Search results for: hybrid optimization model for electric renewables
18802 A Review of Security Attacks and Intrusion Detection Schemes in Wireless Sensor Networks: A Survey
Authors: Maleh Yassine, Ezzati Abdellah
Abstract:
Wireless Sensor Networks (WSNs) are currently used in different industrial and consumer applications, such as earth monitoring, health related applications, natural disaster prevention, and many other areas. Security is one of the major aspects of wireless sensor networks due to the resource limitations of sensor nodes. However, these networks are facing several threats that affect their functioning and their life. In this paper we present security attacks in wireless sensor networks, and we focus on a review and analysis of the recent Intrusion Detection schemes in WSNs.Keywords: wireless sensor networks, security attack, denial of service, IDS, cluster-based model, signature based IDS, hybrid IDS
Procedia PDF Downloads 38318801 Distributed System Computing Resource Scheduling Algorithm Based on Deep Reinforcement Learning
Authors: Yitao Lei, Xingxiang Zhai, Burra Venkata Durga Kumar
Abstract:
As the quantity and complexity of computing in large-scale software systems increase, distributed system computing becomes increasingly important. The distributed system realizes high-performance computing by collaboration between different computing resources. If there are no efficient resource scheduling resources, the abuse of distributed computing may cause resource waste and high costs. However, resource scheduling is usually an NP-hard problem, so we cannot find a general solution. However, some optimization algorithms exist like genetic algorithm, ant colony optimization, etc. The large scale of distributed systems makes this traditional optimization algorithm challenging to work with. Heuristic and machine learning algorithms are usually applied in this situation to ease the computing load. As a result, we do a review of traditional resource scheduling optimization algorithms and try to introduce a deep reinforcement learning method that utilizes the perceptual ability of neural networks and the decision-making ability of reinforcement learning. Using the machine learning method, we try to find important factors that influence the performance of distributed system computing and help the distributed system do an efficient computing resource scheduling. This paper surveys the application of deep reinforcement learning on distributed system computing resource scheduling proposes a deep reinforcement learning method that uses a recurrent neural network to optimize the resource scheduling, and proposes the challenges and improvement directions for DRL-based resource scheduling algorithms.Keywords: resource scheduling, deep reinforcement learning, distributed system, artificial intelligence
Procedia PDF Downloads 11018800 Comparison of Electrical Parameters of Oil-Immersed and Dry-Type Transformer Using Finite Element Method
Authors: U. Amin, A. Talib, S. A. Qureshi, M. J. Hossain, G. Ahmad
Abstract:
The choice evaluation between oil-immersed and dry-type transformers is often controlled by cost, location, and application. This paper compares the electrical performance of liquid- filled and dry-type transformers, which will assist the customer to choose the right and efficient ones for particular applications. An accurate assessment of the time-average flux density, electric field intensity and voltage distribution in an oil-insulated and a dry-type transformer have been computed and investigated. The detailed transformer modeling and analysis has been carried out to determine electrical parameter distributions. The models of oil-immersed and dry-type transformers are developed and solved by using the finite element method (FEM) to compare the electrical parameters. The effects of non-uniform and non-coherent voltage gradient, flux density and electric field distribution on the power losses and insulation properties of transformers are studied in detail. The results show that, for the same voltage and kilo-volt-ampere (kVA) rating, oil-immersed transformers have better insulation properties and less hysteresis losses than the dry-type.Keywords: finite element method, flux density, transformer, voltage gradient
Procedia PDF Downloads 28718799 An Exploratory Study of the Student’s Learning Experience by Applying Different Tools for e-Learning and e-Teaching
Authors: Angel Daniel Muñoz Guzmán
Abstract:
E-learning is becoming more and more common every day. For online, hybrid or traditional face-to-face programs, there are some e-teaching platforms like Google classroom, Blackboard, Moodle and Canvas, and there are platforms for full e-learning like Coursera, edX or Udemy. These tools are changing the way students acquire knowledge at schools; however, in today’s changing world that is not enough. As students’ needs and skills change and become more complex, new tools will need to be added to keep them engaged and potentialize their learning. This is especially important in the current global situation that is changing everything: the Covid-19 pandemic. Due to Covid-19, education had to make an unexpected switch from face-to-face courses to digital courses. In this study, the students’ learning experience is analyzed by applying different e-tools and following the Tec21 Model and a flexible and digital model, both developed by the Tecnologico de Monterrey University. The evaluation of the students’ learning experience has been made by the quantitative PrEmo method of emotions. Findings suggest that the quantity of e-tools used during a course does not affect the students’ learning experience as much as how a teacher links every available tool and makes them work as one in order to keep the student engaged and motivated.Keywords: student, experience, e-learning, e-teaching, e-tools, technology, education
Procedia PDF Downloads 10918798 Seismic Response of Structure Using a Three Degree of Freedom Shake Table
Authors: Ketan N. Bajad, Manisha V. Waghmare
Abstract:
Earthquakes are the biggest threat to the civil engineering structures as every year it cost billions of dollars and thousands of deaths, around the world. There are various experimental techniques such as pseudo-dynamic tests – nonlinear structural dynamic technique, real time pseudo dynamic test and shaking table test method that can be employed to verify the seismic performance of structures. Shake table is a device that is used for shaking structural models or building components which are mounted on it. It is a device that simulates a seismic event using existing seismic data and nearly truly reproducing earthquake inputs. This paper deals with the use of shaking table test method to check the response of structure subjected to earthquake. The various types of shake table are vertical shake table, horizontal shake table, servo hydraulic shake table and servo electric shake table. The goal of this experiment is to perform seismic analysis of a civil engineering structure with the help of 3 degree of freedom (i.e. in X Y Z direction) shake table. Three (3) DOF shaking table is a useful experimental apparatus as it imitates a real time desired acceleration vibration signal for evaluating and assessing the seismic performance of structure. This study proceeds with the proper designing and erection of 3 DOF shake table by trial and error method. The table is designed to have a capacity up to 981 Newton. Further, to study the seismic response of a steel industrial building, a proportionately scaled down model is fabricated and tested on the shake table. The accelerometer is mounted on the model, which is used for recording the data. The experimental results obtained are further validated with the results obtained from software. It is found that model can be used to determine how the structure behaves in response to an applied earthquake motion, but the model cannot be used for direct numerical conclusions (such as of stiffness, deflection, etc.) as many uncertainties involved while scaling a small-scale model. The model shows modal forms and gives the rough deflection values. The experimental results demonstrate shake table as the most effective and the best of all methods available for seismic assessment of structure.Keywords: accelerometer, three degree of freedom shake table, seismic analysis, steel industrial shed
Procedia PDF Downloads 13718797 Design and Optimization of Flow Field for Cavitation Reduction of Valve Sleeves
Authors: Kamal Upadhyay, Zhou Hua, Yu Rui
Abstract:
This paper aims to improve the streamline linked with the flow field and cavitation on the valve sleeve. We observed that local pressure fluctuation produces a low-pressure zone, central to the formation of vapor volume fraction within the valve chamber led to air-bubbles (or cavities). Thus, it allows simultaneously to a severe negative impact on the inner surface and lifespan of the valve sleeves. Cavitation reduction is a vitally important issue to pressure control valves. The optimization of the flow field is proposed in this paper to reduce the cavitation of valve sleeves. In this method, the inner wall of the valve sleeve is changed from a cylindrical surface to the conical surface, leading to the decline of the fluid flow velocity and the rise of the outlet pressure. Besides, the streamline is distributed inside the sleeve uniformly. Thus, the bubble generation is lessened. The fluid models are built and analysis of flow field distribution, pressure, vapor volume and velocity was carried out using computational fluid dynamics (CFD) and numerical technique. The results indicate that this structure can suppress the cavitation of valve sleeves effectively.Keywords: streamline, cavitation, optimization, computational fluid dynamics
Procedia PDF Downloads 14418796 A Hybrid Energy Storage Module for the Emergency Energy System of the Community Shelter in Yucatán, México
Authors: María Reveles-Miranda, Daniella Pacheco-Catalán
Abstract:
Sierra Papacal commissary is located north of Merida, Yucatan, México, where the indigenous Maya population predominates. Due to its location, the region has an elevation of fewer than 4.5 meters above sea level, with a high risk of flooding associated with storms and hurricanes and a high vulnerability of infrastructure and housing in the presence of strong gusts of wind. In environmental contingencies, the challenge is providing an autonomous electrical supply using renewable energy sources that cover vulnerable populations' health, food, and water pumping needs. To address this challenge, a hybrid energy storage module is proposed for the emergency photovoltaic (PV) system of the community shelter in Sierra Papacal, Yucatán, which combines high-energy-density batteries and high-power-density supercapacitors (SC) in a single module, providing a quick response to energy demand, reducing the thermal stress on batteries and extending their useful life. Incorporating SC in energy storage modules can provide fast response times to power variations and balanced energy extraction, ensuring a more extended period of electrical supply to vulnerable populations during contingencies. The implemented control strategy increases the module's overall performance by ensuring the optimal use of devices and balanced energy exploitation. The operation of the module with the control algorithm is validated with MATLAB/Simulink® and experimental tests.Keywords: batteries, community shelter, environmental contingencies, hybrid energy storage, isolated photovoltaic system, supercapacitors
Procedia PDF Downloads 8818795 On the Implementation of The Pulse Coupled Neural Network (PCNN) in the Vision of Cognitive Systems
Authors: Hala Zaghloul, Taymoor Nazmy
Abstract:
One of the great challenges of the 21st century is to build a robot that can perceive and act within its environment and communicate with people, while also exhibiting the cognitive capabilities that lead to performance like that of people. The Pulse Coupled Neural Network, PCNN, is a relative new ANN model that derived from a neural mammal model with a great potential in the area of image processing as well as target recognition, feature extraction, speech recognition, combinatorial optimization, compressed encoding. PCNN has unique feature among other types of neural network, which make it a candid to be an important approach for perceiving in cognitive systems. This work show and emphasis on the potentials of PCNN to perform different tasks related to image processing. The main drawback or the obstacle that prevent the direct implementation of such technique, is the need to find away to control the PCNN parameters toward perform a specific task. This paper will evaluate the performance of PCNN standard model for processing images with different properties, and select the important parameters that give a significant result, also, the approaches towards find a way for the adaptation of the PCNN parameters to perform a specific task.Keywords: cognitive system, image processing, segmentation, PCNN kernels
Procedia PDF Downloads 28018794 Study on Measuring Method and Experiment of Arc Fault Detection Device
Authors: Yang Jian-Hong, Zhang Ren-Cheng, Huang Li
Abstract:
Arc fault is one of the main inducements of electric fires. Arc Fault Detection Device (AFDD) can detect arc fault effectively. Arc fault detections and unhooking standards are the keys to AFDD practical application. First, an arc fault continuous production system was developed, which could count the arc half wave number. Then, Combining with the UL1699 standard, ignition probability curve of cotton and unhooking time of various currents intensity were obtained by experiments. The combustion degree of arc fault could be expressed effectively by arc area. Experiments proved that electric fires would be misjudged or missed only using arc half wave number as AFDD unhooking basis. At last, Practical tests were carried out on the self-developed AFDD system. The result showed that actual AFDD unhooking time was the sum of arc half wave cycling number, Arc wave identification time and unhooking mechanical operation time And the first two shared shorter time. Unhooking time standard depended on the shortest mechanical operation time.Keywords: arc fault detection device, arc area, arc half wave, unhooking time, arc fault
Procedia PDF Downloads 50718793 The Environmental Impact of Sustainability Dispersion of Chlorine Releases in Coastal Zone of Alexandra: Spatial-Ecological Modeling
Authors: Mohammed El Raey, Moustafa Osman Mohammed
Abstract:
The spatial-ecological modeling is relating sustainable dispersions with social development. Sustainability with spatial-ecological model gives attention to urban environments in the design review management to comply with Earth’s System. Naturally exchange patterns of ecosystems have consistent and periodic cycles to preserve energy flows and materials in Earth’s System. The probabilistic risk assessment (PRA) technique is utilized to assess the safety of industrial complex. The other analytical approach is the Failure-Safe Mode and Effect Analysis (FMEA) for critical components. The plant safety parameters are identified for engineering topology as employed in assessment safety of industrial ecology. In particular, the most severe accidental release of hazardous gaseous is postulated, analyzed and assessment in industrial region. The IAEA- safety assessment procedure is used to account the duration and rate of discharge of liquid chlorine. The ecological model of plume dispersion width and concentration of chlorine gas in the downwind direction is determined using Gaussian Plume Model in urban and ruler areas and presented with SURFER®. The prediction of accident consequences is traced in risk contour concentration lines. The local greenhouse effect is predicted with relevant conclusions. The spatial-ecological model is also predicted the distribution schemes from the perspective of pollutants that considered multiple factors of multi-criteria analysis. The data extends input–output analysis to evaluate the spillover effect, and conducted Monte Carlo simulations and sensitivity analysis. Their unique structure is balanced within “equilibrium patterns”, such as the biosphere and collective a composite index of many distributed feedback flows. These dynamic structures are related to have their physical and chemical properties and enable a gradual and prolonged incremental pattern. While this spatial model structure argues from ecology, resource savings, static load design, financial and other pragmatic reasons, the outcomes are not decisive in artistic/ architectural perspective. The hypothesis is an attempt to unify analytic and analogical spatial structure for development urban environments using optimization software and applied as an example of integrated industrial structure where the process is based on engineering topology as optimization approach of systems ecology.Keywords: spatial-ecological modeling, spatial structure orientation impact, composite structure, industrial ecology
Procedia PDF Downloads 7918792 Soil Parameters Identification around PMT Test by Inverse Analysis
Authors: I. Toumi, Y. Abed, A. Bouafia
Abstract:
This paper presents a methodology for identifying the cohesive soil parameters that takes into account different constitutive equations. The procedure, applied to identify the parameters of generalized Prager model associated to the Drucker & Prager failure criterion from a pressuremeter expansion curve, is based on an inverse analysis approach, which consists of minimizing the function representing the difference between the experimental curve and the simulated curve using a simplex algorithm. The model response on pressuremeter path and its identification from experimental data lead to the determination of the friction angle, the cohesion and the Young modulus. Some parameters effects on the simulated curves and stresses path around pressuremeter probe are presented. Comparisons between the parameters determined with the proposed method and those obtained by other means are also presented.Keywords: cohesive soils, cavity expansion, pressuremeter test, finite element method, optimization procedure, simplex algorithm
Procedia PDF Downloads 29118791 Removal of Chromium (VI) from Aqueous Solution by Teff (Eragrostis Teff) Husk Activated Carbon: Optimization, Kinetics, Isotherm, and Practical Adaptation Study Using Response Surface Methodology
Authors: Tsegaye Adane Birhan
Abstract:
Recently, rapid industrialization has led to the excessive release of heavy metals such as Cr (VI) into the environment. Exposure to chromium (VI) can cause kidney and liver damage, depressed immune systems, and a variety of cancers. Therefore, treatment of Cr (VI) containing wastewater is mandatory. This study aims to optimize the removal of Cr (VI) from an aqueous solution using locally available Teff husk-activated carbon adsorbent. The laboratory-based study was conducted on the optimization of Cr (VI) removal efficiency of Teff husk-activated carbon from aqueous solution. A central composite design was used to examine the effect of the interaction of process parameters and to optimize the process using Design Expert version 7.0 software. The optimized removal efficiency of Teff husk activated carbon (95.597%) was achieved at 1.92 pH, 87.83mg/L initial concentration, 20.22g/L adsorbent dose and 2.07Hrs contact time. The adsorption of Cr (VI) on Teff husk-activated carbon was found to be best fitted with pseudo-second-order kinetics and Langmuir isotherm model of the adsorption. Teff husk-activated carbon can be used as an efficient adsorbent for the removal of chromium (VI) from contaminated water. Column adsorption needs to be studied in the future.Keywords: batch adsorption, chromium (VI), teff husk activated carbon, response surface methodology, tannery wastewater
Procedia PDF Downloads 418790 Breast Cancer Prediction Using Score-Level Fusion of Machine Learning and Deep Learning Models
Authors: Sam Khozama, Ali M. Mayya
Abstract:
Breast cancer is one of the most common types in women. Early prediction of breast cancer helps physicians detect cancer in its early stages. Big cancer data needs a very powerful tool to analyze and extract predictions. Machine learning and deep learning are two of the most efficient tools for predicting cancer based on textual data. In this study, we developed a fusion model of two machine learning and deep learning models. To obtain the final prediction, Long-Short Term Memory (LSTM) and ensemble learning with hyper parameters optimization are used, and score-level fusion is used. Experiments are done on the Breast Cancer Surveillance Consortium (BCSC) dataset after balancing and grouping the class categories. Five different training scenarios are used, and the tests show that the designed fusion model improved the performance by 3.3% compared to the individual models.Keywords: machine learning, deep learning, cancer prediction, breast cancer, LSTM, fusion
Procedia PDF Downloads 15918789 Iron(III)-Tosylate Doped PEDOT and PEG: A Nanoscale Conductivity Study of an Electrochemical System with Biosensing Applications
Authors: Giulio Rosati, Luciano Sappia, Rossana Madrid, Noemi Rozlòsnik
Abstract:
The addition of PEG of different molecular weights has important effects on the physical, electrical and electrochemical properties of iron(III)-tosylate doped PEDOT. This particular polymer can be easily spin coated over plastic discs, optimizing thickness and uniformity of the PEDOT-PEG films. The conductivity and morphological analysis of the hybrid PEDOT-PEG polymer by 4-point probe (4PP), 12-point probe (12PP), and conductive AFM (C-AFM) show strong effects of the PEG doping. Moreover, the conductive films kinetics at the nanoscale, in response to different bias voltages, change radically depending on the PEG molecular weight. The hybrid conductive films show also interesting electrochemical properties, making the PEDOT PEG doping appealing for biosensing applications both for EIS-based and amperometric affinity/catalytic biosensors.Keywords: atomic force microscopy, biosensors, four-point probe, nano-films, PEDOT
Procedia PDF Downloads 34118788 Physical Parameters Influencing the Yield of Nigella Sativa Oil Extracted by Hydraulic Pressing
Authors: Hadjadj Naima, K. Mahdi, D. Belhachat, F. S. Ait Chaouche, A. Ferradji
Abstract:
The Nigella Sativa oil yield extracted by hydraulic pressing is influenced by the pressure temperature and size particles. The optimization of oil extraction is investigated. The rate of extraction of the whole seeds is very weak, a crushing of seeds is necessary to facilitate the extraction. This rate augments with the rise of the temperature and the pressure, and decrease of size particles. The best output (66%) is obtained for a granulometry lower than 1mm, a temperature of 50°C and a pressure of 120 bars.Keywords: oil, Nigella sativa, extraction, optimization, temperature, pressure
Procedia PDF Downloads 47818787 Development and Optimization of German Diagnostical Tests in Mathematics for Vocational Training
Authors: J. Thiele
Abstract:
Teachers working at vocational Colleges are often confronted with the problem, that many students graduated from different schools and therefore each had a different education. Especially in mathematics many students lack fundamentals or had different priorities at their previous schools. Furthermore, these vocational Colleges have to provide Graduations for many different working-fields, with different core themes. The Colleges are interested in measuring the different Education levels of their students and providing assistance for those who need to catch up. The Project mathe-meistern was initiated to remedy this problem at vocational Colleges. For this purpose, online-tests were developed. The aim of these tests is to evaluate basic mathematical abilities of the students. The tests are online Multiple-Choice-Tests with a total of 65 Items. They are accessed online with a unique Transaction-Number (TAN) for each participant. The content is divided in several Categories (Arithmetic, Algebra, Fractions, Geometry, etc.). After each test, the student gets a personalized summary depicting their strengths and weaknesses in mathematical Basics. Teachers can visit a special website to examine the results of their classes or single students. In total 5830 students did participate so far. For standardization and optimization purposes the tests are being evaluated, using the classic and probabilistic Test-Theory regarding Objectivity, Reliability and Validity, annually since 2015. This Paper is about the Optimization process considering the Rasch-scaling and Standardization of the tests. Additionally, current results using standardized tests will be discussed. To achieve this Competence levels and Types of errors of students attending vocational Colleges in Nordrheinwestfalen, Germany, were determined, using descriptive Data and Distractorevaluations.Keywords: diagnostical tests in mathematics, distractor devaluation, test-optimization, test-theory
Procedia PDF Downloads 12218786 Two Efficient Heuristic Algorithms for the Integrated Production Planning and Warehouse Layout Problem
Authors: Mohammad Pourmohammadi Fallah, Maziar Salahi
Abstract:
In the literature, a mixed-integer linear programming model for the integrated production planning and warehouse layout problem is proposed. To solve the model, the authors proposed a Lagrangian relax-and-fix heuristic that takes a significant amount of time to stop with gaps above 5$\%$ for large-scale instances. Here, we present two heuristic algorithms to solve the problem. In the first one, we use a greedy approach by allocating warehouse locations with less reservation costs and also less transportation costs from the production area to locations and from locations to the output point to items with higher demands. Then a smaller model is solved. In the second heuristic, first, we sort items in descending order according to the fraction of the sum of the demands for that item in the time horizon plus the maximum demand for that item in the time horizon and the sum of all its demands in the time horizon. Then we categorize the sorted items into groups of 3, 4, or 5 and solve a small-scale optimization problem for each group, hoping to improve the solution of the first heuristic. Our preliminary numerical results show the effectiveness of the proposed heuristics.Keywords: capacitated lot-sizing, warehouse layout, mixed-integer linear programming, heuristics algorithm
Procedia PDF Downloads 19418785 The Contribution of Edgeworth, Bootstrap and Monte Carlo Methods in Financial Data
Authors: Edlira Donefski, Tina Donefski, Lorenc Ekonomi
Abstract:
Edgeworth Approximation, Bootstrap, and Monte Carlo Simulations have considerable impacts on achieving certain results related to different problems taken into study. In our paper, we have treated a financial case related to the effect that has the components of a cash-flow of one of the most successful businesses in the world, as the financial activity, operational activity, and investment activity to the cash and cash equivalents at the end of the three-months period. To have a better view of this case, we have created a vector autoregression model, and after that, we have generated the impulse responses in the terms of asymptotic analysis (Edgeworth Approximation), Monte Carlo Simulations, and residual bootstrap based on the standard errors of every series created. The generated results consisted of the common tendencies for the three methods applied that consequently verified the advantage of the three methods in the optimization of the model that contains many variants.Keywords: autoregression, bootstrap, edgeworth expansion, Monte Carlo method
Procedia PDF Downloads 15018784 Theory of Gyrotron Amplifier in a Vane-Loaded Waveguide with Inner Dielectric Material
Authors: Reyhaneh Hashemi, Shahrooz Saviz
Abstract:
In his study, we have survey the theory of gyrotron amplifier in a vane-loaded waveguide with inner dielectric material. Dispersion relation for electromagnetic waves emitted by a cylindrical waveguide that provided with wedge-shaped metal vanes projecting radially inward from the wall of the guide and exited in the transverse-electric mode was analysed. From numerical analysis of this dispersion relation, it is shown that the stability behavior of the fast-wave mode is dependent of the dielectric constant. With a small axial momentum spreed, a super bandwidth is shown to be attainable by a mixed mode operation. Also, with the utilization from the numeric analysis of relation dispersion. We show that in the –speed mode, the constant is independent de-electric. With the ratio of dispersion of smell, high –bandwith was obtained for the combined mode. And at the end, we were comparing the result of our work (vane-loaded) by the waveguide with a smooth wall.Keywords: gyrotron amplifier, waveguide, vane-loaded waveguide, dielectric material, dispersion relation, cylindrical waveguide, fast-wave mode, mixed mode operation
Procedia PDF Downloads 10118783 Auricular Electroacupuncture Rescued Epilepsy Seizure by Attenuating TLR-2 Inflammatory Pathway in the Kainic Acid-Induced Rats
Authors: I-Han Hsiao, Chun-Ping Huang, Ching-Liang Hsieh, Yi-Wen Lin
Abstract:
Epilepsy is chronic brain disorder that results in the sporadic occurrence of spontaneous seizures in the temporal lobe, cerebral cortex, and hippocampus. Clinical antiepileptic medicines are often ineffective or little benefits in the small amount of patients and usually initiate severe side effects. This inflammation contributes to enhanced neuronal excitability and the onset of epilepsy. Auricular electric-stimulation (AES) can increase parasympathetic activity and stimulate the solitary tract nucleus to induce the cholinergic anti-inflammatory pathway. Furthermore, it may be a therapeutic strategy for the treatment of epilepsy. In the present study, we want to investigate the effects of AES on inflammatory mediators in kainic acid (KA)-induced epileptic seizure rats. Experimental KA injection increased expression of TLR-2 pathway associated inflammatory mediators, were further reduced by either 2Hz or 15 Hz AES in the prefrontal cortex, hippocampus, and somatosensory cortex. We suggest that AES can successfully control the epileptic seizure by down-regulation of inflammation signaling pathway.Keywords: auricular electric-stimulation, epileptic seizures, anti-inflammation
Procedia PDF Downloads 18318782 A Review on Artificial Neural Networks in Image Processing
Authors: B. Afsharipoor, E. Nazemi
Abstract:
Artificial neural networks (ANNs) are powerful tool for prediction which can be trained based on a set of examples and thus, it would be useful for nonlinear image processing. The present paper reviews several paper regarding applications of ANN in image processing to shed the light on advantage and disadvantage of ANNs in this field. Different steps in the image processing chain including pre-processing, enhancement, segmentation, object recognition, image understanding and optimization by using ANN are summarized. Furthermore, results on using multi artificial neural networks are presented.Keywords: neural networks, image processing, segmentation, object recognition, image understanding, optimization, MANN
Procedia PDF Downloads 40418781 A United Nations Safety Compliant Urban Vehicle Design
Authors: Marcelo R. G. Duarte, Marcilio Alves
Abstract:
Pedestrians are the fourth group among road traffic users that most suffer accidents. Their death rate is even higher than the motorcyclists group. This gives motivation for the development of an urban vehicle capable of complying with the United Nations Economic Commission for Europe pedestrian regulations. The conceptual vehicle is capable of transporting two passengers and small parcels for 100 km at a maximum speed of 90 km/h. This paper presents the design of this vehicle using the finite element method specially in connection with frontal crash test and car to pedestrian collision. The simulation is based in a human body FE.Keywords: electric urban vehicle, finite element method, global human body model, pedestrian safety, road safety
Procedia PDF Downloads 18718780 Hybrid Polymer Microfluidic Platform for Studying Endothelial Cell Response to Micro Mechanical Environment
Authors: Mitesh Rathod, Jungho Ahn, Noo Li Jeon, Junghoon Lee
Abstract:
Endothelial cells respond to cues from both biochemical as well as micro mechanical environment. Significant effort has been directed to understand the effects of biochemical signaling, however, relatively little is known about regulation of endothelial cell biology by the micro mechanical environment. Numerous studies have been performed to understand how physical forces regulate endothelial cell behavior. In this regard, past studies have majorly focused on exploring how fluid shear stress governs endothelial cell behavior. Parallel plate flow chambers and rectangular microchannels are routinely employed for applying fluid shear force on endothelial cells. However, these studies fall short in mimicking the in vivo like micro environment from topological aspects. Few studies have only used circular microchannels to replicate in vivo like condition. Seldom efforts have been directed to elucidate the combined effect of topology, substrate rigidity and fluid shear stress on endothelial cell response. In this regard, we demonstrate a facile fabrication process to develop a hybrid polydimethylsiloxane microfluidic platform to study endothelial cell biology. On a single chip microchannels with different cross sections i.e., circular, rectangular and square have been fabricated. In addition, our fabrication approach allows variation in the substrate rigidity along the channel length. Two different variants of polydimethylsiloxane, namely Sylgard 184 and Sylgard 527, were utilized to achieve the variation in rigidity. Moreover, our approach also enables in creating Y bifurcation circular microchannels. Our microfluidic platform thus facilitates for conducting studies pertaining to endothelial cell morphology with respect to change in topology, substrate rigidity and fluid flow on a single chip. The hybrid platform was tested by culturing Human Umbilical Vein Endothelial Cells in circular microchannels with varying substrate rigidity, and exposed to fluid shear stress of 12 dynes/cm² and static conditions. Results indicate the cell area response to flow induced shear stress was governed by the underlying substrate mechanics.Keywords: hybrid, microfluidic platform, PDMS, shear flow, substrate rigidity
Procedia PDF Downloads 27318779 Numerical Analysis of Laminar Flow around Square Cylinders with EHD Phenomenon
Authors: M. Salmanpour, O. Nourani Zonouz
Abstract:
In this research, a numerical simulation of an Electrohydrodynamic (EHD) actuator’s effects on the flow around a square cylinder by using a finite volume method has been investigated. This is one of the newest ways for controlling the fluid flows. Two plate electrodes are flush-mounted on the surface of the cylinder and one wire electrode is placed on the line with zero angle of attack relative to the stagnation point and excited with DC power supply. The discharge produces an electric force and changes the local momentum behaviors in the fluid layers. For this purpose, after selecting proper domain and boundary conditions, the electric field relating to the problem has been analyzed and then the results in the form of electrical body force have been entered in the governing equations of fluid field (Navier-Stokes equations). The effect of ionic wind resulted from the Electrohydrodynamic actuator, on the velocity, pressure and the wake behind cylinder has been considered. According to the results, it is observed that the fluid flow accelerates in the nearest wall of the frontal half of the cylinder and the pressure difference between frontal and hinder cylinder is increased.Keywords: CFD, corona discharge, electro hydrodynamics, flow around square cylinders, simulation
Procedia PDF Downloads 47018778 Frequency of Refractive Errors in Squinting Eyes of Children from 4 to 16 Years Presenting at Tertiary Care Hospital
Authors: Maryum Nawaz
Abstract:
Purpose: To determine the frequency of refractive errors in squinting eyes of children from 4 to 16 years presenting at tertiary care hospital. Study Design: A descriptive cross-sectional study was done. Place and Duration: The study was conducted in Pediatric Ophthalmology, Hayatabad Medical Complex, Peshawar. Materials and Methods: The sample size was 146 keeping 41.45%5 proportion of refractive errors in children with squinting eyes, 95% confidence interval and 8% margin of error under WHO sample size calculations. Non-probability consecutive sampling was done. Result: Mean age was 8.57±2.66 years. Male were 89 (61.0%) and female were 57 (39.0%). Refractive error was present in 56 (38.4%) and was not present in 90 (61.6%) of patients. There was no association of gender, age, parent refractive errors, or early usage of electric equipment with the refractive errors. Conclusion: There is a high prevalence of refractive errors in a patient with strabismus. There is no association of age, gender, parent refractive errors, or early usage of electric equipment in the occurrence of refractive errors. Further studies are recommended for confirmation of these.Keywords: strabismus, refractive error, myopia, hypermetropia, astigmatism
Procedia PDF Downloads 14318777 Bias Prevention in Automated Diagnosis of Melanoma: Augmentation of a Convolutional Neural Network Classifier
Authors: Kemka Ihemelandu, Chukwuemeka Ihemelandu
Abstract:
Melanoma remains a public health crisis, with incidence rates increasing rapidly in the past decades. Improving diagnostic accuracy to decrease misdiagnosis using Artificial intelligence (AI) continues to be documented. Unfortunately, unintended racially biased outcomes, a product of lack of diversity in the dataset used, with a noted class imbalance favoring lighter vs. darker skin tone, have increasingly been recognized as a problem.Resulting in noted limitations of the accuracy of the Convolutional neural network (CNN)models. CNN models are prone to biased output due to biases in the dataset used to train them. Our aim in this study was the optimization of convolutional neural network algorithms to mitigate bias in the automated diagnosis of melanoma. We hypothesized that our proposed training algorithms based on a data augmentation method to optimize the diagnostic accuracy of a CNN classifier by generating new training samples from the original ones will reduce bias in the automated diagnosis of melanoma. We applied geometric transformation, including; rotations, translations, scale change, flipping, and shearing. Resulting in a CNN model that provided a modifiedinput data making for a model that could learn subtle racial features. Optimal selection of the momentum and batch hyperparameter increased our model accuracy. We show that our augmented model reduces bias while maintaining accuracy in the automated diagnosis of melanoma.Keywords: bias, augmentation, melanoma, convolutional neural network
Procedia PDF Downloads 20818776 Development of a Coupled Thermal-Mechanical-Biological Model to Simulate Impacts of Temperature on Waste Stabilization at a Landfill in Quebec, Canada
Authors: Simran Kaur, Paul J. Van Geel
Abstract:
A coupled Thermal-Mechanical-Biological (TMB) model was developed for the analysis of impacts of temperatures on waste stabilization at a Municipal Solid Waste (MSW) landfill in Quebec, Canada using COMSOL Multiphysics, a finite element-based software. For waste placed in landfills in Northern climates during winter months, it can take months or even years before the waste approaches ideal temperatures for biodegradation to occur. Therefore, the proposed model links biodegradation induced strain in MSW to waste temperatures and corresponding heat generation rates as a result of anaerobic degradation. This provides a link between the thermal-biological and mechanical behavior of MSW. The thermal properties of MSW are further linked to density which is tracked and updated in the mechanical component of the model, providing a mechanical-thermal link. The settlement of MSW is modelled based on the concept of viscoelasticity. The specific viscoelastic model used is a single Kelvin – Voight viscoelastic body in which the finite element response is controlled by the elastic material parameters – Young’s Modulus and Poisson’s ratio. The numerical model was validated with 10 years of temperature and settlement data collected from a landfill in Ste. Sophie, Quebec. The coupled TMB modelling framework, which simulates placement of waste lifts as they are placed progressively in the landfill, allows for optimization of several thermal and mechanical parameters throughout the depth of the waste profile and helps in better understanding of temperature dependence of MSW stabilization. The model is able to illustrate how waste placed in the winter months can delay biodegradation-induced settlement and generation of landfill gas. A delay in waste stabilization will impact the utilization of the approved airspace prior to the placement of a final cover and impact post-closure maintenance. The model provides a valuable tool to assess different waste placement strategies in order to increase airspace utilization within landfills operating under different climates, in addition to understanding conditions for increased gas generation for recovery as a green and renewable energy source.Keywords: coupled model, finite element modeling, landfill, municipal solid waste, waste stabilization
Procedia PDF Downloads 13118775 Reduction of Aerodynamic Drag Using Vortex Generators
Authors: Siddharth Ojha, Varun Dua
Abstract:
Classified as one of the most important reasons of aerodynamic drag in the sedan automobiles is the fluid flow separation near the vehicle’s rear end. To retard the separation of flow, bump-shaped vortex generators are being tested for its implementation to the roof end of a sedan vehicle. Frequently used in the aircrafts to prevent the separation of fluid flow, vortex generators themselves produce drag, but they also substantially reduce drag by preventing flow separation at the downstream. The net effects of vortex generators can be calculated by summing the positive and negative impacts and effects. Since this effect depends on dimensions and geometry of vortex generators, those present on the vehicle roof are optimized for maximum efficiency and performance. The model was tested through ANSYS CFD analysis and modeling. The model was tested in the wind tunnel for observing it’s properties such as aerodynamic drag and flow separation and a major time lag was gained by employing vortex generators in the scaled model. Major conclusions which were recorded during the analysis were a substantial 24% reduction in the aerodynamic drag and 14% increase in the efficiency of the sedan automobile as the flow separation from the surface is delayed. This paper presents the results of optimization, the effect of vortex generators in the flow field and the mechanism by which these effects occur and are regulated.Keywords: aerodynamics, aerodynamic devices, body, computational fluid dynamics (CFD), flow visualization
Procedia PDF Downloads 22118774 Laser-TIG Welding-Brazing for Dissimilar Metals between Aluminum Alloy and Steel
Authors: Xiangfang Xu, Bintao Wu, Yugang Miao, Duanfeng Han
Abstract:
Experiments were conducted on 5A06 aluminum alloy and Q235 steel using the laser-TIG hybrid heat source welding-brazing method to realize the reliable connection of Al/Fe dissimilar metals and the welding characteristics were analyzed. It was found that the joints with uniform seam and high tensile strength could be obtained using such a method, while the welding process demanded special welding parameters. Spectrum measurements showed that the Al and Fe atoms diffused more thoroughly at the brazing interface and formed a 3μm-thick intermetallic compound layer at the Al/Fe joints brazed connection interface. Shearing tests indicated that the shearing strength of the Al/Fe welding-brazed joint was 165MPa. The fracture occurred near the melting zone of aluminum alloy, which belonged to the mixed mode with the ductile fracture as the base and the brittle fracture as the supplement.Keywords: Al/Fe dissimilar metals, laser-TIG hybrid heat source, shearing strength, welding-brazing method
Procedia PDF Downloads 40018773 A Fuzzy Multi-Criteria Model for Sustainable Development of Community-Based Tourism through the Homestay Program in Malaysia
Authors: Azizah Ismail, Zainab Khalifah, Abbas Mardani
Abstract:
Sustainable community-based tourism through homestay programme is a growing niche market that has impacted destinations in many countries including Malaysia. With demand predicted to continue increasing, the importance of the homestay product will grow in the tourism industry. This research examines the sustainability criteria for homestay programme in Malaysia covering economic, socio-cultural and environmental dimensions. This research applied a two-stage methodology for data analysis. Specifically, the researcher implements a hybrid method which combines two multi-criteria decision making approaches. In the first stage of the methodology, the Decision Making Trial and Evaluation Laboratory (DEMATEL) technique is applied. Then, Analytical Network Process (ANP) is employed for the achievement of the objective of the current research. After factors identification and problem formulation, DEMATEL is used to detect complex relationships and to build a Network Relation Map (NRM). Then ANP is used to prioritize and find the weights of the criteria and sub-criteria of the decision model. The research verifies the framework of multi-criteria for sustainable community-based tourism from the perspective of stakeholders. The result also provides a different perspective on the importance of sustainable criteria from the view of multi-stakeholders. Practically, this research gives the framework model and helps stakeholders to improve and innovate the homestay programme and also promote community-based tourism.Keywords: community-based tourism, homestay programme, sustainable tourism criteria, sustainable tourism development
Procedia PDF Downloads 129