices such as process variation, short channel effects, high leakage currents, and reliability concerns. To fix the above-said problems, it is needed either to follow a new concept that will manage the current hitches or to support the available concept with different materials. The new concept is to design spintronics, quantum computation or two terminal molecular devices. Otherwise, presently used well known three terminal devices can be modified with different materials that suits to address the scaling down difficulties. The first approach will occupy in the far future since it needs considerable effort; the second path is a bright light towards the travel. Modelling paves way to know not only the current-voltage characteristics but also the performance of new devices. So, it is desirable to model a new device of suitable gate control and project the its abilities towards capability of handling high current, high power, high frequency, short delay, and high velocity with excellent electronic and optical properties. Carbon nanotube became a thriving material to replace silicon in nano devices. A well-planned optimized utilization of the carbon material leads to many more advantages. The unique nature of this organic material allows the recent developments in almost all fields of applications from an automobile industry to medical science, especially in electronics field-on which the automation industry depends. More research works were being done in this area. This paper reviews the carbon nanotube field effect transistor with various gate configurations, number of channel element, CNT wall configurations and different modelling techniques.

Keywords: array of channels, carbon nanotube field effect transistor, double gate transistor, gate wrap around transistor, modelling, multi-walled CNT, single-walled CNT

Procedia PDF Downloads 302
219 The LMPA/Epoxy Mixture Encapsulation of OLED on Polyimide Substrate

Authors: Chuyi Ye, Minsang Kim, Cheol-Hee Moon

Abstract:

The organic light emitting diode(OLED), is a potential organic optical functional materials which is considered as the next generation display technology with the advantages such as all-solid state, ultra-thin thickness, active luminous and flexibility. Due to the development of polymer-inorganic substrate, it becomes possible to achieve the flexible OLED display. However the organic light-emitting material is very sensitive to the oxygen and water vapor, and the encapsulation requires water vapor transmission rate(WVTR) and oxygen transmission rate(OTR) as lower as 10-6 g/(m2.d) and 10-5 cm3/(m2.d) respectively. In current situation, the rigorous WVTR and OTR have restricted the application of the OLED display. Traditional epoxy/getter or glass frit approaches, which have been widely applied on glass-substrate-based devices, are not suitable for transparent flexible organic devices, and mechanically flexible thin-film approaches are required. To ensure the OLED’s lifetime, the encapsulation material of the OLED package is very important. In this paper, a low melting point alloy(LMPA)-epoxy mixture in the encapsulation process is introduced. There will be a phase separation when the mixture is heated to the melting of LMPA and the formation of the double line structure between two substrates: the alloy barrier has extremely low WVTR and OTR and the epoxy fills the potential tiny cracks. In our experiment, the PI film is chosen as a flexible transparent substrate, and Mo and Cu are deposited on the PI film successively. Then the two metal layers are photolithographied to the sealing pattern line. The Mo is a transition layer between the PI film and Cu, at the same time, the Cu has a good wettability with the LMPA(Sn-58Bi). At last, pattern is printed with LMPA layer and applied voltage, the gathering Joule heat melt the LMPA and form the double line structure and the OLED package is sealed in the same time. In this research, the double-line encapsulating structure of LMPA and epoxy on the PI film is manufactured for the flexible OLED encapsulation, and in this process it is investigated whether the encapsulation satisfies the requirement of WVTR and OTR for the flexible OLED.

Keywords: encapsulation, flexible, low melting point alloy, OLED

Procedia PDF Downloads 581
218 Unleashing the Power of Cerebrospinal System for a Better Computer Architecture

Authors: Lakshmi N. Reddi, Akanksha Varma Sagi

Abstract:

Studies on biomimetics are largely developed, deriving inspiration from natural processes in our objective world to develop novel technologies. Recent studies are diverse in nature, making their categorization quite challenging. Based on an exhaustive survey, we developed categorizations based on either the essential elements of nature - air, water, land, fire, and space, or on form/shape, functionality, and process. Such diverse studies as aircraft wings inspired by bird wings, a self-cleaning coating inspired by a lotus petal, wetsuits inspired by beaver fur, and search algorithms inspired by arboreal ant path networks lend themselves to these categorizations. Our categorizations of biomimetic studies allowed us to define a different dimension of biomimetics. This new dimension is not restricted to inspiration from the objective world. It is based on the premise that the biological processes observed in the objective world find their reflections in our human bodies in a variety of ways. For example, the lungs provide the most efficient example for liquid-gas phase exchange, the heart exemplifies a very efficient pumping and circulatory system, and the kidneys epitomize the most effective cleaning system. The main focus of this paper is to bring out the magnificence of the cerebro-spinal system (CSS) insofar as it relates to our current computer architecture. In particular, the paper uses four key measures to analyze the differences between CSS and human- engineered computational systems. These are adaptability, sustainability, energy efficiency, and resilience. We found that the cerebrospinal system reveals some important challenges in the development and evolution of our current computer architectures. In particular, the myriad ways in which the CSS is integrated with other systems/processes (circulatory, respiration, etc) offer useful insights on how the human-engineered computational systems could be made more sustainable, energy-efficient, resilient, and adaptable. In our paper, we highlight the energy consumption differences between CSS and our current computational designs. Apart from the obvious differences in materials used between the two, the systemic nature of how CSS functions provides clues to enhance life-cycles of our current computational systems. The rapid formation and changes in the physiology of dendritic spines and their synaptic plasticity causing memory changes (ex., long-term potentiation and long-term depression) allowed us to formulate differences in the adaptability and resilience of CSS. In addition, the CSS is sustained by integrative functions of various organs, and its robustness comes from its interdependence with the circulatory system. The paper documents and analyzes quantifiable differences between the two in terms of the four measures. Our analyses point out the possibilities in the development of computational systems that are more adaptable, sustainable, energy efficient, and resilient. It concludes with the potential approaches for technological advancement through creation of more interconnected and interdependent systems to replicate the effective operation of cerebro-spinal system.

Keywords: cerebrospinal system, computer architecture, adaptability, sustainability, resilience, energy efficiency

Procedia PDF Downloads 72
217 New Findings on the Plasma Electrolytic Oxidation (PEO) of Aluminium

Authors: J. Martin, A. Nominé, T. Czerwiec, G. Henrion, T. Belmonte

Abstract:

The plasma electrolytic oxidation (PEO) is a particular electrochemical process to produce protective oxide ceramic coatings on light-weight metals (Al, Mg, Ti). When applied to aluminum alloys, the resulting PEO coating exhibit improved wear and corrosion resistance because thick, hard, compact and adherent crystalline alumina layers can be achieved. Several investigations have been carried out to improve the efficiency of the PEO process and one particular way consists in tuning the suitable electrical regime. Despite the considerable interest in this process, there is still no clear understanding of the underlying discharge mechanisms that make possible metal oxidation up to hundreds of µm through the ceramic layer. A key parameter that governs the PEO process is the numerous short-lived micro-discharges (micro-plasma in liquid) that occur continuously over the processed surface when the high applied voltage exceeds the critical dielectric breakdown value of the growing ceramic layer. By using a bipolar pulsed current to supply the electrodes, we previously observed that micro-discharges are delayed with respect to the rising edge of the anodic current. Nevertheless, explanation of the origin of such phenomena is still not clear and needs more systematic investigations. The aim of the present communication is to identify the relationship that exists between this delay and the mechanisms responsible of the oxide growth. For this purpose, the delay of micro-discharges ignition is investigated as the function of various electrical parameters such as the current density (J), the current pulse frequency (F) and the anodic to cathodic charge quantity ratio (R = Qp/Qn) delivered to the electrodes. The PEO process was conducted on Al2214 aluminum alloy substrates in a solution containing potassium hydroxide [KOH] and sodium silicate diluted in deionized water. The light emitted from micro-discharges was detected by a photomultiplier and the micro-discharge parameters (number, size, life-time) were measured during the process by means of ultra-fast video imaging (125 kfr./s). SEM observations and roughness measurements were performed to characterize the morphology of the elaborated oxide coatings while XRD was carried out to evaluate the amount of corundum -Al203 phase. Results show that whatever the applied current waveform, the delay of micro-discharge appearance increases as the process goes on. Moreover, the delay is shorter when the current density J (A/dm2), the current pulse frequency F (Hz) and the ratio of charge quantity R are high. It also appears that shorter delays are associated to stronger micro-discharges (localized, long and large micro-discharges) which have a detrimental effect on the elaborated oxide layers (thin and porous). On the basis of the results, a model for the growth of the PEO oxide layers will be presented and discussed. Experimental results support that a mechanism of electrical charge accumulation at the oxide surface / electrolyte interface takes place until the dielectric breakdown occurs and thus until micro-discharges appear.

Keywords: aluminium, micro-discharges, oxidation mechanisms, plasma electrolytic oxidation

Procedia PDF Downloads 245
216 Phytochemicals Quatification, Trace Metal Accumulation Pattern and Contamination Risk Assessment of Different Variety of Tomatoes Cultivated on Municipal Waste Sludge Treated Soil

Authors: Mathodzi Nditsheni, Olawole Emmanuel Aina, Joshua Oluwole Olowoyo

Abstract:

The ever-increasing world population is putting extreme pressure on the already limited agricultural resources for food production. Different soil enhancers were introduced by famers to meet the need of the ever-increasing population demand for food. One of the soil enhancers is the municipal waste sludge. This research investigated the differences in the concentrations of trace metals and levels of phytochemicals in four different tomato varieties cultivated on soil treated with municipal waste sludge in Pretoria, South Africa. Fruits were harvested at maturity and analyzed for trace metals and phytochemicals contents using Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) and a High-Performance Liquid Chromatography (HPLC) respectively. A one-way analysis of variance (ANOVA) was used to determine the differences in the concentrations of trace metals and phytochemical from different tomato varieties were significant. From the study, Rodade tomato bioaccumulated the highest concentrations of Mn, Cr, Cu and Ni, Roma bioaccumulated the highest concentrations of, Cd, Fe and Pb while Heinz bioaccumulated the highest concentrations of As and Zn. Cherry tomato on the other hand, recorded the lowest concentrations for most metals, Cd, Cr, Cu, Mn, Ni, Pb and Zn. The results of the study further showed that phenolic and flavonoids content were higher in the Solanum lycopersicum fruit grown in soils treated with municipal waste sludge. The study also showed that there was an inverse relationship between the levels of trace metals and phytochemicals. The calculated contamination factor values of trace metals like Cr, Cu, Pb and Zn were above the safe value of 1 which indicated that the tomato fruits may be unsafe for human consumption. However, the contamination factor values for the remaining trace metals were well below the safe value of 1. From the results obtained either for the control group or the treatment, the tomato varieties used in the study, bioaccumulated the toxic trace metals in their fruits and some of the values obtained were higher than the acceptable limit, which may then imply that the varieties of tomato used in this study bio accumulated the toxic trace metals from the soil, hence care should be taken when these tomato varieties are either cultivated or harvested from polluted areas

Keywords: trace metals, flavonoids, phenolics, waste sludge, tomato, contamination factors

Procedia PDF Downloads 58
215 Automated Feature Extraction and Object-Based Detection from High-Resolution Aerial Photos Based on Machine Learning and Artificial Intelligence

Authors: Mohammed Al Sulaimani, Hamad Al Manhi

Abstract:

With the development of Remote Sensing technology, the resolution of optical Remote Sensing images has greatly improved, and images have become largely available. Numerous detectors have been developed for detecting different types of objects. In the past few years, Remote Sensing has benefited a lot from deep learning, particularly Deep Convolution Neural Networks (CNNs). Deep learning holds great promise to fulfill the challenging needs of Remote Sensing and solving various problems within different fields and applications. The use of Unmanned Aerial Systems in acquiring Aerial Photos has become highly used and preferred by most organizations to support their activities because of their high resolution and accuracy, which make the identification and detection of very small features much easier than Satellite Images. And this has opened an extreme era of Deep Learning in different applications not only in feature extraction and prediction but also in analysis. This work addresses the capacity of Machine Learning and Deep Learning in detecting and extracting Oil Leaks from Flowlines (Onshore) using High-Resolution Aerial Photos which have been acquired by UAS fixed with RGB Sensor to support early detection of these leaks and prevent the company from the leak’s losses and the most important thing environmental damage. Here, there are two different approaches and different methods of DL have been demonstrated. The first approach focuses on detecting the Oil Leaks from the RAW Aerial Photos (not processed) using a Deep Learning called Single Shoot Detector (SSD). The model draws bounding boxes around the leaks, and the results were extremely good. The second approach focuses on detecting the Oil Leaks from the Ortho-mosaiced Images (Georeferenced Images) by developing three Deep Learning Models using (MaskRCNN, U-Net and PSP-Net Classifier). Then, post-processing is performed to combine the results of these three Deep Learning Models to achieve a better detection result and improved accuracy. Although there is a relatively small amount of datasets available for training purposes, the Trained DL Models have shown good results in extracting the extent of the Oil Leaks and obtaining excellent and accurate detection.

Keywords: GIS, remote sensing, oil leak detection, machine learning, aerial photos, unmanned aerial systems

Procedia PDF Downloads 13
214 Performance Study of Neodymium Extraction by Carbon Nanotubes Assisted Emulsion Liquid Membrane Using Response Surface Methodology

Authors: Payman Davoodi-Nasab, Ahmad Rahbar-Kelishami, Jaber Safdari, Hossein Abolghasemi

Abstract:

The high purity rare earth elements (REEs) have been vastly used in the field of chemical engineering, metallurgy, nuclear energy, optical, magnetic, luminescence and laser materials, superconductors, ceramics, alloys, catalysts, and etc. Neodymium is one of the most abundant rare earths. By development of a neodymium–iron–boron (Nd–Fe–B) permanent magnet, the importance of neodymium has dramatically increased. Solvent extraction processes have many operational limitations such as large inventory of extractants, loss of solvent due to the organic solubility in aqueous solutions, volatilization of diluents, etc. One of the promising methods of liquid membrane processes is emulsion liquid membrane (ELM) which offers an alternative method to the solvent extraction processes. In this work, a study on Nd extraction through multi-walled carbon nanotubes (MWCNTs) assisted ELM using response surface methodology (RSM) has been performed. The ELM composed of diisooctylphosphinic acid (CYANEX 272) as carrier, MWCNTs as nanoparticles, Span-85 (sorbitan triooleate) as surfactant, kerosene as organic diluent and nitric acid as internal phase. The effects of important operating variables namely, surfactant concentration, MWCNTs concentration, and treatment ratio were investigated. Results were optimized using a central composite design (CCD) and a regression model for extraction percentage was developed. The 3D response surfaces of Nd(III) extraction efficiency were achieved and significance of three important variables and their interactions on the Nd extraction efficiency were found out. Results indicated that introducing the MWCNTs to the ELM process led to increasing the Nd extraction due to higher stability of membrane and mass transfer enhancement. MWCNTs concentration of 407 ppm, Span-85 concentration of 2.1 (%v/v) and treatment ratio of 10 were achieved as the optimum conditions. At the optimum condition, the extraction of Nd(III) reached the maximum of 99.03%.

Keywords: emulsion liquid membrane, extraction of neodymium, multi-walled carbon nanotubes, response surface method

Procedia PDF Downloads 235
213 Interdigitated Flexible Li-Ion Battery by Aerosol Jet Printing

Authors: Yohann R. J. Thomas, Sébastien Solan

Abstract:

Conventional battery technology includes the assembly of electrode/separator/electrode by standard techniques such as stacking or winding, depending on the format size. In that type of batteries, coating or pasting techniques are only used for the electrode process. The processes are suited for large scale production of batteries and perfectly adapted to plenty of application requirements. Nevertheless, as the demand for both easier and cost-efficient production modes, flexible, custom-shaped and efficient small sized batteries is rising. Thin-film, printable batteries are one of the key areas for printed electronics. In the frame of European BASMATI project, we are investigating the feasibility of a new design of lithium-ion battery: interdigitated planar core design. Polymer substrate is used to produce bendable and flexible rechargeable accumulators. Direct fully printed batteries lead to interconnect the accumulator with other electronic functions for example organic solar cells (harvesting function), printed sensors (autonomous sensors) or RFID (communication function) on a common substrate to produce fully integrated, thin and flexible new devices. To fulfill those specifications, a high resolution printing process have been selected: Aerosol jet printing. In order to fit with this process parameters, we worked on nanomaterials formulation for current collectors and electrodes. In addition, an advanced printed polymer-electrolyte is developed to be implemented directly in the printing process in order to avoid the liquid electrolyte filling step and to improve safety and flexibility. Results: Three different current collectors has been studied and printed successfully. An ink of commercial copper nanoparticles has been formulated and printed, then a flash sintering was applied to the interdigitated design. A gold ink was also printed, the resulting material was partially self-sintered and did not require any high temperature post treatment. Finally, carbon nanotubes were also printed with a high resolution and well defined patterns. Different electrode materials were formulated and printed according to the interdigitated design. For cathodes, NMC and LFP were efficaciously printed. For anodes, LTO and graphite have shown to be good candidates for the fully printed battery. The electrochemical performances of those materials have been evaluated in a standard coin cell with lithium-metal counter electrode and the results are similar with those of a traditional ink formulation and process. A jellified plastic crystal solid state electrolyte has been developed and showed comparable performances to classical liquid carbonate electrolytes with two different materials. In our future developments, focus will be put on several tasks. In a first place, we will synthesize and formulate new specific nano-materials based on metal-oxyde. Then a fully printed device will be produced and its electrochemical performance will be evaluated.

Keywords: high resolution digital printing, lithium-ion battery, nanomaterials, solid-state electrolytes

Procedia PDF Downloads 230
212 Biomaterials Solutions to Medical Problems: A Technical Review

Authors: Ashish Thakur

Abstract:

This technical paper was written in view of focusing the biomaterials and its various applications in modern industries. Author tires to elaborate not only the medical, infect plenty of application in other industries. The scope of the research area covers the wide range of physical, biological and chemical sciences that underpin the design of biomaterials and the clinical disciplines in which they are used. A biomaterial is now defined as a substance that has been engineered to take a form which, alone or as part of a complex system, is used to direct, by control of interactions with components of living systems, the course of any therapeutic or diagnostic procedure. Biomaterials are invariably in contact with living tissues. Thus, interactions between the surface of a synthetic material and biological environment must be well understood. This paper reviews the benefits and challenges associated with surface modification of the metals in biomedical applications. The paper also elaborates how the surface characteristics of metallic biomaterials, such as surface chemistry, topography, surface charge, and wettability, influence the protein adsorption and subsequent cell behavior in terms of adhesion, proliferation, and differentiation at the biomaterial–tissue interface. The chapter also highlights various techniques required for surface modification and coating of metallic biomaterials, including physicochemical and biochemical surface treatments and calcium phosphate and oxide coatings. In this review, the attention is focused on the biomaterial-associated infections, from which the need for anti-infective biomaterials originates. Biomaterial-associated infections differ markedly for epidemiology, aetiology and severity, depending mainly on the anatomic site, on the time of biomaterial application, and on the depth of the tissues harbouring the prosthesis. Here, the diversity and complexity of the different scenarios where medical devices are currently utilised are explored, providing an overview of the emblematic applicative fields and of the requirements for anti-infective biomaterials. In addition to this, chapter introduces nanomedicine and the use of both natural and synthetic polymeric biomaterials, focuses on specific current polymeric nanomedicine applications and research, and concludes with the challenges of nanomedicine research. Infection is currently regarded as the most severe and devastating complication associated to the use of biomaterials. Osteoporosis is a worldwide disease with a very high prevalence in humans older than 50. The main clinical consequences are bone fractures, which often lead to patient disability or even death. A number of commercial biomaterials are currently used to treat osteoporotic bone fractures, but most of these have not been specifically designed for that purpose. Many drug- or cell-loaded biomaterials have been proposed in research laboratories, but very few have received approval for commercial use. Polymeric nanomaterial-based therapeutics plays a key role in the field of medicine in treatment areas such as drug delivery, tissue engineering, cancer, diabetes, and neurodegenerative diseases. Advantages in the use of polymers over other materials for nanomedicine include increased functionality, design flexibility, improved processability, and, in some cases, biocompatibility.

Keywords: nanomedicine, tissue, infections, biomaterials

Procedia PDF Downloads 245
211 Hansen Solubility Parameters, Quality by Design Tool for Developing Green Nanoemulsion to Eliminate Sulfamethoxazole from Contaminated Water

Authors: Afzal Hussain, Mohammad A. Altamimi, Syed Sarim Imam, Mudassar Shahid, Osamah Abdulrahman Alnemer

Abstract:

Exhaustive application of sulfamethoxazole (SUX) became as a global threat for human health due to water contamination through diverse sources. The addressed combined application of Hansen solubility (HSPiP software) parameters and Quality by Design tool for developing various green nanoemulsions. HSPiP program assisted to screen suitable excipients based on Hansen solubility parameters and experimental solubility data. Various green nanoemulsions were prepared and characterized for globular size, size distribution, zeta potential, and removal efficiency. Design Expert (DoE) software further helped to identify critical factors responsible to have direct impact on percent removal efficiency, size, and viscosity. Morphological investigation was visualized under transmission electron microscopy (TEM). Finally, the treated was studied to negate the presence of the tested drug employing ICP-OES (inductively coupled plasma optical emission microscopy) technique and HPLC (high performance liquid chromatography). Results showed that HSPiP predicted biocompatible lipid, safe surfactant (lecithin), and propylene glycol (PG). Experimental solubility of the drug in the predicted excipients were quite convincing and vindicated. Various green nanoemulsions were fabricated, and these were evaluated for in vitro findings. Globular size (100-300 nm), PDI (0.1-0.5), zeta potential (~ 25 mV), and removal efficiency (%RE = 70-98%) were found to be in acceptable range for deciding input factors with level in DoE. Experimental design tool assisted to identify the most critical variables controlling %RE and optimized content of nanoemulsion under set constraints. Dispersion time was varied from 5-30 min. Finally, ICP-OES and HPLC techniques corroborated the absence of SUX in the treated water. Thus, the strategy is simple, economic, selective, and efficient.

Keywords: quality by design, sulfamethoxazole, green nanoemulsion, water treatment, icp-oes, hansen program (hspip software

Procedia PDF Downloads 59
210 A Non-Invasive Neonatal Jaundice Screening Device Measuring Bilirubin on Eyes

Authors: Li Shihao, Dieter Trau

Abstract:

Bilirubin is a yellow substance that is made when the body breaks down old red blood cells. High levels of bilirubin can cause jaundice, a condition that makes the newborn's skin and the white part of the eyes look yellow. Jaundice is a serial-killer in developing countries in Southeast Asia such as Myanmar and most parts of Africa where jaundice screening is largely unavailable. Worldwide, 60% of newborns experience infant jaundice. One in ten will require therapy to prevent serious complications and lifelong neurologic sequelae. Limitations of current solutions: - Blood test: Blood tests are painful may largely unavailable in poor areas of developing countries, and also can be costly and unsafe due to the insufficient investment and lack of access to health care systems. - Transcutaneous jaundice-meter: 1) can only provide reliable results to caucasian newborns, due to skin pigmentations since current technologies measure bilirubin by the color of the skin. Basically, the darker the skin is, the harder to measure, 2) current jaundice meters are not affordable for most underdeveloped areas in Africa like Kenya and Togo, 3) fat tissue under the skin also influences the accuracy, which will give overestimated results, 4) current jaundice meters are not reliable after treatment (phototherapy) because bilirubin levels underneath the skin will be reduced first, while overall levels may be quite high. Thus, there is an urgent need for a low-cost non-invasive device, which can be effective not only for caucasian babies but also Asian and African newborns, to save lives at the most vulnerable time and prevent any complications like brain damage. Instead of measuring bilirubin on skin, we proposed a new method to do the measurement on the sclera, which can avoid the difference of skin pigmentations and ethnicities, due to the necessity for the sclera to be white regardless of racial background. This is a novel approach for measuring bilirubin by an optical method of light reflection off the white part of the eye. Moreover, the device is connected to a smart device, which can provide a user-friendly interface and the ability to record the clinical data continuously A disposable eye cap will be provided avoiding contamination and fixing the distance to the eye.

Keywords: Jaundice, bilirubin, non-invasive, sclera

Procedia PDF Downloads 219
209 A Rapid Colorimetric Assay for Direct Detection of Unamplified Hepatitis C Virus RNA Using Gold Nanoparticles

Authors: M. Shemis, O. Maher, G. Casterou, F. Gauffre

Abstract:

Hepatitis C virus (HCV) is a major cause of chronic liver disease with a global 170 million chronic carriers at risk of developing liver cirrhosis and/or liver cancer. Egypt reports the highest prevalence of HCV worldwide. Currently, two classes of assays are used in the diagnosis and management of HCV infection. Despite the high sensitivity and specificity of the available diagnostic assays, they are time-consuming, labor-intensive, expensive, and require specialized equipment and highly qualified personal. It is therefore important for clinical and economic terms to develop a low-tech assay for the direct detection of HCV RNA with acceptable sensitivity and specificity, short turnaround time, and cost-effectiveness. Such an assay would be critical to control HCV in developing countries with limited resources and high infection rates, such as Egypt. The unique optical and physical properties of gold nanoparticles (AuNPs) have allowed the use of these nanoparticles in developing simple and rapid colorimetric assays for clinical diagnosis offering higher sensitivity and specificity than current detection techniques. The current research aims to develop a detection assay for HCV RNA using gold nanoparticles (AuNPs). Methods: 200 anti-HCV positive samples and 50 anti-HCV negative plasma samples were collected from Egyptian patients. HCV viral load was quantified using m2000rt (Abbott Molecular Inc., Des Plaines, IL). HCV genotypes were determined using multiplex nested RT- PCR. The assay is based on the aggregation of AuNPs in presence of the target RNA. Aggregation of AuNPs causes a color shift from red to blue. AuNPs were synthesized using citrate reduction method. Different sets of probes within the 5’ UTR conserved region of the HCV genome were designed, grafted on AuNPs and optimized for the efficient detection of HCV RNA. Results: The nano-gold assay could colorimetrically detect HCV RNA down to 125 IU/ml with sensitivity and specificity of 91.1% and 93.8% respectively. The turnaround time of the assay is < 30 min. Conclusions: The assay allows sensitive and rapid detection of HCV RNA and represents an inexpensive and simple point-of-care assay for resource-limited settings.

Keywords: HCV, gold nanoparticles, point of care, viral load

Procedia PDF Downloads 191
208 Dy3+ Ions Doped Single and Mixed Alkali Fluoro Tungstunate Tellurite Glasses for Laser and White LED Applications

Authors: Allam Srinivasa Rao, Ch. Annapurna Devi, G. Vijaya Prakash

Abstract:

A new-fangled series of white light emitting 1 mol% of Dy3+ ions doped Single-Alklai and Mixed-Alkai fluoro tungstunate tellurite glasses have been prepared using melt quenching technique and their spectroscopic behaviour was investigated by studying XRD, optical absorption, photoluminescence and lifetime measurements. The bonding parameter studies reveal the ionic nature of the Dy-O bond in the present glasses. From the absorption spectra, the Judd–Ofelt (J-O) intensity parameters have been determined which are used to explore the nature of bonding and symmetry orientation of the Dy–ligand field environment. The evaluated J-O parameters (Ω_4>Ω_2>Ω_6) for all the glasses are following the same trend. The photoluminescence spectra of all the glasses exhibit two intensified peaks in blue and Yellow regions corresponding to the transitions 4F9/2→6H15/2 (483 nm) and 4F9/2→6H13/2 (575 nm) respectively. From the photoluminescence spectra, it is observed that the luminescence intensity is maximum for Dy3+ ion doped potassium combination of fluoro tungstunate tellurite glass (TeWK: 1Dy). The J-O intensity parameters have been used to determine the various radiative properties for the different emission transitions from the 4F9/2 fluorescent level. The highest emission cross-section and branching ratio values observed for the 4F9/2→6H15/2 and 4F9/2→6H13/2 transitions suggest the possible laser action in the visible region from these glasses. By using the experimental lifetimes (τ_exp) measured from the decay spectral features and radiative lifetimes (τ_R), the quantum efficiencies (η) for all the glasses have been evaluated. Among all the glasses, the potassium combined fluoro tungstunate tellurite (TeWK:1Dy) glass has the highest quantum efficiency (94.6%). The CIE colour chromaticity coordinates (x, y), (u, v), colour correlated temperature (CCT) and Y/B ratio were also estimated from the photoluminescence spectra for different compositions of glasses. The (x, y) and (u, v) chromaticity colour coordinates fall within the white light region and the white light can be tuned by varying the composition of the glass. From all these studies, we are suggesting that the 1 mol% of Dy3+ ions doped TeWK glass is more suitable for lasing and White-LED applications.

Keywords: dysprosium, Judd-Ofelt parameters, photo luminescence, tellurite glasses

Procedia PDF Downloads 211