Search results for: drift flow model
17918 Development of Restricted Formula SAE Intake Manifold Using 1D and Flow Simulations Based on Track Analysis
Authors: Sahil Kapahi
Abstract:
A Formula SAE competition is characterized by typical track layouts having slaloms, tight corners and short straights, which favor a particular range of engine speed for a given set of gear ratios. Therefore, it is imperative that the power-train is optimized for the corresponding engine rpm band. This paper describes the process of designing, simulating and validating an air intake manifold for an inline four cylinder four-stroke internal combustion gasoline engine based on analysis of required vehicle performance. The requirements for the design of subject intake were set considering the rules of FSAE competitions and analysis of engine performance patterns for typical competition scenarios, carried out using OPTIMUMLAP software. Manifold geometry was optimized using results of air flow simulations performed on ANSYS CFX, and subsequent effect of this geometry on the engine was modeled using 1D simulation on Ricardo WAVE. A design was developed to meet the targeted performance standards in terms of engine torque output and volumetric efficiency. Finally, the intake manifold was manufactured and assembled onto the vehicle, and the engine output of the vehicle with the designed intake was studied using a dynamometer. The results of the dynamometer testing were then validated against predicted values derived from the Ricardo WAVE modeling and benefits to performance of the vehicle were established.Keywords: 1 D Simulation, air flow simulation, ANSYS CFX, four-stroke engine, OPTIMUM LAP, Ricardo WAVE
Procedia PDF Downloads 24617917 Investigated Optimization of Davidson Path Loss Model for Digital Terrestrial Television (DTTV) Propagation in Urban Area
Authors: Pitak Keawbunsong, Sathaporn Promwong
Abstract:
This paper presents an investigation on the efficiency of the optimized Davison path loss model in order to look for a suitable path loss model to design and planning DTTV propagation for small and medium urban areas in southern Thailand. Hadyai City in Songkla Province is chosen as the case study to collect the analytical data on the electric field strength. The optimization is conducted through the least square method while the efficiency index is through the statistical value of relative error (RE). The result of the least square method is the offset and slop of the frequency to be used in the optimized process. The statistical result shows that RE of the old Davidson model is at the least when being compared with the optimized Davison and the Hata models. Thus, the old Davison path loss model is the most accurate that further becomes the most optimized for the plan on the propagation network design.Keywords: DTTV propagation, path loss model, Davidson model, least square method
Procedia PDF Downloads 33817916 Research on Online Consumption of College Students in China with Stimulate-Organism-Reaction Driven Model
Authors: Wei Lu
Abstract:
With the development of information technology in China, network consumption is becoming more and more popular. As a special group, college students have a high degree of education and distinct opinions and personalities. In the future, the key groups of network consumption have gradually become the focus groups of network consumption. Studying college students’ online consumption behavior has important theoretical significance and practical value. Based on the Stimulus-Organism-Response (SOR) driving model and the structural equation model, this paper establishes the influencing factors model of College students’ online consumption behavior, evaluates and amends the model by using SPSS and AMOS software, analyses and determines the positive factors of marketing college students’ consumption, and provides an effective basis for guiding and promoting college student consumption.Keywords: college students, online consumption, stimulate-organism-reaction driving model, structural equation model
Procedia PDF Downloads 15317915 Effects of Directivity and Fling Step on Buildings Equipped with J-Hook Sandwich Composite Walls and Reinforced Concrete Shear Walls
Authors: Majid Saaly, Shahriar Tavousi Tafreshi, Mehdi Nazari Afshar
Abstract:
The structural systems with the sandwich composite wall (SCSSC) are of very popular due to their ductileness and competency to swallow more energy and power than standard reinforced concrete shear walls. The purpose of this enhanced system is in high-rise building, Nuclear power plant facilities, and bridge slabs are much more. SCSSCs showed acceptable seismic performance under experimental tests and cyclic loading from the points of view of in-plane and out-of-plane shear and flexural interaction, in-plane punching shear, and compressive behavior. The use of sandwich composite walls with J-hook connectors has a significant effect on energy dissipation and reduction of dynamic responses of mid-rise and high-rise structural models. By changing the systems of the building from SW to SCWJ, the maximum inter-story drift values of ten- and fifteen-story models are reduced by up to 25% and 35%, respectively.Keywords: J-Hook sandwich composite walls, fling step, directivity, IDA analyses, fractile curves
Procedia PDF Downloads 15617914 Parametric Dependence of the Advection-Diffusion Equation in Two Dimensions
Authors: Matheus Fernando Pereira, Varese Salvador Timoteo
Abstract:
In this work, we have solved the two-dimensional advection-diffusion equation numerically for a spatially dependent solute dispersion along non-uniform flow with a pulse type source in order to make a systematic study on the influence of medium heterogeneity, initial flow velocity, and initial dispersion coefficient parameters on the solutions of the equation. The behavior of the solutions is then investigated as we change the three parameters independently. Our results show that even though the parameters represent different physical features of the system, the effect on their variation is very similar. We also observe that the effects caused by the parameters on the concentration depend on the distance from the source. Finally, our numerical results are in good agreement with the exact solutions for all values of the parameters we used in our analysis.Keywords: advection-diffusion equation, dispersion, numerical methods, pulse-type source
Procedia PDF Downloads 23917913 A Numerical Study of Force-Based Boundary Conditions in Multiparticle Collision Dynamics
Authors: Arturo Ayala-Hernandez, Humberto Hijar
Abstract:
We propose a new alternative method for imposing fluid-solid boundary conditions in simulations of Multiparticle Collision Dynamics. Our method is based on the introduction of an explicit potential force acting between the fluid particles and a surface representing a solid boundary. We show that our method can be used in simulations of plane Poiseuille flows. Important quantities characterizing the flow and the fluid-solid interaction like the slip coefficient at the solid boundary and the effective viscosity of the fluid, are measured in terms of the set of independent parameters defining the numerical implementation. We find that our method can be used to simulate the correct hydrodynamic flow within a wide range of values of these parameters.Keywords: Multiparticle Collision Dynamics, fluid-solid, boundary conditions, molecular dynamics
Procedia PDF Downloads 53817912 Groundwater Flow Dynamics in Shallow Coastal Plain Sands Aquifer, Abesan Area, Eastern Dahomey Basin, Southwestern Nigeria
Authors: Anne Joseph, Yinusa Asiwaju-Bello, Oluwaseun Olabode
Abstract:
Sustainable administration of groundwater resources tapped in Coastal Plain Sands aquifer in Abesan area, Eastern Dahomey Basin, Southwestern Nigeria necessitates the knowledge of the pattern of groundwater flow in meeting a suitable environmental need for habitation. Thirty hand-dug wells were identified and evaluated to study the groundwater flow dynamics and anionic species distribution in the study area. Topography and water table levels method with the aid of Surfer were adopted in the identification of recharge and discharge zones where six recharge and discharge zones were delineated correspondingly. Dissolved anionic species of HCO3-, Cl-, SO42-and NO3- were determined using titrimetric and spectrophotometric method. The trend of significant anionic concentrations of groundwater samples are in the order Cl- > HCO3-> SO42- > NO3-. The prominent anions in the discharge and recharge area are Cl- and HCO3- ranging from 0.22ppm to 3.67ppm and 2.59ppm to 0.72ppm respectively. Analysis of groundwater head distribution and the groundwater flow vector in Abesan area confirmed that Cl- concentration is higher than HCO3- concentration in recharge zones. Conversely, there is a high concentration of HCO3- than Cl- inland towards the continent; therefore, HCO3-concentration in the discharge zones is higher than the Cl- concentration. The anions were to be closely related to the recharge and discharge areas which were confirmed by comparison of activities such as rainfall regime and anthropogenic activities in Abesan area. A large percentage of the samples showed that HCO3-, Cl-, SO42-and NO3- falls within the permissible limit of the W.H.O standard. Most of the samples revealed Cl- / (CO3- + HCO3-) ratio higher than 0.5 indicating that there is saltwater intrusion imprints in the groundwater of the study area. Gibbs plot shown that most of the samples is from rock dominance, some from evaporation dominance and few from precipitation dominance. Potential salinity and SO42/ Cl- ratios signifies that most of the groundwater in Abesan is saline and falls in a water class found to be insuitable for irrigation. Continuous dissolution of these anionic species may pose a significant threat to the inhabitants of Abesan area in the nearest future.Keywords: Abessan, Anionic species, Discharge, Groundwater flow, Recharge
Procedia PDF Downloads 12417911 Optimization and Feasibility Analysis of a PV/Wind/ Battery Hybrid Energy Conversion
Authors: Doaa M. Atia, Faten H. Fahmy, Ninet M. A. El-Rahman, Hassan T. Dorra
Abstract:
In this paper, the optimum design for renewable energy system powered an aquaculture pond was determined. Hybrid Optimization Model for Electric Renewable (HOMER) software program, which is developed by U.S National Renewable Energy Laboratory (NREL), is used for analyzing the feasibility of the stand-alone and hybrid system in this study. HOMER program determines whether renewable energy resources satisfy hourly electric demand or not. The program calculates energy balance for every 8760 hours in a year to simulate operation of the system. This optimization compares the demand for the electrical energy for each hour of the year with the energy supplied by the system for that hour and calculates the relevant energy flow for each component in the model. The essential principle is to minimize the total system cost while HOMER ensures control of the system. Moreover the feasibility analysis of the energy system is also studied. Wind speed, solar irradiance, interest rate and capacity shortage are the parameters which are taken into consideration. The simulation results indicate that the hybrid system is the best choice in this study, yielding lower net present cost. Thus, it provides higher system performance than PV or wind stand-alone systems.Keywords: wind stand-alone system, photovoltaic stand-alone system, hybrid system, optimum system sizing, feasibility, cost analysis
Procedia PDF Downloads 34017910 Development of an Image-Based Biomechanical Model for Assessment of Hip Fracture Risk
Authors: Masoud Nasiri Sarvi, Yunhua Luo
Abstract:
Low-trauma hip fracture, usually caused by fall from standing height, has become a main source of morbidity and mortality for the elderly. Factors affecting hip fracture include sex, race, age, body weight, height, body mass distribution, etc., and thus, hip fracture risk in fall differs widely from subject to subject. It is therefore necessary to develop a subject-specific biomechanical model to predict hip fracture risk. The objective of this study is to develop a two-level, image-based, subject-specific biomechanical model consisting of a whole-body dynamics model and a proximal-femur finite element (FE) model for more accurately assessing the risk of hip fracture in lateral falls. Required information for constructing the model is extracted from a whole-body and a hip DXA (Dual Energy X-ray Absorptiometry) image of the subject. The proposed model considers all parameters subject-specifically, which will provide a fast, accurate, and non-expensive method for predicting hip fracture risk.Keywords: bone mineral density, hip fracture risk, impact force, sideways falls
Procedia PDF Downloads 53617909 Development of Natural Zeolites Adsorbent: Preliminary Study on Water-Isopropyl Alcohol Adsorption in a Close-Loop Continuous Adsorber
Authors: Sang Kompiang Wirawan, Pandu Prabowo Jati, I Wayan Warmada
Abstract:
Klaten Indonesian natural zeolite can be used as powder or pellet adsorbent. Pellet adsorbent has been made from activated natural zeolite powder by a conventional pressing method. Starch and formaldehyde were added as binder to strengthen the construction of zeolite pellet. To increase the absorptivity and its capacity, natural zeolite was activated first chemically and thermally. This research examined adsorption process of water from Isopropyl Alcohol (IPA)-water system using zeolite adsorbent pellet from natural zeolite powder which has been activated with H2SO4 0.1 M and 0.3 M. Adsorbent was pelleted by pressing apparatus at certain pressure to make specification in 1.96 cm diameter, 0.68 cm thickness which the natural zeolite powder (-80 mesh). The system of isopropyl-alcohol water contained 80% isopropyl-alcohol. Adsorption process was held in close-loop continuous apparatus which the zeolite pellet was put inside a column and the solution of IPA-water was circulated at certain flow. Concentration changing was examined thoroughly at a certain time. This adsorption process included mass transfer from bulk liquid into film layer and from film layer into the solid particle. Analysis of rate constant was using first order isotherm model that simulated with MATLAB. Besides using first order isotherm, intra-particle diffusion model was proposed by using pore diffusion model. The study shows that adsorbent activated by H2SO4 0.1 M has good absorptivity with mass transfer constant at 0.1286 min-1.Keywords: intra-particle diffusion, fractional attainment, first order isotherm, zeolite
Procedia PDF Downloads 31117908 Physical Education Teacher's Interpretation toward Teaching Games for Understanding Model
Authors: Soni Nopembri
Abstract:
The objective of this research is to evaluate the implementation of teaching games for Understanding model by conducting action to physical education teacher who have got long teaching experience. The research applied Participatory Action Research. The subjects of this research were 19 physical education teachers who had got training of Teaching Games for Understanding. Data collection was conducted intensively through a questionnaire, in-depth interview, Focus Group Discussion (FGD), observation, and documentation. The collected data was analysis zed qualitatively and quantitatively. The result showed that physical education teachers had got an appropriate interpretation on TGfU model. Some indicators that were the focus of this research indicated this points; they are: (1) physical education teachers had good understanding toward TGfU model, (2) PE teachers’ competence in applying TGfU model on Physical Education at school were adequate, though some improvement were needed, (3) the influence factors in the implementation of TGfU model, in sequence, were teacher, facilities, environment, and students factors, (4) PE teachers’ perspective toward TGfU model were positively good, although some teachers were less optimistic toward the development of TGfU model in the future.Keywords: TGfU, physical education teacher, teaching games, FGD
Procedia PDF Downloads 54717907 Heat Transfer Performance for Turbulent Flow through a Tube Using Baffles
Authors: Amina Benabderrahmane, Abdelylah Benazza, Samir Laouedj
Abstract:
Three dimensional numerical investigation of heat transfer enhancement inside a non-uniformly heated parabolic trough solar collector fitted with baffles under turbulent flow was studied in the current paper. Molten salt is used as heat transfer fluid and simulations are carried out in ANSYS computational fluid dynamics (CFD). The present data was validating by the empirical correlations available in the literatures and good agreement was obtained. The Nusselt number and friction factor values for using baffles are considerably higher than that for smooth pipe. The emplacement and the distance between two consecutive baffles have an effect non-negligible on heat transfer characteristics; the results demonstrate that the temperature gradient reduces with the inclusion of inserts.Keywords: Baffles, heat transfer enhancement, molten salt, Monte Carlo ray trace technique, numerical investigation
Procedia PDF Downloads 30017906 Hydraulics of 3D Aerators with Lateral Enlargements
Authors: Nirmala Lama
Abstract:
The construction of high dams has led to significant challenges in managing flow rates discharging over spillways, resulting in cavitation damages on hydraulic surfaces. To address this, aerator devices were designed and installed to promote fore aeration, thereby controlling and mitigating damages caused by cavitation. Consequently, these aerator types, three-dimensional aerators (3DAEs), have demonstrated superior efficiency in introducing forced air into the flow.This research focuses on the installation and evaluation of three-dimensional aerator devices at the high discharge spillway surface. In the laboratory, the air concentration downstream of the hydraulic structures was extensively measured, and the data were analyzed in details.Multiple flow scenarios and structural arrangements of the aerators were adopted for the study. The outcomes of these experiments are listed as In terms of air concentration value, the comparison between 3 DAE (three-dimensional aerator) with offset only and offset with ramp reveals significant differences. The concentration value on the side wall was justified. The side cavity length was found to increase with higher approach Froude numbers and lateral enlargement widths. Furthermore, 3DAE exhibited shorter side cavity lengths compared to three-dimensional aerator devices without ramps (3DAD), a beneficial features for controlling water fins. An empirical formula to express the side cavity length was derived from the measured data. Also, the comparison were made on the basis of water fin formation between the different arrangements of 3D aerators. In conclusion, this research provides valuable insights into the performance of three-dimensional aerators in mitigating cavitation damages and controlling water fins in high dam spillways. The findings offer practical implications for designers and engineers seeking to enhance the efficiency and safety of hydraulic structures subjected to high flow rates.Keywords: three-dimension aerator, cavity, water fin, air entrainment
Procedia PDF Downloads 6817905 Geomechanical Numerical Modeling of Well Wall in Drilling with Finite Difference Method
Authors: Marzieh Zarei
Abstract:
Well instability is one of the most fundamental challenges faced by the oil and gas industry. Well wall stability analysis is a gap to be filled in the oil industry. The collection of static data such as well logging leads to the construction of a geomechanical numerical model, which will help in assessing the probable risks in future drilling. In this paper, geomechanical model was designed, and mechanical properties of the rock was determined at all points of the model. It was found the safe mud window was determined and the minimum and maximum mud pressures were determined in the ranges of 70-60 MPa and 110-100 MPa, respectively.Keywords: geomechanics, numerical model, well stability, in-situ stress, underbalanced drilling
Procedia PDF Downloads 12917904 Study of the Protection of Induction Motors
Authors: Bencheikh Abdellah
Abstract:
In this paper, we present a mathematical model dedicated to the simulation breaks bars in a three-phase cage induction motor. This model is based on a mesh circuit representing the rotor cage. The tested simulation allowed us to demonstrate the effectiveness of this model to describe the behavior of the machine in a healthy state, failure.Keywords: AC motors, squirrel cage, diagnostics, MATLAB, SIMULINK
Procedia PDF Downloads 43817903 Dynamic Model of Heterogeneous Markets with Imperfect Information for the Optimization of Company's Long-Time Strategy
Authors: Oleg Oborin
Abstract:
This paper is dedicated to the development of the model, which can be used to evaluate the effectiveness of long-term corporate strategies and identify the best strategies. The theoretical model of the relatively homogenous product market (such as iron and steel industry, mobile services or road transport) has been developed. In the model, the market consists of a large number of companies with different internal characteristics and objectives. The companies can perform mergers and acquisitions in order to increase their market share. The model allows the simulation of long-time dynamics of the market (for a period longer than 20 years). Therefore, a large number of simulations on random input data was conducted in the framework of the model. After that, the results of the model were compared with the dynamics of real markets, such as the US steel industry from the beginning of the XX century to the present day, and the market of mobile services in Germany for the period between 1990 and 2015.Keywords: Economic Modelling, Long-Time Strategy, Mergers and Acquisitions, Simulation
Procedia PDF Downloads 36717902 Design and Validation of a Darrieus Type Hydrokinetic Turbine for South African Irrigation Canals Experimentally and Computationally
Authors: Maritz Lourens Van Rensburg, Chantel Niebuhr
Abstract:
Utilizing all available renewable energy sources is an ever-growing necessity, this includes a newfound interest into hydrokinetic energy systems, which open the door to installations where conventional hydropower shows no potential. Optimization and obtaining high efficiencies are key in these installations. In this study a vertical axis Darrieus hydrokinetic turbine is designed and constructed to address certain drawbacks experience by axial flow horizontal axis turbines in an irrigation channel. Many horizontal axis turbines have been well developed and optimized to have high efficiencies but depending on the conditions experienced in an open channel, the performance of these turbines may be adversely affected. The study analyses how the designed vertical axis turbine addresses the problems experienced by a horizontal axis turbine while still achieving a satisfactory efficiency. To be able to optimize the vertical axis turbine, a computational fluid dynamics model was validated to the experimental results obtained from the power generated from a test turbine installation operating at various rotational speeds. It was found that an accurate validated model can be obtained through validation of generated power output.Keywords: hydrokinetic, Darrieus, computational fluid dynamics, vertical axis turbine
Procedia PDF Downloads 11617901 Life Prediction Method of Lithium-Ion Battery Based on Grey Support Vector Machines
Authors: Xiaogang Li, Jieqiong Miao
Abstract:
As for the problem of the grey forecasting model prediction accuracy is low, an improved grey prediction model is put forward. Firstly, use trigonometric function transform the original data sequence in order to improve the smoothness of data , this model called SGM( smoothness of grey prediction model), then combine the improved grey model with support vector machine , and put forward the grey support vector machine model (SGM - SVM).Before the establishment of the model, we use trigonometric functions and accumulation generation operation preprocessing data in order to enhance the smoothness of the data and weaken the randomness of the data, then use support vector machine (SVM) to establish a prediction model for pre-processed data and select model parameters using genetic algorithms to obtain the optimum value of the global search. Finally, restore data through the "regressive generate" operation to get forecasting data. In order to prove that the SGM-SVM model is superior to other models, we select the battery life data from calce. The presented model is used to predict life of battery and the predicted result was compared with that of grey model and support vector machines.For a more intuitive comparison of the three models, this paper presents root mean square error of this three different models .The results show that the effect of grey support vector machine (SGM-SVM) to predict life is optimal, and the root mean square error is only 3.18%. Keywords: grey forecasting model, trigonometric function, support vector machine, genetic algorithms, root mean square errorKeywords: Grey prediction model, trigonometric functions, support vector machines, genetic algorithms, root mean square error
Procedia PDF Downloads 46117900 Accurate Cortical Reconstruction in Narrow Sulci with Zero-Non-Zero Distance (ZNZD) Vector Field
Authors: Somojit Saha, Rohit K. Chatterjee, Sarit K. Das, Avijit Kar
Abstract:
A new force field is designed for propagation of the parametric contour into deep narrow cortical fold in the application of knowledge based reconstruction of cerebral cortex from MR image of brain. Designing of this force field is highly inspired by the Generalized Gradient Vector Flow (GGVF) model and markedly differs in manipulation of image information in order to determine the direction of propagation of the contour. While GGVF uses edge map as its main driving force, the newly designed force field uses the map of distance between zero valued pixels and their nearest non-zero valued pixel as its main driving force. Hence, it is called Zero-Non-Zero Distance (ZNZD) force field. The objective of this force field is forceful propagation of the contour beyond spurious convergence due to partial volume effect (PVE) in to narrow sulcal fold. Being function of the corresponding non-zero pixel value, the force field has got an inherent property to determine spuriousness of the edge automatically. It is effectively applied along with some morphological processing in the application of cortical reconstruction to breach the hindrance of PVE in narrow sulci where conventional GGVF fails.Keywords: deformable model, external force field, partial volume effect, cortical reconstruction, MR image of brain
Procedia PDF Downloads 39717899 Fuzzy-Genetic Algorithm Multi-Objective Optimization Methodology for Cylindrical Stiffened Tanks Conceptual Design
Authors: H. Naseh, M. Mirshams, M. Mirdamadian, H. R. Fazeley
Abstract:
This paper presents an extension of fuzzy-genetic algorithm multi-objective optimization methodology that could effectively be used to find the overall satisfaction of objective functions (selecting the design variables) in the early stages of design process. The coupling of objective functions due to design variables in an engineering design process will result in difficulties in design optimization problems. In many cases, decision making on design variables conflicts with more than one discipline in system design. In space launch system conceptual design, decision making on some design variable (e.g. oxidizer to fuel mass flow rate O/F) in early stages of the design process is related to objective of liquid propellant engine (specific impulse) and Tanks (structure weight). Then, the primary application of this methodology is the design of a liquid propellant engine with the maximum specific impulse and cylindrical stiffened tank with the minimum weight. To this end, the design problem is established the fuzzy rule set based on designer's expert knowledge with a holistic approach. The independent design variables in this model are oxidizer to fuel mass flow rate, thickness of stringers, thickness of rings, shell thickness. To handle the mentioned problems, a fuzzy-genetic algorithm multi-objective optimization methodology is developed based on Pareto optimal set. Consequently, this methodology is modeled with the one stage of space launch system to illustrate accuracy and efficiency of proposed methodology.Keywords: cylindrical stiffened tanks, multi-objective, genetic algorithm, fuzzy approach
Procedia PDF Downloads 65517898 Grammatical and Lexical Explorations on ‘Outer Circle’ Englishes and ‘Expanding Circle’ Englishes: A Corpus-Based Comparative Analysis
Authors: Orlyn Joyce D. Esquivel
Abstract:
This study analyzed 50 selected research papers from professional language and linguistic academic journals to portray the differences between Kachru’s (1994) outer circle and expanding circle Englishes. The selected outer circle Englishes include those of Bangladesh, Malaysia, the Philippines, India, and Singapore; and the selected expanding circle Englishes are those of China, Indonesia, Japan, Korea, and Thailand. The researcher built ten corpora (five research papers for each corpus) to represent each variety of Englishes. The corpora were examined under grammatical and lexical features using Modified English TreeTagger in Sketch Engine. Results revealed the distinct grammatical and lexical features through the table and textual analyses, illustrated from the most to least dominant linguistic elements. In addition, comparative analyses were done to distinguish the features of each of the selected Englishes. The Language Change Theory was used as a basis in the discussion. Hence, the findings suggest that the ‘outer circle’ Englishes and ‘expanding circle’ Englishes will continue to drift from International English.Keywords: applied linguistics, English as a global language, expanding circle Englishes, global Englishes, outer circle Englishes
Procedia PDF Downloads 16117897 Modelling Export Dynamics in the CSEE Countries Using GVAR Model
Abstract:
The paper investigates the key factors of export dynamics for a set of Central and Southeast European (CSEE) countries in the context of current economic and financial crisis. In order to model the export dynamics a Global Vector Auto Regressive (GVAR) model is defined. As opposed to models which model each country separately, the GVAR combines all country models in a global model which enables obtaining important information on spill-over effects in the context of globalization and rising international linkages. The results of the study indicate that for most of the CSEE countries, exports are mainly driven by domestic shocks, both in the short run and in the long run. This study is the first application of the GVAR model to studying the export dynamics in the CSEE countries and therefore the results of the study present an important empirical contribution.Keywords: export, GFEVD, global VAR, international trade, weak exogeneity
Procedia PDF Downloads 30117896 Simplified 3R2C Building Thermal Network Model: A Case Study
Authors: S. M. Mahbobur Rahman
Abstract:
Whole building energy simulation models are widely used for predicting future energy consumption, performance diagnosis and optimum control. Black box building energy modeling approach has been heavily studied in the past decade. The thermal response of a building can also be modeled using a network of interconnected resistors (R) and capacitors (C) at each node called R-C network. In this study, a model building, Case 600, as described in the “Standard Method of Test for the Evaluation of Building Energy Analysis Computer Program”, ASHRAE standard 140, is studied along with a 3R2C thermal network model and the ASHRAE clear sky solar radiation model. Although building an energy model involves two important parts of building component i.e., the envelope and internal mass, the effect of building internal mass is not considered in this study. All the characteristic parameters of the building envelope are evaluated as on Case 600. Finally, monthly building energy consumption from the thermal network model is compared with a simple-box energy model within reasonable accuracy. From the results, 0.6-9.4% variation of monthly energy consumption is observed because of the south-facing windows.Keywords: ASHRAE case study, clear sky solar radiation model, energy modeling, thermal network model
Procedia PDF Downloads 14617895 Consultation Time and Its Impact on Length of Stay in the Emergency Department
Authors: Esam Roshdy, Saleh AlRashdi, Turki Alharbi, Rawan Eskandarani, Zurina Cabilo
Abstract:
Introduction/ background: Consultation in the Emergency Department constitute a major part of the work flow every day. Any delay in the consultation process have a major impact on the length of stay and patient disposition and thus affect the total waiting time of patients in the ED. King Fahad medical City in Riyadh City, Saudi Arabia is considered a major Tertiary hospital where there is high flow of patients of different categories visiting the ED. The importance of decreasing consultation time and decision for final disposition of patients was recognized and interpreted in this project to find ways to improve the patient flow in the department and thus the total patient disposition and outcome. Aim / Objectives: 1. To monitor the time of consultation for patients in the Emergency department and its impact on the length of stay of patients in the ED. 2. To detect and assess the problems that lead to long consultation times in the ED, and reach a targeted time of 2 hours for final disposition of patients, according to recognized international and our institutional consultation policy, to reach the final goal of decreasing total length of stay and thus improve the patient flow in the ED. Methods: Data was collected retrospectively for a 92 charts of consultations done in the ED over 2 month’s period. The data was analyzed to get the median of Total Consultation Time. A survey was conducted among all ED staff to determine the level of knowledge about the total consultation time and the compliance to the institutional policy target of 2 hours. A second Data sample of 168 chart was collected after awareness campaign and education of all ED staff about the importance of reaching the target consultation time and compliance to the institutional policy. Results: We have found that there is room for improvement in our overall consultation time. This was found to be more frequent with certain specialties. Our surveys have showed that many ED staff are not familiar or not compliant with our consultation policy which was not clear for everyone. Post-intervention data have showed that awareness of the importance to decrease the total consultation time and compliance alone to the targeted goal have had a huge impact on overall improvement and decreasing the time of final decision and disposition of the patient and the overall patient length of stay in the ED. Conclusion: Working on improving Consultation time in the Emergency Department is a major factor in improving overall length of stay and patient flow. This improvement helps in the overall patient disposition and satisfaction. Plan: As a continuation of our project we are planning to focus on the conflict of admission cases where more than one specialty is involved in the care of patients. We are planning to collect data on the time it takes to resolve and reach final disposition of those patients, and its impact on the length of stay and our department flow and the overall patient outcome and satisfaction.Keywords: consultation time, impact, length of stay, in the ED
Procedia PDF Downloads 28917894 3D Steady and Transient Centrifugal Pump Flow within Ansys CFX and OpenFOAM
Authors: Clement Leroy, Guillaume Boitel
Abstract:
This paper presents a comparative benchmarking review of a steady and transient three-dimensional (3D) flow computations in centrifugal pump using commercial (AnsysCFX) and open source (OpenFOAM) computational fluid dynamics (CFD) software. In centrifugal rotor-dynamic pump, the fluid enters in the impeller along to the rotating axis to be accelerated in order to increase the pressure, flowing radially outward into another stage, vaned diffuser or volute casing, from where it finally exits into a downstream pipe. Simulations are carried out at the best efficiency point (BEP) and part load, for single-phase flow with several turbulence models. The results are compared with overall performance report from experimental data. The use of CFD technology in industry is still limited by the high computational costs, and even more by the high cost of commercial CFD software and high-performance computing (HPC) licenses. The main objectives of the present study are to define OpenFOAM methodology for high-quality 3D steady and transient turbomachinery CFD simulation to conduct a thorough time-accurate performance analysis. On the other hand a detailed comparisons between computational methods, features on latest Ansys release 18 and OpenFOAM is investigated to assess the accuracy and industrial applications of those solvers. Finally an automated connected workflow (IoT) for turbine blade applications is presented.Keywords: benchmarking, CFX, internet of things, openFOAM, time-accurate, turbomachinery
Procedia PDF Downloads 20517893 Maturity Model for Agro-Industrial Logistics
Authors: Erika Tatiana Ruiz, Wilson Adarme Jaimes
Abstract:
This abstract presents the methodology for improving the logistics processes of agricultural production units belonging to the coffee, cocoa, and fruit sectors, starting from the fundamental concepts and detailing each of the phases to carry out the diagnosis, which will be the basis for the formulation of its action plan and implementation of the maturity model. As a result of this work, the maturity model is formulated to improve logistics processes. This model seeks to: generate a progressive model that is useful for all productive units belonging to these sectors at the national level, regardless of their initial conditions, focus on the improvement of logistics processes as a strategy that contributes to improving the competitiveness of the agricultural sector in Colombia and spread the implementation of good logistics practices in postharvest in all departments of the country through autonomous tools. This model has been built through a series of steps that allow the evaluation and improvement of the logistics dimensions or indicators. The potential improvements for each dimension provide the foundation on which to advance to the next level. Within the maturity model, a methodology is indicated for the design and execution of strategies to improve its logistics processes, taking into account the current state of each production unit.Keywords: agroindustrial, characterization, logistics, maturity model, processes
Procedia PDF Downloads 13717892 Starlink Satellite Collision Probability Simulation Based on Simplified Geometry Model
Authors: Toby Li, Julian Zhu
Abstract:
In this paper, a model based on a simplified geometry is introduced to give a very conservative collision probability prediction for the Starlink satellite in its most densely clustered region. Under the model in this paper, the probability of collision for Starlink satellite where it clustered most densely is found to be 8.484 ∗ 10^−4. It is found that the predicted collision probability increased nonlinearly with the increased safety distance set. This simple model provides evidence that the continuous development of maneuver avoidance systems is necessary for the future of the orbital safety of satellites under the harsher Lower Earth Orbit environment.Keywords: Starlink, collision probability, debris, geometry model
Procedia PDF Downloads 8317891 Payload Bay Berthing of an Underwater Vehicle With Vertically Actuated Thrusters
Authors: Zachary Cooper-Baldock, Paulo E. Santos, Russell S. A. Brinkworth, Karl Sammut
Abstract:
In recent years, large unmanned underwater vehicles such as the Boeing Voyager and Anduril Ghost Shark have been developed. These vessels can be structured to contain onboard internal payload bays. These payload bays can serve a variety of purposes – including the launch and recovery (LAR) of smaller underwater vehicles. The LAR of smaller vessels is extremely important, as it enables transportation over greater distances, increased time on station, data transmission and operational safety. The larger vessel and its payload bay structure complicate the LAR of UUVs in contrast to static docks that are affixed to the seafloor, as they actively impact the local flow field. These flow field impacts require analysis to determine if UUV vessels can be safely launched and recovered inside the motherships. This research seeks to determine the hydrodynamic forces exerted on a vertically over-actuated, small, unmanned underwater vehicle (OUUV) during an internal LAR manoeuvre and compare this to an under-actuated vessel (UUUV). In this manoeuvre, the OUUV is navigated through the stern wake region of the larger vessel to a set point within the internal payload bay. The manoeuvre is simulated using ANSYS Fluent computational fluid dynamics models, covering the entire recovery of the OUUV and UUUV. The analysis of the OUUV is compared against the UUUV to determine the differences in the exerted forces. Of particular interest are the drag, pressure, turbulence and flow field effects exerted as the OUUV is driven inside the payload bay of the larger vessel. The hydrodynamic forces and flow field disturbances are used to determine the feasibility of making such an approach. From the simulations, it was determined that there was no significant detrimental physical forces, particularly with regard to turbulence. The flow field effects exerted by the OUUV are significant. The vertical thrusters exert significant wake structures, but their orientation ensures the wake effects are exerted below the UUV, minimising the impact. It was also seen that OUUV experiences higher drag forces compared to the UUUV, which will correlate to an increased energy expenditure. This investigation found no key indicators that recovery via a mothership payload bay was not feasible. The turbulence, drag and pressure phenomenon were of a similar magnitude to existing static and towed dock structures.Keywords: underwater vehicles, submarine, autonomous underwater vehicles, AUV, computational fluid dynamics, flow fields, pressure, turbulence, drag
Procedia PDF Downloads 9117890 Numerical Study on Enhancement of Heat Transfer by Turbulence
Authors: Muhammad Azmain Abdullah, Ar Rashedul, Mohammad Ali
Abstract:
This paper scrutinizes the influences of turbulence on heat transport rate, Nusselt number. The subject matter of this investigation also deals with the improvement of heat transfer efficiency of the swirl flow obtained by rotating a twisted tape in a circular pipe. The conditions to be fulfilled to observe the impact of Reynolds number and rotational speed of twisted tape are: a uniform temperature on the outer surface of the pipe, the magnitude of velocity of water varying from 0.1 m/s to 0.7 m/s in order to alter Reynolds number and a rotational speed of 200 rpm to 600 rpm. The gyration of twisted tape increase by 17%. It is also observed that heat transfer is exactly proportional to inlet gauge pressure and reciprocally proportional to increase of twist ratio.Keywords: swirl flow, twisted tape, twist ratio, heat transfer
Procedia PDF Downloads 26117889 Effects of Damper Locations and Base Isolators on Seismic Response of a Building Frame
Authors: Azin Shakibabarough, Mojtaba Valinejadshoubi, Ashutosh Bagchi
Abstract:
Structural vibration means repetitive motion that causes fatigue and reduction of the performance of a structure. An earthquake may release high amount of energy that can have adverse effect on all components of a structure. Therefore, decreasing of vibration or maintaining performance of structures such as bridges, dams, roads and buildings is important for life safety and reducing economic loss. When earthquake or any vibration happens, investigation on parts of a structure which sustain the seismic loads is mandatory to provide a safe condition for the occupants. One of the solutions for reducing the earthquake vibration in a structure is using of vibration control devices such as dampers and base isolators. The objective of this study is to investigate the optimal positions of friction dampers and base isolators for better seismic response of 2D frame. For this purpose, a two bay and six story frame with different distribution formats was modeled and some of their responses to earthquake such as inter-story drift, max joint displacement, max axial force and max bending moment were determined and compared using non-linear dynamic analysis.Keywords: fast nonlinear analysis, friction damper, base isolator, seismic vibration control, seismic response
Procedia PDF Downloads 321