Search results for: disaster detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4064

Search results for: disaster detection

1934 The Role of Synthetic Data in Aerial Object Detection

Authors: Ava Dodd, Jonathan Adams

Abstract:

The purpose of this study is to explore the characteristics of developing a machine learning application using synthetic data. The study is structured to develop the application for the purpose of deploying the computer vision model. The findings discuss the realities of attempting to develop a computer vision model for practical purpose, and detail the processes, tools, and techniques that were used to meet accuracy requirements. The research reveals that synthetic data represents another variable that can be adjusted to improve the performance of a computer vision model. Further, a suite of tools and tuning recommendations are provided.

Keywords: computer vision, machine learning, synthetic data, YOLOv4

Procedia PDF Downloads 225
1933 Clustering-Based Detection of Alzheimer's Disease Using Brain MR Images

Authors: Sofia Matoug, Amr Abdel-Dayem

Abstract:

This paper presents a comprehensive survey of recent research studies to segment and classify brain MR (magnetic resonance) images in order to detect significant changes to brain ventricles. The paper also presents a general framework for detecting regions that atrophy, which can help neurologists in detecting and staging Alzheimer. Furthermore, a prototype was implemented to segment brain MR images in order to extract the region of interest (ROI) and then, a classifier was employed to differentiate between normal and abnormal brain tissues. Experimental results show that the proposed scheme can provide a reliable second opinion that neurologists can benefit from.

Keywords: Alzheimer, brain images, classification techniques, Magnetic Resonance Images MRI

Procedia PDF Downloads 302
1932 Frequency Domain Decomposition, Stochastic Subspace Identification and Continuous Wavelet Transform for Operational Modal Analysis of Three Story Steel Frame

Authors: Ardalan Sabamehr, Ashutosh Bagchi

Abstract:

Recently, Structural Health Monitoring (SHM) based on the vibration of structures has attracted the attention of researchers in different fields such as: civil, aeronautical and mechanical engineering. Operational Modal Analysis (OMA) have been developed to identify modal properties of infrastructure such as bridge, building and so on. Frequency Domain Decomposition (FDD), Stochastic Subspace Identification (SSI) and Continuous Wavelet Transform (CWT) are the three most common methods in output only modal identification. FDD, SSI, and CWT operate based on the frequency domain, time domain, and time-frequency plane respectively. So, FDD and SSI are not able to display time and frequency at the same time. By the way, FDD and SSI have some difficulties in a noisy environment and finding the closed modes. CWT technique which is currently developed works on time-frequency plane and a reasonable performance in such condition. The other advantage of wavelet transform rather than other current techniques is that it can be applied for the non-stationary signal as well. The aim of this paper is to compare three most common modal identification techniques to find modal properties (such as natural frequency, mode shape, and damping ratio) of three story steel frame which was built in Concordia University Lab by use of ambient vibration. The frame has made of Galvanized steel with 60 cm length, 27 cm width and 133 cm height with no brace along the long span and short space. Three uniaxial wired accelerations (MicroStarin with 100mv/g accuracy) have been attached to the middle of each floor and gateway receives the data and send to the PC by use of Node Commander Software. The real-time monitoring has been performed for 20 seconds with 512 Hz sampling rate. The test is repeated for 5 times in each direction by hand shaking and impact hammer. CWT is able to detect instantaneous frequency by used of ridge detection method. In this paper, partial derivative ridge detection technique has been applied to the local maxima of time-frequency plane to detect the instantaneous frequency. The extracted result from all three methods have been compared, and it demonstrated that CWT has the better performance in term of its accuracy in noisy environment. The modal parameters such as natural frequency, damping ratio and mode shapes are identified from all three methods.

Keywords: ambient vibration, frequency domain decomposition, stochastic subspace identification, continuous wavelet transform

Procedia PDF Downloads 296
1931 Nanorods Based Dielectrophoresis for Protein Concentration and Immunoassay

Authors: Zhen Cao, Yu Zhu, Junxue Fu

Abstract:

Immunoassay, i.e., antigen-antibody reaction, is crucial for disease diagnostics. To achieve the adequate signal of the antigen protein detection, a large amount of sample and long incubation time is needed. However, the amount of protein is usually small at the early stage, which makes it difficult to detect. Unlike cells and DNAs, no valid chemical method exists for protein amplification. Thus, an alternative way to improve the signal is through particle manipulation techniques to concentrate proteins, among which dielectrophoresis (DEP) is an effective one. DEP is a technique that concentrates particles to the designated region through a force created by the gradient in a non-uniform electric field. Since DEP force is proportional to the cube of particle size and square of electric field gradient, it is relatively easy to capture larger particles such as cells. For smaller ones like proteins, a super high gradient is then required. In this work, three-dimensional Ag/SiO2 nanorods arrays, fabricated by an easy physical vapor deposition technique called as oblique angle deposition, have been integrated with a DEP device and created the field gradient as high as of 2.6×10²⁴ V²/m³. The nanorods based DEP device is able to enrich bovine serum albumin (BSA) protein by 1800-fold and the rate has reached 180-fold/s when only applying 5 V electric potential. Based on the above nanorods integrated DEP platform, an immunoassay of mouse immunoglobulin G (IgG) proteins has been performed. Briefly, specific antibodies are immobilized onto nanorods, then IgG proteins are concentrated and captured, and finally, the signal from fluorescence-labelled antibodies are detected. The limit of detection (LoD) is measured as 275.3 fg/mL (~1.8 fM), which is a 20,000-fold enhancement compared with identical assays performed on blank glass plates. Further, prostate-specific antigen (PSA), which is a cancer biomarker for diagnosis of prostate cancer after radical prostatectomy, is also quantified with a LoD as low as 2.6 pg/mL. The time to signal saturation has been significantly reduced to one minute. In summary, together with an easy nanorod fabrication and integration method, this nanorods based DEP platform has demonstrated highly sensitive immunoassay performance and thus poses great potentials in applications for early point-of-care diagnostics.

Keywords: dielectrophoresis, immunoassay, oblique angle deposition, protein concentration

Procedia PDF Downloads 103
1930 Detection of Aflatoxin B1 Producing Aspergillus flavus Genes from Maize Feed Using Loop-Mediated Isothermal Amplification (LAMP) Technique

Authors: Sontana Mimapan, Phattarawadee Wattanasuntorn, Phanom Saijit

Abstract:

Aflatoxin contamination in maize, one of several agriculture crops grown for livestock feeding, is still a problem throughout the world mainly under hot and humid weather conditions like Thailand. In this study Aspergillus flavus (A. Flavus), the key fungus for aflatoxin production especially aflatoxin B1 (AFB1), isolated from naturally infected maize were identified and characterized according to colony morphology and PCR using ITS, Beta-tubulin and calmodulin genes. The strains were analysed for the presence of four aflatoxigenic biosynthesis genes in relation to their capability to produce AFB1, Ver1, Omt1, Nor1, and aflR. Aflatoxin production was then confirmed using immunoaffinity column technique. A loop-mediated isothermal amplification (LAMP) was applied as an innovative technique for rapid detection of target nucleic acid. The reaction condition was optimized at 65C for 60 min. and calcein flurescent reagent was added before amplification. The LAMP results showed clear differences between positive and negative reactions in end point analysis under daylight and UV light by the naked eye. In daylight, the samples with AFB1 producing A. Flavus genes developed a yellow to green color, but those without the genes retained the orange color. When excited with UV light, the positive samples become visible by bright green fluorescence. LAMP reactions were positive after addition of purified target DNA until dilutions of 10⁻⁶. The reaction products were then confirmed and visualized with 1% agarose gel electrophoresis. In this regards, 50 maize samples were collected from dairy farms and tested for the presence of four aflatoxigenic biosynthesis genes using LAMP technique. The results were positive in 18 samples (36%) but negative in 32 samples (64%). All of the samples were rechecked by PCR and the results were the same as LAMP, indicating 100% specificity. Additionally, when compared with the immunoaffinity column-based aflatoxin analysis, there was a significant correlation between LAMP results and aflatoxin analysis (r= 0.83, P < 0.05) which suggested that positive maize samples were likely to be a high- risk feed. In conclusion, the LAMP developed in this study can provide a simple and rapid approach for detecting AFB1 producing A. Flavus genes from maize and appeared to be a promising tool for the prediction of potential aflatoxigenic risk in livestock feedings.

Keywords: Aflatoxin B1, Aspergillus flavus genes, maize, loop-mediated isothermal amplification

Procedia PDF Downloads 240
1929 Childhood Cataract: A Socio-Clinical Study at a Public Sector Tertiary Eye Care Centre in India

Authors: Deepak Jugran, Rajesh Gill

Abstract:

Purpose: To study the demographic, sociological, gender and clinical profile of the children presented for childhood cataract at a public sector tertiary eye care centre in India. Methodology: The design of the study is retrospective, and hospital-based data is available with the Central Registration Department of the PGIMER, Chandigarh. The majority of the childhood cataract cases are being reported in this hospital, yet not each and every case of childhood cataract approaches PGI, Chandigarh. Nevertheless, this study is going to be pioneering research in India, covering five-year data of the childhood cataract patients who visited the Advanced Eye Centre, PGIMER, Chandigarh, from 1.1.2015 to 31.12.2019. The SPSS version 23 was used for all statistical calculations. Results: A Total of 354 children were presented for childhood cataract from 1.1.2015 to 31.12.2019. Out of 354 children, 248 (70%) were male, and 106 (30%) were female. In-spite of 2 flagship programmes, namely the National Programme for Control of Blindness (NPCB) and Aayushman Bharat (PM JAY) for eradication of cataract, no children received any financial assistance from these two programmes. A whopping 99% of these children belong to the poor families. In most of these families, the mothers were house-wives and did not employ anywhere. These interim results will soon be conveyed to the Govt. of India so that a suitable mechanism can be evolved to address this pertinent issue. Further, the disproportionate ratio of male and female children in this study is an area of concern as we don’t know whether the prevalence of childhood cataract is lower in female children or they are not being presented on time in the hospital by the families. Conclusion: The World Health Organization (WHO) has categorized Childhood blindness resulting from cataract as a priority area and urged all member countries to develop institutionalized mechanisms for its early detection, diagnosis and management. The childhood cataract is an emerging and major cause of preventable and avoidable childhood blindness, especially in low and middle-income countries. In the formative years, the children require a sound physical, mental and emotional state, and in the absence of either one of them, it can severely dent their future growth. The recent estimate suggests that India could suffer an economic loss of US$12 billion (Rs. 88,000 Crores) due to blindness, and almost 35% of cases of blindness are preventable and avoidable if detected at an early age. Besides reporting these results to the policy makers, synchronized efforts are needed for early detection and management of avoidable causes of childhood blindness such as childhood cataract.

Keywords: childhood blindness, cataract, Who, Npcb

Procedia PDF Downloads 106
1928 Pulmonary Disease Identification Using Machine Learning and Deep Learning Techniques

Authors: Chandu Rathnayake, Isuri Anuradha

Abstract:

Early detection and accurate diagnosis of lung diseases play a crucial role in improving patient prognosis. However, conventional diagnostic methods heavily rely on subjective symptom assessments and medical imaging, often causing delays in diagnosis and treatment. To overcome this challenge, we propose a novel lung disease prediction system that integrates patient symptoms and X-ray images to provide a comprehensive and reliable diagnosis.In this project, develop a mobile application specifically designed for detecting lung diseases. Our application leverages both patient symptoms and X-ray images to facilitate diagnosis. By combining these two sources of information, our application delivers a more accurate and comprehensive assessment of the patient's condition, minimizing the risk of misdiagnosis. Our primary aim is to create a user-friendly and accessible tool, particularly important given the current circumstances where many patients face limitations in visiting healthcare facilities. To achieve this, we employ several state-of-the-art algorithms. Firstly, the Decision Tree algorithm is utilized for efficient symptom-based classification. It analyzes patient symptoms and creates a tree-like model to predict the presence of specific lung diseases. Secondly, we employ the Random Forest algorithm, which enhances predictive power by aggregating multiple decision trees. This ensemble technique improves the accuracy and robustness of the diagnosis. Furthermore, we incorporate a deep learning model using Convolutional Neural Network (CNN) with the RestNet50 pre-trained model. CNNs are well-suited for image analysis and feature extraction. By training CNN on a large dataset of X-ray images, it learns to identify patterns and features indicative of lung diseases. The RestNet50 architecture, known for its excellent performance in image recognition tasks, enhances the efficiency and accuracy of our deep learning model. By combining the outputs of the decision tree-based algorithms and the deep learning model, our mobile application generates a comprehensive lung disease prediction. The application provides users with an intuitive interface to input their symptoms and upload X-ray images for analysis. The prediction generated by the system offers valuable insights into the likelihood of various lung diseases, enabling individuals to take appropriate actions and seek timely medical attention. Our proposed mobile application has significant potential to address the rising prevalence of lung diseases, particularly among young individuals with smoking addictions. By providing a quick and user-friendly approach to assessing lung health, our application empowers individuals to monitor their well-being conveniently. This solution also offers immense value in the context of limited access to healthcare facilities, enabling timely detection and intervention. In conclusion, our research presents a comprehensive lung disease prediction system that combines patient symptoms and X-ray images using advanced algorithms. By developing a mobile application, we provide an accessible tool for individuals to assess their lung health conveniently. This solution has the potential to make a significant impact on the early detection and management of lung diseases, benefiting both patients and healthcare providers.

Keywords: CNN, random forest, decision tree, machine learning, deep learning

Procedia PDF Downloads 73
1927 Spatial Analysis of Flood Vulnerability in Highly Urbanized Area: A Case Study in Taipei City

Authors: Liang Weichien

Abstract:

Without adequate information and mitigation plan for natural disaster, the risk to urban populated areas will increase in the future as populations grow, especially in Taiwan. Taiwan is recognized as the world's high-risk areas, where an average of 5.7 times of floods occur per year should seek to strengthen coherence and consensus in how cities can plan for flood and climate change. Therefore, this study aims at understanding the vulnerability to flooding in Taipei city, Taiwan, by creating indicators and calculating the vulnerability of each study units. The indicators were grouped into sensitivity and adaptive capacity based on the definition of vulnerability of Intergovernmental Panel on Climate Change. The indicators were weighted by using Principal Component Analysis. However, current researches were based on the assumption that the composition and influence of the indicators were the same in different areas. This disregarded spatial correlation that might result in inaccurate explanation on local vulnerability. The study used Geographically Weighted Principal Component Analysis by adding geographic weighting matrix as weighting to get the different main flood impact characteristic in different areas. Cross Validation Method and Akaike Information Criterion were used to decide bandwidth and Gaussian Pattern as the bandwidth weight scheme. The ultimate outcome can be used for the reduction of damage potential by integrating the outputs into local mitigation plan and urban planning.

Keywords: flood vulnerability, geographically weighted principal components analysis, GWPCA, highly urbanized area, spatial correlation

Procedia PDF Downloads 286
1926 Fe Modified Tin Oxide Thin Film Based Matrix for Reagentless Uric Acid Biosensing

Authors: Kashima Arora, Monika Tomar, Vinay Gupta

Abstract:

Biosensors have found potential applications ranging from environmental testing and biowarfare agent detection to clinical testing, health care, and cell analysis. This is driven in part by the desire to decrease the cost of health care and to obtain precise information more quickly about the health status of patient by the development of various biosensors, which has become increasingly prevalent in clinical testing and point of care testing for a wide range of biological elements. Uric acid is an important byproduct in human body and a number of pathological disorders are related to its high concentration in human body. In past few years, rapid growth in the development of new materials and improvements in sensing techniques have led to the evolution of advanced biosensors. In this context, metal oxide thin film based matrices due to their bio compatible nature, strong adsorption ability, high isoelectric point (IEP) and abundance in nature have become the materials of choice for recent technological advances in biotechnology. In the past few years, wide band-gap metal oxide semiconductors including ZnO, SnO₂ and CeO₂ have gained much attention as a matrix for immobilization of various biomolecules. Tin oxide (SnO₂), wide band gap semiconductor (Eg =3.87 eV), despite having multifunctional properties for broad range of applications including transparent electronics, gas sensors, acoustic devices, UV photodetectors, etc., it has not been explored much for biosensing purpose. To realize a high performance miniaturized biomolecular electronic device, rf sputtering technique is considered to be the most promising for the reproducible growth of good quality thin films, controlled surface morphology and desired film crystallization with improved electron transfer property. Recently, iron oxide and its composites have been widely used as matrix for biosensing application which exploits the electron communication feature of Fe, for the detection of various analytes using urea, hemoglobin, glucose, phenol, L-lactate, H₂O₂, etc. However, to the authors’ knowledge, no work is being reported on modifying the electronic properties of SnO₂ by implanting with suitable metal (Fe) to induce the redox couple in it and utilizing it for reagentless detection of uric acid. In present study, Fe implanted SnO₂ based matrix has been utilized for reagentless uric acid biosensor. Implantation of Fe into SnO₂ matrix is confirmed by energy-dispersive X-Ray spectroscopy (EDX) analysis. Electrochemical techniques have been used to study the response characteristics of Fe modified SnO₂ matrix before and after uricase immobilization. The developed uric acid biosensor exhibits a high sensitivity to about 0.21 mA/mM and a linear variation in current response over concentration range from 0.05 to 1.0 mM of uric acid besides high shelf life (~20 weeks). The Michaelis-Menten kinetic parameter (Km) is found to be relatively very low (0.23 mM), which indicates high affinity of the fabricated bioelectrode towards uric acid (analyte). Also, the presence of other interferents present in human serum has negligible effect on the performance of biosensor. Hence, obtained results highlight the importance of implanted Fe:SnO₂ thin film as an attractive matrix for realization of reagentless biosensors towards uric acid.

Keywords: Fe implanted tin oxide, reagentless uric acid biosensor, rf sputtering, thin film

Procedia PDF Downloads 181
1925 An Exploration of the Place of Buddhism in the Tham Luang Cave Rescue and Its Aftermath

Authors: Hamish de Nett

Abstract:

On 23rd June 2018, twelve young footballers from the Wild Boar Academy and their coach went to explore the Tham Luang cave in the Doi Nang Non mountain range in Chiang Rai Province, Northern Thailand. Whilst they were inside the cave, monsoon rains hit, and the complex became partially flooded. In the following days, Thai Navy SEALs and an international team of expert divers assembled at the cave complex in order to rescue the boys. Although it was only marginally reported in the Western press, Buddhism and ritual activities played a major role in the rescue and its aftermath. This paper utilises numerous news articles and books written by reporters who covered the cave rescue to uncover what the place of Buddhism was in the Tham Luang cave rescue. This paper initially sets out the development of Thai Buddhism and the Thai nation state, paying particular note to the tension in Thai Buddhism between Buddhism as it is popularly practised and normative, state-favoured Buddhism. Secondly, this paper demonstrates that, during the Tham Luang cave rescue, Buddhism helped people cope with the disaster, provided an explanation for its occurrence, and allowed bystanders some efficacy in the process. Thirdly, this paper discusses how Buddhism helped people to give thanks after the rescue, achieve reconciliation, and gain closure. Finally, this paper analyses how the government and the political sphere utilised Buddhism during the rescue. The conclusion reached is that the Buddhism practiced during the Tham Luang cave rescue and its aftermath is representative of the wider tension between popular Buddhism and normative state-favoured Buddhism that is currently present within Thai Buddhism and has been for centuries.

Keywords: cave rescue, contemporary Buddhism, lived religion, Thai Buddhism, Tham Luang cave rescue

Procedia PDF Downloads 129
1924 Revealing Thermal Degradation Characteristics of Distinctive Oligo-and Polisaccharides of Prebiotic Relevance

Authors: Attila Kiss, Erzsébet Némedi, Zoltán Naár

Abstract:

As natural prebiotic (non-digestible) carbohydrates stimulate the growth of colon microflora and contribute to maintain the health of the host, analytical studies aiming at revealing the chemical behavior of these beneficial food components came to the forefront of interest. Food processing (especially baking) may lead to a significant conversion of the parent compounds, hence it is of utmost importance to characterize the transformation patterns and the plausible decomposition products formed by thermal degradation. The relevance of this work is confirmed by the wide-spread use of these carbohydrates (fructo-oligosaccharides, cyclodextrins, raffinose and resistant starch) in the food industry. More and more functional foodstuffs are being developed based on prebiotics as bioactive components. 12 different types of oligosaccharides have been investigated in order to reveal their thermal degradation characteristics. Different carbohydrate derivatives (D-fructose and D-glucose oligomers and polymers) have been exposed to elevated temperatures (150 °C 170 °C, 190 °C, 210 °C, and 220 °C) for 10 min. An advanced HPLC method was developed and used to identify the decomposition products of carbohydrates formed as a consequence of thermal treatment. Gradient elution was applied with binary solvent elution (acetonitrile, water) through amine based carbohydrate column. Evaporative light scattering (ELS) proved to be suitable for the reliable detection of the UV/VIS inactive carbohydrate degradation products. These experimental conditions and applied advanced techniques made it possible to survey all the formed intermediers. Change in oligomer distribution was established in cases of all studied prebiotics throughout the thermal treatments. The obtained results indicate increased extent of chain degradation of the carbohydrate moiety at elevated temperatures. Prevalence of oligomers with shorter chain length and even the formation of monomer sugars (D-glucose and D-fructose) might be observed at higher temperatures. Unique oligomer distributions, which have not been described previously are revealed in the case of each studied, specific carbohydrate, which might result in various prebiotic activities. Resistant starches exhibited high stability when being thermal treated. The degradation process has been modeled by a plausible reaction mechanism, in which proton catalyzed degradation and chain cleavage take place.

Keywords: prebiotics, thermal degradation, fructo-oligosaccharide, HPLC, ELS detection

Procedia PDF Downloads 305
1923 System Detecting Border Gateway Protocol Anomalies Using Local and Remote Data

Authors: Alicja Starczewska, Aleksander Nawrat, Krzysztof Daniec, Jarosław Homa, Kacper Hołda

Abstract:

Border Gateway Protocol is the main routing protocol that enables routing establishment between all autonomous systems, which are the basic administrative units of the internet. Due to the poor protection of BGP, it is important to use additional BGP security systems. Many solutions to this problem have been proposed over the years, but none of them have been implemented on a global scale. This article describes a system capable of building images of real-time BGP network topology in order to detect BGP anomalies. Our proposal performs a detailed analysis of BGP messages that come into local network cards supplemented by information collected by remote collectors in different localizations.

Keywords: BGP, BGP hijacking, cybersecurity, detection

Procedia PDF Downloads 78
1922 Using Seismic Base Isolation Systems in High-Rise Hospital Buildings and a Hybrid Proposal

Authors: Elif Bakkaloglu, Necdet Torunbalci

Abstract:

The fact of earthquakes in Turkiye is an inevitable natural disaster. Therefore, buildings must be prepared for this natural hazard. Especially in hospital buildings, earthquake resistance is an essential point because hospitals are one of the first places where people come after an earthquake. Although hospital buildings are more suitable for horizontal architecture, it is necessary to construct and expand multi-storey hospital buildings due to difficulties in finding suitable places as a result of excessive urbanization, difficulties in obtaining appropriate size land and decrease in suitable places and increase in land values. In Turkiye, using seismic isolators in public hospitals, which are placed in first-degree earthquake zone and have more than 100 beds, is made obligatory by general instruction. As a result of this decision, it may sometimes be necessary to construct seismic isolated multi-storey hospital buildings in cities where those problems are experienced. Although widespread use of seismic isolators in Japan, there are few multi-storey buildings in which seismic isolators are used in Turkiye. As it is known, base isolation systems are the most effective methods of earthquake resistance, as number of floors increases, center of gravity moves away from base in multi-storey buildings, increasing the overturning effect and limiting the use of these systems. In this context, it is aimed to investigate structural systems of multi-storey buildings which built using seismic isolation methods in the World. In addition to this, a working principle is suggested for disseminating seismic isolators in multi-storey hospital buildings. The results to be obtained from the study will guide architects who design multi-storey hospital buildings in their architectural designs and engineers in terms of structural system design.

Keywords: earthquake, energy absorbing systems, hospital, seismic isolation systems

Procedia PDF Downloads 151
1921 Optimized Deep Learning-Based Facial Emotion Recognition System

Authors: Erick C. Valverde, Wansu Lim

Abstract:

Facial emotion recognition (FER) system has been recently developed for more advanced computer vision applications. The ability to identify human emotions would enable smart healthcare facility to diagnose mental health illnesses (e.g., depression and stress) as well as better human social interactions with smart technologies. The FER system involves two steps: 1) face detection task and 2) facial emotion recognition task. It classifies the human expression in various categories such as angry, disgust, fear, happy, sad, surprise, and neutral. This system requires intensive research to address issues with human diversity, various unique human expressions, and variety of human facial features due to age differences. These issues generally affect the ability of the FER system to detect human emotions with high accuracy. Early stage of FER systems used simple supervised classification task algorithms like K-nearest neighbors (KNN) and artificial neural networks (ANN). These conventional FER systems have issues with low accuracy due to its inefficiency to extract significant features of several human emotions. To increase the accuracy of FER systems, deep learning (DL)-based methods, like convolutional neural networks (CNN), are proposed. These methods can find more complex features in the human face by means of the deeper connections within its architectures. However, the inference speed and computational costs of a DL-based FER system is often disregarded in exchange for higher accuracy results. To cope with this drawback, an optimized DL-based FER system is proposed in this study.An extreme version of Inception V3, known as Xception model, is leveraged by applying different network optimization methods. Specifically, network pruning and quantization are used to enable lower computational costs and reduce memory usage, respectively. To support low resource requirements, a 68-landmark face detector from Dlib is used in the early step of the FER system.Furthermore, a DL compiler is utilized to incorporate advanced optimization techniques to the Xception model to improve the inference speed of the FER system. In comparison to VGG-Net and ResNet50, the proposed optimized DL-based FER system experimentally demonstrates the objectives of the network optimization methods used. As a result, the proposed approach can be used to create an efficient and real-time FER system.

Keywords: deep learning, face detection, facial emotion recognition, network optimization methods

Procedia PDF Downloads 118
1920 Characterization of β-Lactamases Resistance amongst Acinetobacter Baumannii Isolated from Clinical Samples, Egypt

Authors: Amal Saafan, Kareem Al Sofy, Sameh AbdelGhani, Magdy Amin

Abstract:

Background: Acinetobacter spp. resistance towards β-lactam antibiotics is mediated mainly by different classes of β-lactamases production; detection of some genes responsible for production of β-lactamases is the objective of the study. Methods: One hundred fifty bacterial isolates were recovered from blood, sputum, and urine specimens from different hospitals in Egypt. Sixty-nine isolate were identified as Acinetobacter baumannii using traditional biochemical tests, CHROM agar, MicroScan and PCR amplification of blaoxa-51like gene. Acinetobacterbaumannii isolates were grouped into carbapenem resistant group (GP1), cefotaxime, ceftazidime and cefoxitin resistant group (GP2) and carbapenem and cephalosporin non-resistant group (GP3). Carbapenemase activity was screened using modified Hodge test (MHT) for GP1.Metallo-β-lactamases screening was performed for MHT positive isolates using double disk synergy test (DDST) and combined disk test (CDT). Amp C activity was screened using Amp C disk test with Tris-EDTA, DDST, and CDT for GP2. Finally, PCR amplification of blaoxa-51like, blaoxa-23like, blaIMP-like, blaVIM-like, and blaADC-like genes was performed for isolates that showed, at least, two positive results of three for both AmpC and carbapenemases phenotypic screening tests (obvious activity), in addition to GP3 (for comparison). Detection of blaoxa-51like and blaADC-like genes preceded by ISAba1 was also performed. Results: Antibiogram of 69 pure Acinetobacter baumannii isolates resulted in 57, 64, and 2 isolates enrolled into GP1, GP2, and GP3, respectively. Carbapenemase activity was shown by 49(85.9%) isolate using MHT. Metallo-β-lactamases screening revealed 32(65.3%) and 35(71.4%) using DDST and CDT, respectively.AmpC activity was shown by 43(67.2%) and 50 (78.1%) isolates using AmpC disk test with Tris-EDTA, and both DDST and CDT, respectively. Twenty-seven isolates showed obvious activity, all of them (100%) were harboring blaoxa-51like and blaADC-like genes, while blaoxa-23like, blaIMP-like andblaVIM-like genes were harbored by 23(85.2%), 9 (33.%) and no isolate respectively. Only 12 (44.4%) isolates harbored blaoxa-51like and blaADC-like genes preceded by ISAba1. GP3 isolates showed only positive blaoxa-51like and blaADC-like genes. Conclusion: It is not possible to correlate resistance with presence of blaoxa-51like and blaADC-like genes and presence of ISAba1 was immediate as transcriptional promoter. A blaoxa-23like gene played an important role in carbapenem resistance when compared with blaIMP-like and blaVIM-like gene.

Keywords: acinetobacter, beta-lactams, resistance, antimicrobial agents

Procedia PDF Downloads 345
1919 A Fundamental Study for Real-Time Safety Evaluation System of Landing Pier Using FBG Sensor

Authors: Heungsu Lee, Youngseok Kim, Jonghwa Yi, Chul Park

Abstract:

A landing pier is subjected to safety assessment by visual inspection and design data, but it is difficult to check the damage in real-time. In this study, real - time damage detection and safety evaluation methods were studied. As a result of structural analysis of the arbitrary landing pier structure, the inflection point of deformation and moment occurred at 10%, 50%, and 90% of pile length. The critical value of Fiber Bragg Grating (FBG) sensor was set according to the safety factor, and the FBG sensor application method for real - time safety evaluation was derived.

Keywords: FBG sensor, harbor structure, maintenance, safety evaluation system

Procedia PDF Downloads 218
1918 Distributing Complementary Food Supplement - Yingyangbao Reducing the Anemia in Young Children in a County of Sichuan Province after Wenchuan Earthquake

Authors: Lijuan Wang, Junsheng Huo, Jing Sun, Wenxian Li, Jian Huang, Lin Ling, Yiping Zhou, Chengyu Huang, Jifang Hu

Abstract:

Backgrounds and Objective: This study aimed to evaluate the impact of highly nutrient-dense complementary food supplement-Yingyangbao, at the time of 3 months after Wenchuan earthquake, on the anemia of young children in a county in Sichuan province. Methods: The young children aged 6-23 months in the county were fed one sachet Yingyangbao per day. Yingyangbao were distributed for 15 months for free. The children entering 6 months age would be included. The length, weight and hemoglobin of the children aged 6-29 months were assessed at baseline (n=257) and Yingyangbao intervention for 6 (n=218) and 15 months (n=253) by cluster sampling. Growth status has not been described in the paper. The analysis was conducted based on 6-11, 12-17, 18-23 and 24-29 months. Results: It showed that the hemoglobin concentration in each group among the 4 groups increased by 4.9, 6.4, 8.0, 9.5 g/L after 6 months and 12.7, 11.4, 16.7, 15.7 g/L after 15 months compared to the baseline, respectively. The total anemia prevalence in each group was significantly lower after 6 and 15 months than the baseline (P<0.001), except the 6-11 months group after 6 months because of fewer Yingyangbao consumption. Total moderate anemia rate decreased from 18.3% to 5.5% after 6 months, and kept decreasing to 0.8% after another 9 months. The hemoglobin concentration was significantly correlated with the amount of Yingyangbao consumption(P<0.001) The anemia rate was significantly different based on the Yingyangbao compliance (P<0.001). Conclusion: It was concluded that Yingyangbao which contains quality protein, vitamins and micronutrients intervened 15 months could be effective for the improvement of anemia of young children. The study provides the support that the application of the complementary food supplements to reduce the anemia of young children in the emergency of natural disaster.

Keywords: young children, anemia, nutrition intervention, complementary food supplements, Yingyangbao

Procedia PDF Downloads 526
1917 Microfluidic Lab on Chip Platform for the Detection of Arthritis Markers from Synovial Organ on Chip by Miniaturizing Enzyme-Linked ImmunoSorbent Assay Protocols

Authors: Laura Boschis, Elena D. Ozzello, Enzo Mastromatteo

Abstract:

Point of care diagnostic finds growing interest in medicine and agri-food because of faster intervention and prevention. EliChip is a microfluidic platform to perform Point of Care immunoenzymatic assay based on ready-to-use kits and a portable instrument to manage fluidics and read reliable quantitative results. Thanks to miniaturization, analyses are faster and more sensible than conventional ELISA. EliChip is one of the crucial assets of the Europen-founded Flamingo project for in-line measuring inflammatory markers.

Keywords: lab on chip, point of care, immunoenzymatic analysis, synovial arthritis

Procedia PDF Downloads 187
1916 Self-Help Adaptation to Flooding in Low-Income Settlements in Chiang Mai, Thailand

Authors: Nachawit Tikul

Abstract:

This study aimed to determine low-income housing adaptations for flooding, which causes living problems and housing damage, and the results from improvement. Three low-income settlements in Chiang Mai which experienced different flood types, i.e. flash floods in Samukeepattana, drainage floods in Bansanku, and river floods in Kampangam, were chosen for the study. Almost all of the residents improved their houses to protect the property from flood damage by changing building materials to flood damage resistant materials for walls, floors, and other parts of the structure that were below the base of annual flood elevation. They could only build some parts of their own homes, so hiring skilled workers or contractors was still important. Building materials which have no need for any special tools and are easy to access and use for construction, as well as low cost, are selected for construction. The residents in the three slums faced living problems for only a short time and were able to cope with them. This may be due to the location of the three slums near the city where assistance is readily available. But the housing and the existence in the slums can endure only the regular floods and residence still have problems in unusual floods, which have been experienced 1-2 times during the past 10 years. The residents accept the need for evacuations and prepare for them. When faced with extreme floods, residence have evacuated to the nearest safe place such as schools and public building, and come back to repair the houses after the flood. These are the distinguishing characteristics of low-income living which can withstand serious situations due to the simple lifestyle. Therefore, preparation of living areas for use during severe floods and encouraging production of affordable flood resistant materials should be areas of concern when formulating disaster assistance policies for low income people.

Keywords: flooding, low-income settlement, housing, adaptation

Procedia PDF Downloads 238
1915 Configuring Systems to Be Viable in a Crisis: The Role of Intuitive Decision-Making

Authors: Ayham Fattoum, Simos Chari, Duncan Shaw

Abstract:

Volatile, uncertain, complex, and ambiguous (VUCA) conditions threaten systems viability with emerging and novel events requiring immediate and localized responses. Such responsiveness is only possible through devolved freedom and emancipated decision-making. The Viable System Model (VSM) recognizes the need and suggests maximizing autonomy to localize decision-making and minimize residual complexity. However, exercising delegated autonomy in VUCA requires confidence and knowledge to use intuition and guidance to maintain systemic coherence. This paper explores the role of intuition as an enabler of emancipated decision-making and autonomy under VUCA. Intuition allows decision-makers to use their knowledge and experience to respond rapidly to novel events. This paper offers three contributions to VSM. First, it designs a system model that illustrates the role of intuitive decision-making in managing complexity and maintaining viability. Second, it takes a black-box approach to theory development in VSM to model the role of autonomy and intuition. Third, the study uses a multi-stage discovery-oriented approach (DOA) to develop theory, with each stage combining literature, data analysis, and model/theory development and identifying further questions for the subsequent stage. We synthesize literature (e.g., VSM, complexity management) with seven months of field-based insights (interviews, workshops, and observation of a live disaster exercise) to develop a framework of intuitive complexity management framework and VSM models. The results have practical implications for enhancing the resilience of organizations and communities.

Keywords: Intuition, complexity management, decision-making, viable system model

Procedia PDF Downloads 67
1914 Predicting Student Performance Based on Coding Behavior in STEAMplug

Authors: Giovanni Gonzalez Araujo, Michael Kyrilov, Angelo Kyrilov

Abstract:

STEAMplug is a web-based innovative educational platform which makes teaching easier and learning more effective. It requires no setup, eliminating the barriers to entry, allowing students to focus on their learning throughreal-world development environments. The student-centric tools enable easy collaboration between peers and teachers. Analyzing user interactions with the system enables us to predict student performance and identify at-risk students, allowing early instructor intervention.

Keywords: plagiarism detection, identifying at-Risk Students, education technology, e-learning system, collaborative development, learning and teaching with technology

Procedia PDF Downloads 151
1913 Prediction of Sepsis Illness from Patients Vital Signs Using Long Short-Term Memory Network and Dynamic Analysis

Authors: Marcio Freire Cruz, Naoaki Ono, Shigehiko Kanaya, Carlos Arthur Mattos Teixeira Cavalcante

Abstract:

The systems that record patient care information, known as Electronic Medical Record (EMR) and those that monitor vital signs of patients, such as heart rate, body temperature, and blood pressure have been extremely valuable for the effectiveness of the patient’s treatment. Several kinds of research have been using data from EMRs and vital signs of patients to predict illnesses. Among them, we highlight those that intend to predict, classify, or, at least identify patterns, of sepsis illness in patients under vital signs monitoring. Sepsis is an organic dysfunction caused by a dysregulated patient's response to an infection that affects millions of people worldwide. Early detection of sepsis is expected to provide a significant improvement in its treatment. Preceding works usually combined medical, statistical, mathematical and computational models to develop detection methods for early prediction, getting higher accuracies, and using the smallest number of variables. Among other techniques, we could find researches using survival analysis, specialist systems, machine learning and deep learning that reached great results. In our research, patients are modeled as points moving each hour in an n-dimensional space where n is the number of vital signs (variables). These points can reach a sepsis target point after some time. For now, the sepsis target point was calculated using the median of all patients’ variables on the sepsis onset. From these points, we calculate for each hour the position vector, the first derivative (velocity vector) and the second derivative (acceleration vector) of the variables to evaluate their behavior. And we construct a prediction model based on a Long Short-Term Memory (LSTM) Network, including these derivatives as explanatory variables. The accuracy of the prediction 6 hours before the time of sepsis, considering only the vital signs reached 83.24% and by including the vectors position, speed, and acceleration, we obtained 94.96%. The data are being collected from Medical Information Mart for Intensive Care (MIMIC) Database, a public database that contains vital signs, laboratory test results, observations, notes, and so on, from more than 60.000 patients.

Keywords: dynamic analysis, long short-term memory, prediction, sepsis

Procedia PDF Downloads 125
1912 A Middleware Management System with Supporting Holonic Modules for Reconfigurable Management System

Authors: Roscoe McLean, Jared Padayachee, Glen Bright

Abstract:

There is currently a gap in the technology covering the rapid establishment of control after a reconfiguration in a Reconfigurable Manufacturing System. This gap involves the detection of the factory floor state and the communication link between the factory floor and the high-level software. In this paper, a thin, hardware-supported Middleware Management System (MMS) is proposed and its design and implementation are discussed. The research found that a cost-effective localization technique can be combined with intelligent software to speed up the ramp-up of a reconfigured system. The MMS makes the process more intelligent, more efficient and less time-consuming, thus supporting the industrial implementation of the RMS paradigm.

Keywords: intelligent systems, middleware, reconfigurable manufacturing, management system

Procedia PDF Downloads 676
1911 Flood Devastation Assessment Through Mapping in Nigeria-2022 using Geospatial Techniques

Authors: Hafiz Muhammad Tayyab Bhatti, Munazza Usmani

Abstract:

One of nature's most destructive occurrences, floods do immense damage to communities and economic losses. Nigeria country, specifically southern Nigeria, is known for being prone to flooding. Even though periodic flooding occurs in Nigeria frequently, the floods of 2022 were the worst since those in 2012. Flood vulnerability analysis and mapping are still lacking in this region due to the very limited historical hydrological measurements and surveys on the effects of floods, which makes it difficult to develop and put into practice efficient flood protection measures. Remote sensing and Geographic Information Systems (GIS) are useful approaches to detecting, determining, and estimating the flood extent and its impacts. In this study, NOAA VIIR has been used to extract the flood extent using the flood water fraction data and afterward fused with GIS data for some zonal statistical analysis. The estimated possible flooding areas are validated using satellite imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS). The goal is to map and studied flood extent, flood hazards, and their effects on the population, schools, and health facilities for each state of Nigeria. The resulting flood hazard maps show areas with high-risk levels clearly and serve as an important reference for planning and implementing future flood mitigation and control strategies. Overall, the study demonstrated the viability of using the chosen GIS and remote sensing approaches to detect possible risk regions to secure local populations and enhance disaster response capabilities during natural disasters.

Keywords: flood hazards, remote sensing, damage assessment, GIS, geospatial analysis

Procedia PDF Downloads 137
1910 Automating and Optimization Monitoring Prognostics for Rolling Bearing

Authors: H. Hotait, X. Chiementin, L. Rasolofondraibe

Abstract:

This paper presents a continuous work to detect the abnormal state in the rolling bearing by studying the vibration signature analysis and calculation of the remaining useful life. To achieve these aims, two methods; the first method is the classification to detect the degradation state by the AOM-OPTICS (Acousto-Optic Modulator) method. The second one is the prediction of the degradation state using least-squares support vector regression and then compared with the linear degradation model. An experimental investigation on ball-bearing was conducted to see the effectiveness of the used method by applying the acquired vibration signals. The proposed model for predicting the state of bearing gives us accurate results with the experimental and numerical data.

Keywords: bearings, automatization, optimization, prognosis, classification, defect detection

Procedia PDF Downloads 120
1909 Simulation and Characterization of Stretching and Folding in Microchannel Electrokinetic Flows

Authors: Justo Rodriguez, Daming Chen, Amador M. Guzman

Abstract:

The detection, treatment, and control of rapidly propagating, deadly viruses such as COVID-19, require the development of inexpensive, fast, and accurate devices to address the urgent needs of the population. Microfluidics-based sensors are amongst the different methods and techniques for detection that are easy to use. A micro analyzer is defined as a microfluidics-based sensor, composed of a network of microchannels with varying functions. Given their size, portability, and accuracy, they are proving to be more effective and convenient than other solutions. A micro analyzer based on the concept of “Lab on a Chip” presents advantages concerning other non-micro devices due to its smaller size, and it is having a better ratio between useful area and volume. The integration of multiple processes in a single microdevice reduces both the number of necessary samples and the analysis time, leading the next generation of analyzers for the health-sciences. In some applications, the flow of solution within the microchannels is originated by a pressure gradient, which can produce adverse effects on biological samples. A more efficient and less dangerous way of controlling the flow in a microchannel-based analyzer is applying an electric field to induce the fluid motion and either enhance or suppress the mixing process. Electrokinetic flows are characterized by no less than two non-dimensional parameters: the electric Rayleigh number and its geometrical aspect ratio. In this research, stable and unstable flows have been studied numerically (and when possible, will be experimental) in a T-shaped microchannel. Additionally, unstable electrokinetic flows for Rayleigh numbers higher than critical have been characterized. The flow mixing enhancement was quantified in relation to the stretching and folding that fluid particles undergo when they are subjected to supercritical electrokinetic flows. Computational simulations were carried out using a finite element-based program while working with the flow mixing concepts developed by Gollub and collaborators. Hundreds of seeded massless particles were tracked along the microchannel from the entrance to exit for both stable and unstable flows. After post-processing, their trajectories, the folding and stretching values for the different flows were found. Numerical results show that for supercritical electrokinetic flows, the enhancement effects of the folding and stretching processes become more apparent. Consequently, there is an improvement in the mixing process, ultimately leading to a more homogenous mixture.

Keywords: microchannel, stretching and folding, electro kinetic flow mixing, micro-analyzer

Procedia PDF Downloads 126
1908 Enhancing Security and Privacy Protocols in Telehealth: A Comprehensive Approach across IoT/Fog/Cloud Environments

Authors: Yunyong Guo, Man Wang, Bryan Guo, Nathan Guo

Abstract:

This paper introduces an advanced security and privacy model tailored for Telehealth systems, emphasizing end-to-end protection across IoT, Fog, and Cloud components. The proposed model integrates encryption, key management, intrusion detection, and privacy-preserving measures to safeguard patient data. A comprehensive simulation study evaluates the model's effectiveness in scenarios such as unauthorized access, physical breaches, and insider threats. Results indicate notable success in detecting and mitigating threats yet underscore areas for refinement. The study contributes insights into the intricate balance between security and usability in Telehealth environments, setting the stage for continued advancements.

Keywords: cloud, enhancing security, fog, IoT, telehealth

Procedia PDF Downloads 78
1907 Integration of Magnetoresistance Sensor in Microfluidic Chip for Magnetic Particles Detection

Authors: Chao-Ming Su, Pei-Sheng Wu, Yu-Chi Kuo, Yin-Chou Huang, Tan-Yueh Chen, Jefunnie Matahum, Tzong-Rong Ger

Abstract:

Application of magnetic particles (MPs) has been applied in biomedical field for many years. There are lots of advantages through this mediator including high biocompatibility and multi-diversified bio-applications. However, current techniques for evaluating the quantity of the magnetic-labeled sample assays are rare. In this paper, a Wheatstone bridge giant magnetoresistance (GMR) sensor integrated with a homemade detecting system was fabricated and used to quantify the concentration of MPs. The homemade detecting system has shown high detecting sensitivity of 10 μg/μl of MPs with optimized parameter vertical magnetic field 100 G, horizontal magnetic field 2 G and flow rate 0.4 ml/min.

Keywords: magnetic particles, magnetoresistive sensors, microfluidics, biosensor

Procedia PDF Downloads 400
1906 Urdu Text Extraction Method from Images

Authors: Samabia Tehsin, Sumaira Kausar

Abstract:

Due to the vast increase in the multimedia data in recent years, efficient and robust retrieval techniques are needed to retrieve and index images/ videos. Text embedded in the images can serve as the strong retrieval tool for images. This is the reason that text extraction is an area of research with increasing attention. English text extraction is the focus of many researchers but very less work has been done on other languages like Urdu. This paper is focusing on Urdu text extraction from video frames. This paper presents a text detection feature set, which has the ability to deal up with most of the problems connected with the text extraction process. To test the validity of the method, it is tested on Urdu news dataset, which gives promising results.

Keywords: caption text, content-based image retrieval, document analysis, text extraction

Procedia PDF Downloads 516
1905 Imaging of Underground Targets with an Improved Back-Projection Algorithm

Authors: Alireza Akbari, Gelareh Babaee Khou

Abstract:

Ground Penetrating Radar (GPR) is an important nondestructive remote sensing tool that has been used in both military and civilian fields. Recently, GPR imaging has attracted lots of attention in detection of subsurface shallow small targets such as landmines and unexploded ordnance and also imaging behind the wall for security applications. For the monostatic arrangement in the space-time GPR image, a single point target appears as a hyperbolic curve because of the different trip times of the EM wave when the radar moves along a synthetic aperture and collects reflectivity of the subsurface targets. With this hyperbolic curve, the resolution along the synthetic aperture direction shows undesired low resolution features owing to the tails of hyperbola. However, highly accurate information about the size, electromagnetic (EM) reflectivity, and depth of the buried objects is essential in most GPR applications. Therefore hyperbolic curve behavior in the space-time GPR image is often willing to be transformed to a focused pattern showing the object's true location and size together with its EM scattering. The common goal in a typical GPR image is to display the information of the spatial location and the reflectivity of an underground object. Therefore, the main challenge of GPR imaging technique is to devise an image reconstruction algorithm that provides high resolution and good suppression of strong artifacts and noise. In this paper, at first, the standard back-projection (BP) algorithm that was adapted to GPR imaging applications used for the image reconstruction. The standard BP algorithm was limited with against strong noise and a lot of artifacts, which have adverse effects on the following work like detection targets. Thus, an improved BP is based on cross-correlation between the receiving signals proposed for decreasing noises and suppression artifacts. To improve the quality of the results of proposed BP imaging algorithm, a weight factor was designed for each point in region imaging. Compared to a standard BP algorithm scheme, the improved algorithm produces images of higher quality and resolution. This proposed improved BP algorithm was applied on the simulation and the real GPR data and the results showed that the proposed improved BP imaging algorithm has a superior suppression artifacts and produces images with high quality and resolution. In order to quantitatively describe the imaging results on the effect of artifact suppression, focusing parameter was evaluated.

Keywords: algorithm, back-projection, GPR, remote sensing

Procedia PDF Downloads 452