Search results for: neural tube defects
912 Health Status among Government and Private Primary School Children in the Central of Thailand
Authors: Petcharat Kerdonfag, Supunnee Thrakul
Abstract:
School health services through regular screening of school students’ health status have been the main responsibility for community or school health nurses. The purposes of these retrospective study were to assess and compare health problems between government and private primary school students in the central region of Thailand. The data were collected from the school health records in October at the end of the first semester in the academic year 2018. Two thousand and fifty primary school health records from government and private primary schools were gathered to assess health problems regarding anthropometric measurements, physical examination/personal hygiene, and clinical findings for this study. Descriptive statistics and Chi-square were used to be analyzed. The results revealed that health problems of all the school students remained high magnitude. The five top ranks for prevalence rate of health problems were dental caries (36.6%), visual acuity problem (27.7%), over-nutrition (16.8%), head lice (12.8%), and under-nutrition (6.8%), respectively. However, when compared between government and private schools among five health problems; dental caries (55.0% vs 19.9%), visual acuity problem (23.1% vs 31.9%), over-nutrition (20.2% vs 13.8%), head lice (26.5% vs 0.3%), and under-nutrition (10.6% vs 3.4%) with Chi-square analysis, there were significantly different (p < .001). The problem of visual acuity seems to be more serious in private schools while other health problems tend to be more critical in government schools. The findings have suggested that parents who have children in the private primary schools should pay more attention to visual health defects whereas parents with children in the government school should pay more vigilance regards to hygiene and health behavior problems.Keywords: community health nursing, school health service, health status, primary school children
Procedia PDF Downloads 119911 Neural Synchronization - The Brain’s Transfer of Sensory Data
Authors: David Edgar
Abstract:
To understand how the brain’s subconscious and conscious functions, we must conquer the physics of Unity, which leads to duality’s algorithm. Where the subconscious (bottom-up) and conscious (top-down) processes function together to produce and consume intelligence, we use terms like ‘time is relative,’ but we really do understand the meaning. In the brain, there are different processes and, therefore, different observers. These different processes experience time at different rates. A sensory system such as the eyes cycles measurement around 33 milliseconds, the conscious process of the frontal lobe cycles at 300 milliseconds, and the subconscious process of the thalamus cycle at 5 milliseconds. Three different observers experience time differently. To bridge observers, the thalamus, which is the fastest of the processes, maintains a synchronous state and entangles the different components of the brain’s physical process. The entanglements form a synchronous cohesion between the brain components allowing them to share the same state and execute in the same measurement cycle. The thalamus uses the shared state to control the firing sequence of the brain’s linear subconscious process. Sharing state also allows the brain to cheat on the amount of sensory data that must be exchanged between components. Only unpredictable motion is transferred through the synchronous state because predictable motion already exists in the shared framework. The brain’s synchronous subconscious process is entirely based on energy conservation, where prediction regulates energy usage. So, the eyes every 33 milliseconds dump their sensory data into the thalamus every day. The thalamus is going to perform a motion measurement to identify the unpredictable motion in the sensory data. Here is the trick. The thalamus conducts its measurement based on the original observation time of the sensory system (33 ms), not its own process time (5 ms). This creates a data payload of synchronous motion that preserves the original sensory observation. Basically, a frozen moment in time (Flat 4D). The single moment in time can then be processed through the single state maintained by the synchronous process. Other processes, such as consciousness (300 ms), can interface with the synchronous state to generate awareness of that moment. Now, synchronous data traveling through a separate faster synchronous process creates a theoretical time tunnel where observation time is tunneled through the synchronous process and is reproduced on the other side in the original time-relativity. The synchronous process eliminates time dilation by simply removing itself from the equation so that its own process time does not alter the experience. To the original observer, the measurement appears to be instantaneous, but in the thalamus, a linear subconscious process generating sensory perception and thought production is being executed. It is all just occurring in the time available because other observation times are slower than thalamic measurement time. For life to exist in the physical universe requires a linear measurement process, it just hides by operating at a faster time relativity. What’s interesting is time dilation is not the problem; it’s the solution. Einstein said there was no universal time.Keywords: neural synchronization, natural intelligence, 99.95% IoT data transmission savings, artificial subconscious intelligence (ASI)
Procedia PDF Downloads 123910 Automatic Method for Classification of Informative and Noninformative Images in Colonoscopy Video
Authors: Nidhal K. Azawi, John M. Gauch
Abstract:
Colorectal cancer is one of the leading causes of cancer death in the US and the world, which is why millions of colonoscopy examinations are performed annually. Unfortunately, noise, specular highlights, and motion artifacts corrupt many images in a typical colonoscopy exam. The goal of our research is to produce automated techniques to detect and correct or remove these noninformative images from colonoscopy videos, so physicians can focus their attention on informative images. In this research, we first automatically extract features from images. Then we use machine learning and deep neural network to classify colonoscopy images as either informative or noninformative. Our results show that we achieve image classification accuracy between 92-98%. We also show how the removal of noninformative images together with image alignment can aid in the creation of image panoramas and other visualizations of colonoscopy images.Keywords: colonoscopy classification, feature extraction, image alignment, machine learning
Procedia PDF Downloads 250909 Using Swarm Intelligence to Forecast Outcomes of English Premier League Matches
Authors: Hans Schumann, Colin Domnauer, Louis Rosenberg
Abstract:
In this study, machine learning techniques were deployed on real-time human swarm data to forecast the likelihood of outcomes for English Premier League matches in the 2020/21 season. These techniques included ensemble models in combination with neural networks and were tested against an industry standard of Vegas Oddsmakers. Predictions made from the collective intelligence of human swarm participants managed to achieve a positive return on investment over a full season on matches, empirically proving the usefulness of a new artificial intelligence valuing human instinct and intelligence.Keywords: artificial intelligence, data science, English Premier League, human swarming, machine learning, sports betting, swarm intelligence
Procedia PDF Downloads 211908 Predicting Blockchain Technology Installation Cost in Supply Chain System through Supervised Learning
Authors: Hossein Havaeji, Tony Wong, Thien-My Dao
Abstract:
1. Research Problems and Research Objectives: Blockchain Technology-enabled Supply Chain System (BT-enabled SCS) is the system using BT to drive SCS transparency, security, durability, and process integrity as SCS data is not always visible, available, or trusted. The costs of operating BT in the SCS are a common problem in several organizations. The costs must be estimated as they can impact existing cost control strategies. To account for system and deployment costs, it is necessary to overcome the following hurdle. The problem is that the costs of developing and running a BT in SCS are not yet clear in most cases. Many industries aiming to use BT have special attention to the importance of BT installation cost which has a direct impact on the total costs of SCS. Predicting BT installation cost in SCS may help managers decide whether BT is to be an economic advantage. The purpose of the research is to identify some main BT installation cost components in SCS needed for deeper cost analysis. We then identify and categorize the main groups of cost components in more detail to utilize them in the prediction process. The second objective is to determine the suitable Supervised Learning technique in order to predict the costs of developing and running BT in SCS in a particular case study. The last aim is to investigate how the running BT cost can be involved in the total cost of SCS. 2. Work Performed: Applied successfully in various fields, Supervised Learning is a method to set the data frame, treat the data, and train/practice the method sort. It is a learning model directed to make predictions of an outcome measurement based on a set of unforeseen input data. The following steps must be conducted to search for the objectives of our subject. The first step is to make a literature review to identify the different cost components of BT installation in SCS. Based on the literature review, we should choose some Supervised Learning methods which are suitable for BT installation cost prediction in SCS. According to the literature review, some Supervised Learning algorithms which provide us with a powerful tool to classify BT installation components and predict BT installation cost are the Support Vector Regression (SVR) algorithm, Back Propagation (BP) neural network, and Artificial Neural Network (ANN). Choosing a case study to feed data into the models comes into the third step. Finally, we will propose the best predictive performance to find the minimum BT installation costs in SCS. 3. Expected Results and Conclusion: This study tends to propose a cost prediction of BT installation in SCS with the help of Supervised Learning algorithms. At first attempt, we will select a case study in the field of BT-enabled SCS, and then use some Supervised Learning algorithms to predict BT installation cost in SCS. We continue to find the best predictive performance for developing and running BT in SCS. Finally, the paper will be presented at the conference.Keywords: blockchain technology, blockchain technology-enabled supply chain system, installation cost, supervised learning
Procedia PDF Downloads 119907 Analysis of the Level of Production Failures by Implementing New Assembly Line
Authors: Joanna Kochanska, Dagmara Gornicka, Anna Burduk
Abstract:
The article examines the process of implementing a new assembly line in a manufacturing enterprise of the household appliances industry area. At the initial stages of the project, a decision was made that one of its foundations should be the concept of lean management. Because of that, eliminating as many errors as possible in the first phases of its functioning was emphasized. During the start-up of the line, there were identified and documented all production losses (from serious machine failures, through any unplanned downtime, to micro-stops and quality defects). During 6 weeks (line start-up period), all errors resulting from problems in various areas were analyzed. These areas were, among the others, production, logistics, quality, and organization. The aim of the work was to analyze the occurrence of production failures during the initial phase of starting up the line and to propose a method for determining their critical level during its full functionality. There was examined the repeatability of the production losses in various areas and at different levels at such an early stage of implementation, by using the methods of statistical process control. Based on the Pareto analysis, there were identified the weakest points in order to focus improvement actions on them. The next step was to examine the effectiveness of the actions undertaken to reduce the level of recorded losses. Based on the obtained results, there was proposed a method for determining the critical failures level in the studied areas. The developed coefficient can be used as an alarm in case of imbalance of the production, which is caused by the increased failures level in production and production support processes in the period of the standardized functioning of the line.Keywords: production failures, level of production losses, new production line implementation, assembly line, statistical process control
Procedia PDF Downloads 128906 Design and Radio Frequency Characterization of Radial Reentrant Narrow Gap Cavity for the Inductive Output Tube
Authors: Meenu Kaushik, Ayon K. Bandhoyadhayay, Lalit M. Joshi
Abstract:
Inductive output tubes (IOTs) are widely used as microwave power amplifiers for broadcast and scientific applications. It is capable of amplifying radio frequency (RF) power with very good efficiency. Its compactness, reliability, high efficiency, high linearity and low operating cost make this device suitable for various applications. The device consists of an integrated structure of electron gun and RF cavity, collector and focusing structure. The working principle of IOT is a combination of triode and klystron. The cathode lies in the electron gun produces a stream of electrons. A control grid is placed in close proximity to the cathode. Basically, the input part of IOT is the integrated structure of gridded electron gun which acts as an input cavity thereby providing the interaction gap where the input RF signal is applied to make it interact with the produced electron beam for supporting the amplification phenomena. The paper presents the design, fabrication and testing of a radial re-entrant cavity for implementing in the input structure of IOT at 350 MHz operating frequency. The model’s suitability has been discussed and a generalized mathematical relation has been introduced for getting the proper transverse magnetic (TM) resonating mode in the radial narrow gap RF cavities. The structural modeling has been carried out in CST and SUPERFISH codes. The cavity is fabricated with the Aluminum material and the RF characterization is done using vector network analyzer (VNA) and the results are presented for the resonant frequency peaks obtained in VNA.Keywords: inductive output tubes, IOT, radial cavity, coaxial cavity, particle accelerators
Procedia PDF Downloads 122905 Quantification Model for Capability Evaluation of Optical-Based in-Situ Monitoring System for Laser Powder Bed Fusion (LPBF) Process
Authors: Song Zhang, Hui Wang, Johannes Henrich Schleifenbaum
Abstract:
Due to the increasing demand for quality assurance and reliability for additive manufacturing, the development of an advanced in-situ monitoring system is required to monitor the process anomalies as input for further process control. Optical-based monitoring systems, such as CMOS cameras and NIR cameras, are proved as effective ways to monitor the geometrical distortion and exceptional thermal distribution. Therefore, many studies and applications are focusing on the availability of the optical-based monitoring system for detecting varied types of defects. However, the capability of the monitoring setup is not quantified. In this study, a quantification model to evaluate the capability of the monitoring setups for the LPBF machine based on acquired monitoring data of a designed test artifact is presented, while the design of the relevant test artifacts is discussed. The monitoring setup is evaluated based on its hardware properties, location of the integration, and light condition. Methodology of data processing to quantify the capacity for each aspect is discussed. The minimal capability of the detectable size of the monitoring set up in the application is estimated by quantifying its resolution and accuracy. The quantification model is validated using a CCD camera-based monitoring system for LPBF machines in the laboratory with different setups. The result shows the model to quantify the monitoring system's performance, which makes the evaluation of monitoring systems with the same concept but different setups possible for the LPBF process and provides the direction to improve the setups.Keywords: data processing, in-situ monitoring, LPBF process, optical system, quantization model, test artifact
Procedia PDF Downloads 196904 Evaluation of the Diagnostic Potential of IL-2 after Specific Antigen Stimulation with PE35 (Rv3872) and PPE68 (Rv3873) for the Discrimination of Active and Latent Tuberculosis
Authors: Shima Mahmoudi, Babak Pourakbari, Setareh Mamishi, Mostafa Teymuri, Majid Marjani
Abstract:
Although cytokine analysis has greatly contributed to the understanding of tuberculosis (TB) pathogenesis, data on cytokine profiles that might distinguish progression from latency of TB infection are scarce. Since PE/PPE proteins are known to induce strong humoral and cellular immune responses, the aim of this study was to evaluate the diagnostic potential of interleukin-2 (IL-2) as biomarker after specific antigen stimulation with PE35 and PPE68 for the discrimination of active and latent tuberculosis infection (LTBI). The production of IL-2 was measured in the antigen-stimulated whole-blood supernatants following stimulation with recombinant PE35 and PPE68. All the patients with active TB and LTBI had positive QuantiFERON-TB Gold in Tube test. The level of IL-2 following stimulation with recombinant PE35 and PPE68 were significantly higher in LTBI group than in patients with active TB infection or control group. The discrimination performance (assessed by the area under ROC curve) for IL-2 following stimulation with recombinant PE35 and PPE68 between LTBI and patients with active TB were 0.837 (95%CI: 0.72-0.97) and 0.75 (95%CI: 0.63-0.89), respectively. Applying the 12.4 pg/mL cut-off for IL-2 induced by PE35 in the present study population resulted in sensitivity of 78%, specificity of 78%, PPV of 78% and NPV of 100%. In addition, a sensitivity of 81%, specificity of 70%, PPV of 67% and 87% of NPV was reported based on the 4.4 pg/mL cut-off for IL-2 induced by PPE68. In conclusion, peptides of the antigen PE35 and PPE68, absent from commonly used BCG strains, stimulated strong IL-2- positive T cell responses in patients with LTBI. This study confirms IL-2 induced by PE35 and PPE68 as a sensitive and specific biomarker and highlights IL-2 as new promising adjunct markers for discriminating of LTBI and Active TB infection.Keywords: IL-2, PE35, PPE68, tuberculosis
Procedia PDF Downloads 408903 Organic Co-Polymer Monolithic Columns for Liquid Chromatography Mixed Mode Protein Separations
Authors: Ahmed Alkarimi, Kevin Welham
Abstract:
Organic mixed mode monolithic columns were fabricated from; glycidyl methacrylate-co-ethylene dimethacrylate-co-stearyl methacrylate, using glycidyl methacrylate and stearyl methacrylate as co monomers representing 30% and 70% respectively of the liquid volume with ethylene dimethacrylate crosslinker and 2,2-dimethoxy-2-phenylacetophenone as the free radical initiator. The monomers were mixed with a binary porogenic solvent, comprising propan-1-ol, and methanol (0.825 mL each). The monolith was formed by photo polymerization (365 nm) inside a borosilicate glass tube (1.5 mm ID and 3 mm OD x 50 mm length). The monolith was observed to have formed correctly by optical examination and generated reasonable backpressure, approximately 650 psi at a flow rate of 0.2 mL min⁻¹ 50:50 acetonitrile: water. The morphological properties of the monolithic columns were investigated using scanning electron microscopy images, and Brunauer-Emmett-Teller analysis, the results showed that the monolith was formed properly with 19.98 ± 0.01 mm² surface area, 0.0205 ± 0.01 cm³ g⁻¹ pore volume and 6.93 ± 0.01 nm average pore size. The polymer monolith formed was further investigated using proton nuclear magnetic resonance, and Fourier transform infrared spectroscopy. The monolithic columns were investigated using high-performance liquid chromatography to test their ability to separate different samples with a range of properties. The columns displayed both hydrophobic/hydrophilic and hydrophobic/ion exchange interactions with the compounds tested indicating that true mixed mode separations. The mixed mode monolithic columns exhibited significant separation of proteins.Keywords: LC separation, proteins separation, monolithic column, mixed mode
Procedia PDF Downloads 160902 Stock Price Prediction Using Time Series Algorithms
Authors: Sumit Sen, Sohan Khedekar, Umang Shinde, Shivam Bhargava
Abstract:
This study has been undertaken to investigate whether the deep learning models are able to predict the future stock prices by training the model with the historical stock price data. Since this work required time series analysis, various models are present today to perform time series analysis such as Recurrent Neural Network LSTM, ARIMA and Facebook Prophet. Applying these models the movement of stock price of stocks are predicted and also tried to provide the future prediction of the stock price of a stock. Final product will be a stock price prediction web application that is developed for providing the user the ease of analysis of the stocks and will also provide the predicted stock price for the next seven days.Keywords: Autoregressive Integrated Moving Average, Deep Learning, Long Short Term Memory, Time-series
Procedia PDF Downloads 138901 Performance Evaluation of Contemporary Classifiers for Automatic Detection of Epileptic EEG
Authors: K. E. Ch. Vidyasagar, M. Moghavvemi, T. S. S. T. Prabhat
Abstract:
Epilepsy is a global problem, and with seizures eluding even the smartest of diagnoses a requirement for automatic detection of the same using electroencephalogram (EEG) would have a huge impact in diagnosis of the disorder. Among a multitude of methods for automatic epilepsy detection, one should find the best method out, based on accuracy, for classification. This paper reasons out, and rationalizes, the best methods for classification. Accuracy is based on the classifier, and thus this paper discusses classifiers like quadratic discriminant analysis (QDA), classification and regression tree (CART), support vector machine (SVM), naive Bayes classifier (NBC), linear discriminant analysis (LDA), K-nearest neighbor (KNN) and artificial neural networks (ANN). Results show that ANN is the most accurate of all the above stated classifiers with 97.7% accuracy, 97.25% specificity and 98.28% sensitivity in its merit. This is followed closely by SVM with 1% variation in result. These results would certainly help researchers choose the best classifier for detection of epilepsy.Keywords: classification, seizure, KNN, SVM, LDA, ANN, epilepsy
Procedia PDF Downloads 519900 Role of Hyperbaric Oxygen Therapy in Management of Diabetic Foot
Authors: Magdy Al Shourbagi
Abstract:
Diabetes mellitus is the commonest cause of neuropathy. The common pattern is a distal symmetrical sensory polyneuropathy, associated with autonomic disturbances. Less often, Diabetes mellitus is responsible for a focal or multifocal neuropathy. Common causes for non-healing of diabetic foot are the infection and ischemia. Diabetes mellitus is associated with a defective cellular and humoral immunity. Particularly, decreased phagocytosis, decreased chemotaxis, impaired bacterial killing and abnormal lymphocytic function resulting in a reduced inflammatory reaction and defective wound healing. Hyperbaric oxygen therapy is defined by the Undersea and Hyperbaric Medical Society as a treatment in which a patient intermittently breathes 100% oxygen and the treatment chamber is pressurized to a pressure greater than sea level (1 atmosphere absolute). The pressure increase may be applied in mono-place (single person) or multi-place chambers. Multi-place chambers are pressurized with air, with oxygen given via face mask or endotracheal tube; while mono-place chambers are pressurized with oxygen. Oxygen gas plays an important role in the physiology of wound healing. Hyperbaric oxygen therapy can raise tissue oxygen tensions to levels where wound healing can be expected. HBOT increases the killing ability of leucocytes also it is lethal for certain anaerobic bacteria and inhibits toxin formation in many other anaerobes. Multiple anecdotal reports and studies in HBO therapy in diabetic patients report that HBO can be an effective adjunct therapy in the management of diabetic foot wounds and is associated with better functional outcomes.Keywords: hyperbari oxygen therapy, diabetic foot, neuropathy, multiplace chambers
Procedia PDF Downloads 289899 Critical Conditions for the Initiation of Dynamic Recrystallization Prediction: Analytical and Finite Element Modeling
Authors: Pierre Tize Mha, Mohammad Jahazi, Amèvi Togne, Olivier Pantalé
Abstract:
Large-size forged blocks made of medium carbon high-strength steels are extensively used in the automotive industry as dies for the production of bumpers and dashboards through the plastic injection process. The manufacturing process of the large blocks starts with ingot casting, followed by open die forging and a quench and temper heat treatment process to achieve the desired mechanical properties and numerical simulation is widely used nowadays to predict these properties before the experiment. But the temperature gradient inside the specimen remains challenging in the sense that the temperature before loading inside the material is not the same, but during the simulation, constant temperature is used to simulate the experiment because it is assumed that temperature is homogenized after some holding time. Therefore to be close to the experiment, real distribution of the temperature through the specimen is needed before the mechanical loading. Thus, We present here a robust algorithm that allows the calculation of the temperature gradient within the specimen, thus representing a real temperature distribution within the specimen before deformation. Indeed, most numerical simulations consider a uniform temperature gradient which is not really the case because the surface and core temperatures of the specimen are not identical. Another feature that influences the mechanical properties of the specimen is recrystallization which strongly depends on the deformation conditions and the type of deformation like Upsetting, Cogging...etc. Indeed, Upsetting and Cogging are the stages where the greatest deformations are observed, and a lot of microstructural phenomena can be observed, like recrystallization, which requires in-depth characterization. Complete dynamic recrystallization plays an important role in the final grain size during the process and therefore helps to increase the mechanical properties of the final product. Thus, the identification of the conditions for the initiation of dynamic recrystallization is still relevant. Also, the temperature distribution within the sample and strain rate influence the recrystallization initiation. So the development of a technique allowing to predict the initiation of this recrystallization remains challenging. In this perspective, we propose here, in addition to the algorithm allowing to get the temperature distribution before the loading stage, an analytical model leading to determine the initiation of this recrystallization. These two techniques are implemented into the Abaqus finite element software via the UAMP and VUHARD subroutines for comparison with a simulation where an isothermal temperature is imposed. The Artificial Neural Network (ANN) model to describe the plastic behavior of the material is also implemented via the VUHARD subroutine. From the simulation, the temperature distribution inside the material and recrystallization initiation is properly predicted and compared to the literature models.Keywords: dynamic recrystallization, finite element modeling, artificial neural network, numerical implementation
Procedia PDF Downloads 79898 Real Time Multi Person Action Recognition Using Pose Estimates
Authors: Aishrith Rao
Abstract:
Human activity recognition is an important aspect of video analytics, and many approaches have been recommended to enable action recognition. In this approach, the model is used to identify the action of the multiple people in the frame and classify them accordingly. A few approaches use RNNs and 3D CNNs, which are computationally expensive and cannot be trained with the small datasets which are currently available. Multi-person action recognition has been performed in order to understand the positions and action of people present in the video frame. The size of the video frame can be adjusted as a hyper-parameter depending on the hardware resources available. OpenPose has been used to calculate pose estimate using CNN to produce heap-maps, one of which provides skeleton features, which are basically joint features. The features are then extracted, and a classification algorithm can be applied to classify the action.Keywords: human activity recognition, computer vision, pose estimates, convolutional neural networks
Procedia PDF Downloads 138897 Facial Recognition on the Basis of Facial Fragments
Authors: Tetyana Baydyk, Ernst Kussul, Sandra Bonilla Meza
Abstract:
There are many articles that attempt to establish the role of different facial fragments in face recognition. Various approaches are used to estimate this role. Frequently, authors calculate the entropy corresponding to the fragment. This approach can only give approximate estimation. In this paper, we propose to use a more direct measure of the importance of different fragments for face recognition. We propose to select a recognition method and a face database and experimentally investigate the recognition rate using different fragments of faces. We present two such experiments in the paper. We selected the PCNC neural classifier as a method for face recognition and parts of the LFW (Labeled Faces in the Wild) face database as training and testing sets. The recognition rate of the best experiment is comparable with the recognition rate obtained using the whole face.Keywords: face recognition, labeled faces in the wild (LFW) database, random local descriptor (RLD), random features
Procedia PDF Downloads 359896 Terrain Classification for Ground Robots Based on Acoustic Features
Authors: Bernd Kiefer, Abraham Gebru Tesfay, Dietrich Klakow
Abstract:
The motivation of our work is to detect different terrain types traversed by a robot based on acoustic data from the robot-terrain interaction. Different acoustic features and classifiers were investigated, such as Mel-frequency cepstral coefficient and Gamma-tone frequency cepstral coefficient for the feature extraction, and Gaussian mixture model and Feed forward neural network for the classification. We analyze the system’s performance by comparing our proposed techniques with some other features surveyed from distinct related works. We achieve precision and recall values between 87% and 100% per class, and an average accuracy at 95.2%. We also study the effect of varying audio chunk size in the application phase of the models and find only a mild impact on performance.Keywords: acoustic features, autonomous robots, feature extraction, terrain classification
Procedia PDF Downloads 366895 Fatigue Crack Growth Rate Measurement by Means of Classic Method and Acoustic Emission
Authors: V. Mentl, V. Koula, P. Mazal, J. Volák
Abstract:
Nowadays, the acoustic emission is a widely recognized method of material damage investigation, mainly in cases of cracks initiation and growth observation and evaluation. This is highly important in structures, e.g. pressure vessels, large steam turbine rotors etc., applied both in classic and nuclear power plants. Nevertheless, the acoustic emission signals must be correlated with the real crack progress to be able to evaluate the cracks and their growth by this non-destructive technique alone in real situations and to reach reliable results when the assessment of the structures' safety and reliability is performed and also when the remaining lifetime should be evaluated. The main aim of this study was to propose a methodology for evaluation of the early manifestations of the fatigue cracks and their growth and thus to quantify the material damage by acoustic emission parameters. Specimens made of several steels used in the power producing industry were subjected to fatigue loading in the low- and high-cycle regimes. This study presents results of the crack growth rate measurement obtained by the classic compliance change method and the acoustic emission signal analysis. The experiments were realized in cooperation between laboratories of Brno University of Technology and West Bohemia University in Pilsen within the solution of the project of the Czech Ministry of Industry and Commerce: "A diagnostic complex for the detection of pressure media and material defects in pressure components of nuclear and classic power plants" and the project “New Technologies for Mechanical Engineering”.Keywords: fatigue, crack growth rate, acoustic emission, material damage
Procedia PDF Downloads 370894 An Evaluation of the Artificial Neural Network and Adaptive Neuro Fuzzy Inference System Predictive Models for the Remediation of Crude Oil-Contaminated Soil Using Vermicompost
Authors: Precious Ehiomogue, Ifechukwude Israel Ahuchaogu, Isiguzo Edwin Ahaneku
Abstract:
Vermicompost is the product of the decomposition process using various species of worms, to create a mixture of decomposing vegetable or food waste, bedding materials, and vemicast. This process is called vermicomposting, while the rearing of worms for this purpose is called vermiculture. Several works have verified the adsorption of toxic metals using vermicompost but the application is still scarce for the retention of organic compounds. This research brings to knowledge the effectiveness of earthworm waste (vermicompost) for the remediation of crude oil contaminated soils. The remediation methods adopted in this study were two soil washing methods namely, batch and column process which represent laboratory and in-situ remediation. Characterization of the vermicompost and crude oil contaminated soil were performed before and after the soil washing using Fourier transform infrared (FTIR), scanning electron microscopy (SEM), X-ray fluorescence (XRF), X-ray diffraction (XRD) and Atomic adsorption spectrometry (AAS). The optimization of washing parameters, using response surface methodology (RSM) based on Box-Behnken Design was performed on the response from the laboratory experimental results. This study also investigated the application of machine learning models [Artificial neural network (ANN), Adaptive neuro fuzzy inference system (ANFIS). ANN and ANFIS were evaluated using the coefficient of determination (R²) and mean square error (MSE)]. Removal efficiency obtained from the Box-Behnken design experiment ranged from 29% to 98.9% for batch process remediation. Optimization of the experimental factors carried out using numerical optimization techniques by applying desirability function method of the response surface methodology (RSM) produce the highest removal efficiency of 98.9% at absorbent dosage of 34.53 grams, adsorbate concentration of 69.11 (g/ml), contact time of 25.96 (min), and pH value of 7.71, respectively. Removal efficiency obtained from the multilevel general factorial design experiment ranged from 56% to 92% for column process remediation. The coefficient of determination (R²) for ANN was (0.9974) and (0.9852) for batch and column process, respectively, showing the agreement between experimental and predicted results. For batch and column precess, respectively, the coefficient of determination (R²) for RSM was (0.9712) and (0.9614), which also demonstrates agreement between experimental and projected findings. For the batch and column processes, the ANFIS coefficient of determination was (0.7115) and (0.9978), respectively. It can be concluded that machine learning models can predict the removal of crude oil from polluted soil using vermicompost. Therefore, it is recommended to use machines learning models to predict the removal of crude oil from contaminated soil using vermicompost.Keywords: ANFIS, ANN, crude-oil, contaminated soil, remediation and vermicompost
Procedia PDF Downloads 109893 Metallurgy of Friction Welding of Porous Stainless Steel-Solid Iron Billets
Authors: S. D. El Wakil
Abstract:
The research work reported here was aimed at investigating the feasibility of joining high-porosity stainless steel discs and wrought iron bars by friction welding. The sound friction-welded joints were then subjected to a metallurgical investigation and an analysis of failure resulting from tensile loading. Discs having 50 mm diameter and 10 mm thickness were produced by loose sintering of stainless steel powder at a temperature of 1350 oC in an argon atmosphere for one hour. Minor machining was then carried out to control the dimensions of the discs, and the density of each disc could then be determined. The level of porosity was calculated and was found to be about 40% in all of those discs. Solid wrought iron bars were also machined to facilitate tensile testing of the joints produced by friction welding. Using our previously gained experience, the porous stainless steel disc and the wrought iron tube were successfully friction welded. SEM was employed to examine the fracture surface after a tensile test of the joint in order to determine the type of failure. It revealed that the failure did not occur in the joint, but rather in the in the porous metal in the area adjacent to the joint. The load carrying capacity was actually determined by the strength of the porous metal and not by that of the welded joint. Macroscopic and microscopic metallographic examinations were also performed and showed that the welded joint involved a dense heat-affected zone where the porous metal underwent densification at elevated temperature, explaining and supporting the findings of the SEM study.Keywords: fracture of friction-welded joints, metallurgy of friction welding, solid-porous structures, strength of joints
Procedia PDF Downloads 231892 Effects of Marinating with Cashew Apple Extract on the Bacterial Growth of Beef and Chicken Meat
Authors: S. Susanti, V. P. Bintoro, A. Setiadi, S. I. Santoso, D. R. Febriandi
Abstract:
Meat is a foodstuff of animal origin. It is perishable because a suitable medium for bacterial growth. That is why meat can be a potential hazard to humans. Several ways have been done to inhibit bacterial population in an effort to prolong the meat shelf-life. However, aberration sometimes happens in the practices of meat preservation, for example by using chemical material that possessed strong antibacterial activity like formaldehyde. For health reason, utilization of formaldehyde as a food preservative was forbidden because of DNA damage resulting cancer and birth defects. Therefore, it is important to seek a natural food preservative that is not harmful to the body. This study aims to reveal the potency of cashew apple as natural food preservative by measuring its antibacterial activity and marinating effect on the bacterial growth of beef and chicken meat. Antibacterial activity was measured by The Kirby-Bauer method while bacterial growth was determined by total plate count method. The results showed that inhibition zone of 10-30% cashew apple extract significantly wider compared to 0% extract on the medium of E. coli, S. aureus, S. typii, and Bacillus sp. Furthermore, beef marinated with 20-30% cashew apple extract and chicken meat marinated with 5-15% extract significantly less in the total number of bacteria compared to 0% extract. It can be concluded that marinating with 5-30% cashew apple extract can effectively inhibit the bacterial growth of beef and chicken meat. Moreover, the concentration of extracts to inhibit bacterial populations in chicken meat was reached at the lower level compared to beef. Thus, cashew apple is potential as a natural food preservative.Keywords: bacterial growth, cashew apple, marinating, meat
Procedia PDF Downloads 273891 Biodegradable and Bioactive Scaffold for Bone Tissue Engineering
Authors: A. M. Malagon Escandon, J. A. Arenas Alatorre, C. P. Chaires Rosas, N. A. Vazquez Torres, B. Hernandez Tellez, G. Pinon Zarate, M. Herrera Enriquez, A. E. Castell Rodriguez
Abstract:
The current approach to the treatment of bone defects involves the use of scaffolds that provide a biological and mechanically stable niche to favor tissue repair. Despite the significant progress in the field of bone tissue engineering, several main problems associated are attributed to giving a low biodegradation degree, does not promote osseointegration and regeneration, if the bone is not healing as well as expected or fails to heal, will not be given a proper ossification or new bone formation. The actual approaches of bone tissue regeneration are directed to the use of decellularized native extracellular matrices, which are able of retain their own architecture, mechanic properties, biodegradability and promote new bone formation because they are capable of conserving proteins and other factors that are founded in physiological concentrations. Therefore, we propose an extracellular matrix-based bioscaffolds derived from bovine cancellous bone, which is processed by decellularization, demineralization, and hydrolysis of the collagen protein, these protocols have been successfully carried out in other organs and tissues; the effectiveness of its biosafety has also been previously evaluated in vivo and Food and Drug Administration (FDA) approved. In the specific case of bone, a more complex treatment is needed in comparison with other organs and tissues because is necessary demineralization and collagen denaturalization. The present work was made in order to obtain a temporal scaffold that succeed in degradation in an inversely proportional way to the synthesis of extracellular matrix and the maturation of the bone by the cells of the host.Keywords: bioactive, biodegradable, bone, extracellular matrix-based bioscaffolds, stem cells, tissue engineering
Procedia PDF Downloads 156890 Regularization of Gene Regulatory Networks Perturbed by White Noise
Authors: Ramazan I. Kadiev, Arcady Ponosov
Abstract:
Mathematical models of gene regulatory networks can in many cases be described by ordinary differential equations with switching nonlinearities, where the initial value problem is ill-posed. Several regularization methods are known in the case of deterministic networks, but the presence of stochastic noise leads to several technical difficulties. In the presentation, it is proposed to apply the methods of the stochastic singular perturbation theory going back to Yu. Kabanov and Yu. Pergamentshchikov. This approach is used to regularize the above ill-posed problem, which, e.g., makes it possible to design stable numerical schemes. Several examples are provided in the presentation, which support the efficiency of the suggested analysis. The method can also be of interest in other fields of biomathematics, where differential equations contain switchings, e.g., in neural field models.Keywords: ill-posed problems, singular perturbation analysis, stochastic differential equations, switching nonlinearities
Procedia PDF Downloads 194889 Comparison of Machine Learning Models for the Prediction of System Marginal Price of Greek Energy Market
Authors: Ioannis P. Panapakidis, Marios N. Moschakis
Abstract:
The Greek Energy Market is structured as a mandatory pool where the producers make their bid offers in day-ahead basis. The System Operator solves an optimization routine aiming at the minimization of the cost of produced electricity. The solution of the optimization problem leads to the calculation of the System Marginal Price (SMP). Accurate forecasts of the SMP can lead to increased profits and more efficient portfolio management from the producer`s perspective. Aim of this study is to provide a comparative analysis of various machine learning models such as artificial neural networks and neuro-fuzzy models for the prediction of the SMP of the Greek market. Machine learning algorithms are favored in predictions problems since they can capture and simulate the volatilities of complex time series.Keywords: deregulated energy market, forecasting, machine learning, system marginal price
Procedia PDF Downloads 214888 Smart Model with the DEMATEL and ANFIS Multistage to Assess the Value of the Brand
Authors: Hamed Saremi
Abstract:
One of the challenges in manufacturing and service companies to provide a product or service is recognized Brand to consumers in target markets. They provide most of their processes under the same capacity. But the constant threat of devastating internal and external resources to prevent a rise Brands and more companies are recognizing the stages are bankrupt. This paper has tried to identify and analyze effective indicators of brand equity and focuses on indicators and presents a model of intelligent create a model to prevent possible damage. In this study identified indicators of brand equity based on literature study and according to expert opinions, set of indicators By techniques DEMATEL Then to used Multi-Step Adaptive Neural-Fuzzy Inference system (ANFIS) to design a multi-stage intelligent system for assessment of brand equity.Keywords: anfis, dematel, brand, cosmetic product, brand value
Procedia PDF Downloads 408887 Video Games Technologies Approach for Their Use in the Classroom
Authors: Daniel Vargas-Herrera, Ivette Caldelas, Fernando Brambila-Paz, Rodrigo Montufar-Chaveznava
Abstract:
In this paper, we present the advances corresponding to the implementation of a set of educational materials based on video games technologies. Essentially these materials correspond to projects developed and under development as bachelor thesis of some Computer Engineering students of the Engineering School. All materials are based on the Unity SDK; integrating some devices such as kinect, leap motion, oculus rift, data gloves and Google cardboard. In detail, we present a virtual reality application for neurosciences students (suitable for neural rehabilitation), and virtual scenes for the Google cardboard, which will be used by the psychology students for phobias treatment. The objective is these materials will be located at a server to be available for all students, in the classroom or in the cloud, considering the use of smartphones has been widely extended between students.Keywords: virtual reality, interactive technologies, video games, educational materials
Procedia PDF Downloads 655886 Investigation of the Functional Impact of Amblyopia on Visual Skills in Children
Authors: Chinmay V. Deshpande
Abstract:
Purpose: To assess the efficiency of visual functions and visual skills in strabismic & anisometropic amblyopes and to assess visual acuity and contrast sensitivity in anisometropic amblyopes with spectacles & contact lenses. Method: In a prospective clinical study, 32 children ageing from 5 to 15 years presenting with amblyopia in a pediatric department of Shri Ganapati Netralaya Jalna, India, were assessed for a period of three & half months. Visual acuity was measured with Snellen’s and Bailey-Lovie log MAR charts whereas contrast sensitivity was measured with Pelli-Robson chart with spectacles and contact lenses. Saccadic movements were assessed with SCCO scoring criteria and accommodative facility was checked with ±1.50 DS flippers. Stereopsis was assessed with TNO test. Results: By using Wilcoxon sign rank test p-value < 0.05 (< 0.001), the mean linear visual acuity was 0.29 (≈ 6/21) and mean single optotype visual acuity found to be 0.36 (≈ 6/18). Mean visual acuity of 0.27(≈ 6/21) with spectacles improved to 0.33 (≈ 6/18) with contact lenses in amblyopic eyes. The mean Log MAR visual acuity with spectacles and contact lens were found to be 0.602( ≈6/24) and 0.531(≈ 6/21) respectively. The contrast threshold out of 20 amblyopic eyes shows that mean contrast threshold changed in 9 patients from spectacles 0.27 to contact lens 0.19 respectively. The mean accommodative facility assessed was 5.31(± 2.37). 24 subjects (75%) revealed marked saccadic defects on the test applied. 78% subjects didn’t show even gross stereoscopic ability on TNO test. Conclusion: This study supports the facts about amblyopia and associated deficits in visual skills which are claimed in previous studies. In addition, anisometropic amblyopia can be managed better with contact lenses.Keywords: strabismus, anisometropia, amblyopia, contrast sensitivity, saccades, stereopsis
Procedia PDF Downloads 420885 Overview of Pre-Analytical Lab Errors in a Tertiary Care Hospital at Rawalpindi, Pakistan
Authors: S. Saeed, T. Butt, M. Rehan, S. Khaliq
Abstract:
Objective: To determine the frequency of pre-analytical errors in samples taken from patients for various lab tests at Fauji Foundation Hospital, Rawalpindi. Material and Methods: All the lab specimens for diagnostic purposes received at the lab from Fauji Foundation hospital, Rawalpindi indoor and outdoor patients were included. Total number of samples received in the lab is recorded in the computerized program made for the hospital. All the errors observed for pre-analytical process including patient identification, sampling techniques, test collection procedures, specimen transport/processing and storage were recorded in the log book kept for the purpose. Results: A total of 476616 specimens were received in the lab during the period of study including 237931 and 238685 from outdoor and indoor patients respectively. Forty-one percent of the samples (n=197976) revealed pre-analytical discrepancies. The discrepancies included Hemolyzed samples (34.8%), Clotted blood (27.8%), Incorrect samples (17.4%), Unlabeled samples (8.9%), Insufficient specimens (3.9%), Request forms without authorized signature (2.9%), Empty containers (3.9%) and tube breakage during centrifugation (0.8%). Most of these pre-analytical discrepancies were observed in samples received from the wards revealing that inappropriate sample collection by the medical staff of the ward, as most of the outdoor samples are collected by the lab staff who are properly trained for sample collection. Conclusion: It is mandatory to educate phlebotomists and paramedical staff particularly performing duties in the wards regarding timing and techniques of sampling/appropriate container to use/early delivery of the samples to the lab to reduce pre-analytical errors.Keywords: pre analytical lab errors, tertiary care hospital, hemolyzed, paramedical staff
Procedia PDF Downloads 203884 ANN Modeling for Cadmium Biosorption from Potable Water Using a Packed-Bed Column Process
Authors: Dariush Jafari, Seyed Ali Jafari
Abstract:
The recommended limit for cadmium concentration in potable water is less than 0.005 mg/L. A continuous biosorption process using indigenous red seaweed, Gracilaria corticata, was performed to remove cadmium from the potable water. The process was conducted under fixed conditions and the breakthrough curves were achieved for three consecutive sorption-desorption cycles. A modeling based on Artificial Neural Network (ANN) was employed to fit the experimental breakthrough data. In addition, a simplified semi empirical model, Thomas, was employed for this purpose. It was found that ANN well described the experimental data (R2>0.99) while the Thomas prediction were a bit less successful with R2>0.97. The adjusted design parameters using the nonlinear form of Thomas model was in a good agreement with the experimentally obtained ones. The results approve the capability of ANN to predict the cadmium concentration in potable water.Keywords: ANN, biosorption, cadmium, packed-bed, potable water
Procedia PDF Downloads 427883 Umbrella Reinforcement Learning – A Tool for Hard Problems
Authors: Egor E. Nuzhin, Nikolay V. Brilliantov
Abstract:
We propose an approach for addressing Reinforcement Learning (RL) problems. It combines the ideas of umbrella sampling, borrowed from Monte Carlo technique of computational physics and chemistry, with optimal control methods, and is realized on the base of neural networks. This results in a powerful algorithm, designed to solve hard RL problems – the problems, with long-time delayed reward, state-traps sticking and a lack of terminal states. It outperforms the prominent algorithms, such as PPO, RND, iLQR and VI, which are among the most efficient for the hard problems. The new algorithm deals with a continuous ensemble of agents and expected return, that includes the ensemble entropy. This results in a quick and efficient search of the optimal policy in terms of ”exploration-exploitation trade-off” in the state-action space.Keywords: umbrella sampling, reinforcement learning, policy gradient, dynamic programming
Procedia PDF Downloads 19