Search results for: learning experience and engagement
9681 A Collaborative, Arts-Informed Action Research Investigation of Child-Led Assessment
Authors: Dragana Gnjatovic
Abstract:
Assessment is a burning topic in education policy and practice due to measurement-driven neoliberal agendas of quality and standardisation of assessment practice through high stakes standardised testing systems that are now influencing early childhood education. This paper presents a collaborative, arts-informed action research project which places children at the centre of their learning, with assessment as an integral part of play-based learning processes. It aims to challenge traditional approaches to assessment that are often teacher-led and decontextualised from the processes of learning through exploring approaches where children's voices are central, and their creative arts expressions are used to assess learning and development. The theoretical framework draws on Vygotsky's sociocultural theory and Freire's critical pedagogy, which indicate the importance of socially constructed reality where knowledge is the result of collaboration between children and adults. This reality perceives children as competent agents of their own learning processes. An interpretive-constructivist and critical-transformative paradigm underpin collaborative action research in a three to five-year-old setting, where creative methods like storytelling, play, drama, drawing are used to assess children's learning. As data collection and analysis are still in process, this paper will present the methodology and some data vignettes, with the aim of stimulating discussion about innovation in assessment and contribution of the collaborative enquiry in the field of Early Childhood Education and Care.Keywords: assessment for learning, creative methodologies, collaborative action research, early childhood education and care
Procedia PDF Downloads 1379680 Social Media Data Analysis for Personality Modelling and Learning Styles Prediction Using Educational Data Mining
Authors: Srushti Patil, Preethi Baligar, Gopalkrishna Joshi, Gururaj N. Bhadri
Abstract:
In designing learning environments, the instructional strategies can be tailored to suit the learning style of an individual to ensure effective learning. In this study, the information shared on social media like Facebook is being used to predict learning style of a learner. Previous research studies have shown that Facebook data can be used to predict user personality. Users with a particular personality exhibit an inherent pattern in their digital footprint on Facebook. The proposed work aims to correlate the user's’ personality, predicted from Facebook data to the learning styles, predicted through questionnaires. For Millennial learners, Facebook has become a primary means for information sharing and interaction with peers. Thus, it can serve as a rich bed for research and direct the design of learning environments. The authors have conducted this study in an undergraduate freshman engineering course. Data from 320 freshmen Facebook users was collected. The same users also participated in the learning style and personality prediction survey. The Kolb’s Learning style questionnaires and Big 5 personality Inventory were adopted for the survey. The users have agreed to participate in this research and have signed individual consent forms. A specific page was created on Facebook to collect user data like personal details, status updates, comments, demographic characteristics and egocentric network parameters. This data was captured by an application created using Python program. The data captured from Facebook was subjected to text analysis process using the Linguistic Inquiry and Word Count dictionary. An analysis of the data collected from the questionnaires performed reveals individual student personality and learning style. The results obtained from analysis of Facebook, learning style and personality data were then fed into an automatic classifier that was trained by using the data mining techniques like Rule-based classifiers and Decision trees. This helps to predict the user personality and learning styles by analysing the common patterns. Rule-based classifiers applied for text analysis helps to categorize Facebook data into positive, negative and neutral. There were totally two models trained, one to predict the personality from Facebook data; another one to predict the learning styles from the personalities. The results show that the classifier model has high accuracy which makes the proposed method to be a reliable one for predicting the user personality and learning styles.Keywords: educational data mining, Facebook, learning styles, personality traits
Procedia PDF Downloads 2319679 The Instruction of Imagination: A Theory of Language as a Social Communication Technology
Authors: Daniel Dor
Abstract:
The research presents a new general theory of language as a socially-constructed communication technology, designed by cultural evolution for a very specific function: the instruction of imagination. As opposed to all the other systems of intentional communication, which provide materials for the interlocutors to experience, language allows speakers to instruct their interlocutors in the process of imagining the intended meaning-instead of experiencing it. It is thus the only system that bridges the experiential gaps between speakers. This is the key to its enormous success.Keywords: experience, general theory of language, imagination, language as technology, social essence of language
Procedia PDF Downloads 5869678 Networked Implementation of Milling Stability Optimization with Bayesian Learning
Authors: Christoph Ramsauer, Jaydeep Karandikar, Tony Schmitz, Friedrich Bleicher
Abstract:
Machining stability is an important limitation to discrete part machining. In this work, a networked implementation of milling stability optimization with Bayesian learning is presented. The milling process was monitored with a wireless sensory tool holder instrumented with an accelerometer at the Vienna University of Technology, Vienna, Austria. The recorded data from a milling test cut is used to classify the cut as stable or unstable based on the frequency analysis. The test cut result is fed to a Bayesian stability learning algorithm at the University of Tennessee, Knoxville, Tennessee, USA. The algorithm calculates the probability of stability as a function of axial depth of cut and spindle speed and recommends the parameters for the next test cut. The iterative process between two transatlantic locations repeats until convergence to a stable optimal process parameter set is achieved.Keywords: machining stability, machine learning, sensor, optimization
Procedia PDF Downloads 2069677 Dynamic Analysis and Clutch Adaptive Prefill in Dual Clutch Transmission
Authors: Bin Zhou, Tongli Lu, Jianwu Zhang, Hongtao Hao
Abstract:
Dual clutch transmissions (DCT) offer a high comfort performance in terms of the gearshift. Hydraulic multi-disk clutches are the key components of DCT, its engagement determines the shifting comfort. The prefill of the clutches requests an initial engagement which the clutches just contact against each other but not transmit substantial torque from the engine, this initial clutch engagement point is called the touch point. Open-loop control is typically implemented for the clutch prefill, a lot of uncertainties, such as oil temperature and clutch wear, significantly affects the prefill, probably resulting in an inappropriate touch point. Underfill causes the engine flaring in gearshift while overfill arises clutch tying up, both deteriorating the shifting comfort of DCT. Therefore, it is important to enable an adaptive capacity for the clutch prefills regarding the uncertainties. In this paper, a dynamic model of the hydraulic actuator system is presented, including the variable force solenoid and clutch piston, and validated by a test. Subsequently, the open-loop clutch prefill is simulated based on the proposed model. Two control parameters of the prefill, fast fill time and stable fill pressure is analyzed with regard to the impact on the prefill. The former has great effects on the pressure transients, the latter directly influences the touch point. Finally, an adaptive method is proposed for the clutch prefill during gear shifting, in which clutch fill control parameters are adjusted adaptively and continually. The adaptive strategy is changing the stable fill pressure according to the current clutch slip during a gearshift, improving the next prefill process. The stable fill pressure is increased by means of the clutch slip while underfill and decreased with a constant value for overfill. The entire strategy is designed in the Simulink/Stateflow, and implemented in the transmission control unit with optimization. Road vehicle test results have shown the strategy realized its adaptive capability and proven it improves the shifting comfort.Keywords: clutch prefill, clutch slip, dual clutch transmission, touch point, variable force solenoid
Procedia PDF Downloads 3089676 Winning the Future of Education in Africa through Project Base Learning: How the Implementation of PBL Pedagogy Can Transform Africa’s Educational System from Theory Base to Practical Base in School Curriculum
Authors: Bismark Agbemble
Abstract:
This paper talks about how project-based learning (PBL) is being infused or implemented in the educational sphere of Africa. The paper navigates through the liminal aspects of PBL as a pedagogical approach to bridge the divide between theoretical knowledge and its application within school curriculums. Given that contextualized learning can be embodied, the abstract vehemently discusses that PBL creates an opportunity for students to work on projects that are of academic relevance in their local settings. It presents PBL’s growth of critical thinking, problem-solving, cooperation, and communications, which is vital in getting young citizens to prepare for the 21st-century revolution. In addition, the abstract stresses the possibility that PBL could become a stimulus to creativity and innovation wherein learning becomes motivated from within by intrinsic motivations. The paper advocates for a holistic approach that is based on teacher’s professional development with the provision of adequate infrastructural facilities and resource allocation, thus ensuring the success and sustainability of PBLs in African education systems. In the end, the paper positions this as a transformative educational methodology that has great potential in helping to shape an African generation that is prepared for a great future.Keywords: student centered pedagogy, constructivist learning theory, self-directed learning, active exploration, real world challenges, STEM, 21st century skills, curriculum design, classroom management, project base learning curriculum, global intelligence, social and communication skills, transferable skills, critical thinking, investigatable learning, life skills
Procedia PDF Downloads 569675 Harnessing Artificial Intelligence and Machine Learning for Advanced Fraud Detection and Prevention
Authors: Avinash Malladhi
Abstract:
Forensic accounting is a specialized field that involves the application of accounting principles, investigative skills, and legal knowledge to detect and prevent fraud. With the rise of big data and technological advancements, artificial intelligence (AI) and machine learning (ML) algorithms have emerged as powerful tools for forensic accountants to enhance their fraud detection capabilities. In this paper, we review and analyze various AI/ML algorithms that are commonly used in forensic accounting, including supervised and unsupervised learning, deep learning, natural language processing Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Support Vector Machines (SVMs), Decision Trees, and Random Forests. We discuss their underlying principles, strengths, and limitations and provide empirical evidence from existing research studies demonstrating their effectiveness in detecting financial fraud. We also highlight potential ethical considerations and challenges associated with using AI/ML in forensic accounting. Furthermore, we highlight the benefits of these technologies in improving fraud detection and prevention in forensic accounting.Keywords: AI, machine learning, forensic accounting & fraud detection, anti money laundering, Benford's law, fraud triangle theory
Procedia PDF Downloads 939674 On Developing a Core Guideline for English Language Training Programs in Business Settings
Authors: T. Ito, K. Kawaguchi, R. Ohta
Abstract:
The purpose of this study is to provide a guideline to assist globally-minded companies in developing task-based English-language programs for their employees. After conducting an online self-assessment questionnaire comprised of 45 job-related tasks, we analyzed responses received from 3,000 Japanese company employees and developed a checklist that considered three areas: (i) the percentage of those who need to accomplish English-language tasks in their workplace (need for English), (ii) a five-point self-assessment score (task performance level), and (iii) the impact of previous task experience on perceived performance (experience factor). The 45 tasks were graded according to five proficiency levels. Our results helped us to create a core guideline that may assist companies in two ways: first, in helping determine which tasks employees with a certain English proficiency should be able to satisfactorily carry out, and secondly, to quickly prioritize which business-related English skills they would need in future English language programs.Keywords: business settings, can-do statements, English language training programs, self-assessment, task experience
Procedia PDF Downloads 2529673 Transformative Learning and the Development of Cultural Humility in Social Work Students
Authors: Ruilin Zhu, Katarzyna Olcoń, Rose M. Pulliam, Dorie J. Gilbert
Abstract:
Cultural humility is increasingly important in social work literature, given its emphasis on mitigating power imbalances in helping relationships, particularly across cultural differences. Consequently, there is a need to understand whether and how cultural humility can be taught in social work education. Relying on ethnographic observations and reflective journals from a cultural immersion program, this study identified the learning process required to develop cultural humility: confusion and discomfort, re-moulding, and humility in action.Keywords: social work education, cultural humility, transformative learning theory, study abroad, ethnographic observations
Procedia PDF Downloads 1549672 Using Neural Networks for Click Prediction of Sponsored Search
Authors: Afroze Ibrahim Baqapuri, Ilya Trofimov
Abstract:
Sponsored search is a multi-billion dollar industry and makes up a major source of revenue for search engines (SE). Click-through-rate (CTR) estimation plays a crucial role for ads selection, and greatly affects the SE revenue, advertiser traffic and user experience. We propose a novel architecture of solving CTR prediction problem by combining artificial neural networks (ANN) with decision trees. First, we compare ANN with respect to other popular machine learning models being used for this task. Then we go on to combine ANN with MatrixNet (proprietary implementation of boosted trees) and evaluate the performance of the system as a whole. The results show that our approach provides a significant improvement over existing models.Keywords: neural networks, sponsored search, web advertisement, click prediction, click-through rate
Procedia PDF Downloads 5729671 The Correspondence between Self-regulated Learning, Learning Efficiency and Frequency of ICT Use
Authors: Maria David, Tunde A. Tasko, Katalin Hejja-Nagy, Laszlo Dorner
Abstract:
The authors have been concerned with research on learning since 1998. Recently, the focus of our interest is how prevalent use of information and communication technology (ICT) influences students' learning abilities, skills of self-regulated learning and learning efficiency. Nowadays, there are three dominant theories about the psychic effects of ICT use: According to social optimists, modern ICT devices have a positive effect on thinking. As to social pessimists, this effect is rather negative. And, regarding the views of biological optimists, the change is obvious, but these changes can fit into the mankind's evolved neurological system as did writing long ago. Mentality of 'digital natives' differ from that of elder people. They process information coming from the outside world in an other way, and different experiences result in different cerebral conformation. In this regard, researchers report about both positive and negative effects of ICT use. According to several studies, it has a positive effect on cognitive skills, intelligence, school efficiency, development of self-regulated learning, and self-esteem regarding learning. It is also proven, that computers improve skills of visual intelligence such as spacial orientation, iconic skills and visual attention. Among negative effects of frequent ICT use, researchers mention the decrease of critical thinking, as permanent flow of information does not give scope for deeper cognitive processing. Aims of our present study were to uncover developmental characteristics of self-regulated learning in different age groups and to study correlations of learning efficiency, the level of self-regulated learning and frequency of use of computers. Our subjects (N=1600) were primary and secondary school students and university students. We studied four age groups (age 10, 14, 18, 22), 400 subjects of each. We used the following methods: the research team developed a questionnaire for measuring level of self-regulated learning and a questionnaire for measuring ICT use, and we used documentary analysis to gain information about grade point average (GPA) and results of competence-measures. Finally, we used computer tasks to measure cognitive abilities. Data is currently under analysis, but as to our preliminary results, frequent use of computers results in shorter response time regarding every age groups. Our results show that an ordinary extent of ICT use tend to increase reading competence, and had a positive effect on students' abilities, though it didn't show relationship with school marks (GPA). As time passes, GPA gets worse along with the learning material getting more and more difficult. This phenomenon draws attention to the fact that students are unable to switch from guided to independent learning, so it is important to consciously develop skills of self-regulated learning.Keywords: digital natives, ICT, learning efficiency, reading competence, self-regulated learning
Procedia PDF Downloads 3619670 Improving Numeracy Standards for UK Pharmacy Students
Authors: Luke Taylor, Samantha J. Hall, Kenneth I. Cumming, Jakki Bardsley, Scott S. P. Wildman
Abstract:
Medway School of Pharmacy, as part of an Equality Diversity and Inclusivity (EDI) initiative run by the University of Kent, decided to take steps to try and negate disparities in numeracy competencies within students undertaking the Master of Pharmacy degree in order to combat a trend in pharmacy students’ numerical abilities upon entry. This included a research driven project 1) to identify if pharmacy students are aware of weaknesses in their numeracy capabilities, and 2) recognise where their numeracy skillset is lacking. In addition to gaining this student perspective, a number of actions have been implemented to support students in improving their numeracy competencies. Reflective and quantitative analysis has shown promising improvements for the final year cohort of 2014/15 when compared to previous years. The method of involving student feedback into the structure of numeracy teaching/support has proven to be extremely beneficial to both students and teaching staff alike. Students have felt empowered and in control of their own learning requirements, leading to increased engagement and attainment. School teaching staff have received quality data to help improve existing initiatives and to innovate further in the area of numeracy teaching. In light of the recognised improvements, further actions are currently being trialled in the area of numeracy support. This involves utilising Virtual Learning Environment platforms to provide individualised support as a supplement to the increased numeracy mentoring (staff and peer) provided to students. Mentors who provide group or one-to-one sessions are now given significant levels of training in dealing with situations that commonly arise from mentoring schemes. They are also provided with continued support throughout the life of their degree. Following results from this study, Medway School of Pharmacy hopes to drive increasing numeracy standards within Pharmacy (primarily through championing peer mentoring) as well as other healthcare professions including Midwifery and Nursing.Keywords: attainment, ethnicity, numeracy, pharmacy, support
Procedia PDF Downloads 2369669 Reinforcement Learning for Self Driving Racing Car Games
Authors: Adam Beaunoyer, Cory Beaunoyer, Mohammed Elmorsy, Hanan Saleh
Abstract:
This research aims to create a reinforcement learning agent capable of racing in challenging simulated environments with a low collision count. We present a reinforcement learning agent that can navigate challenging tracks using both a Deep Q-Network (DQN) and a Soft Actor-Critic (SAC) method. A challenging track includes curves, jumps, and varying road widths throughout. Using open-source code on Github, the environment used in this research is based on the 1995 racing game WipeOut. The proposed reinforcement learning agent can navigate challenging tracks rapidly while maintaining low racing completion time and collision count. The results show that the SAC model outperforms the DQN model by a large margin. We also propose an alternative multiple-car model that can navigate the track without colliding with other vehicles on the track. The SAC model is the basis for the multiple-car model, where it can complete the laps quicker than the single-car model but has a higher collision rate with the track wall.Keywords: reinforcement learning, soft actor-critic, deep q-network, self-driving cars, artificial intelligence, gaming
Procedia PDF Downloads 479668 New Advanced Medical Software Technology Challenges and Evolution of the Regulatory Framework in Expert Software, Artificial Intelligence, and Machine Learning
Authors: Umamaheswari Shanmugam, Silvia Ronchi, Radu Vornicu
Abstract:
Software, artificial intelligence, and machine learning can improve healthcare through innovative and advanced technologies that are able to use the large amount and variety of data generated during healthcare services every day. As we read the news, over 500 machine learning or other artificial intelligence medical devices have now received FDA clearance or approval, the first ones even preceding the year 2000. One of the big advantages of these new technologies is the ability to get experience and knowledge from real-world use and to continuously improve their performance. Healthcare systems and institutions can have a great benefit because the use of advanced technologies improves the same time efficiency and efficacy of healthcare. Software-defined as a medical device, is stand-alone software that is intended to be used for patients for one or more of these specific medical intended uses: - diagnosis, prevention, monitoring, prediction, prognosis, treatment or alleviation of a disease, any other health conditions, replacing or modifying any part of a physiological or pathological process–manage the received information from in vitro specimens derived from the human samples (body) and without principal main action of its principal intended use by pharmacological, immunological or metabolic definition. Software qualified as medical devices must comply with the general safety and performance requirements applicable to medical devices. These requirements are necessary to ensure high performance and quality and also to protect patients’ safety. The evolution and the continuous improvement of software used in healthcare must take into consideration the increase in regulatory requirements, which are becoming more complex in each market. The gap between these advanced technologies and the new regulations is the biggest challenge for medical device manufacturers. Regulatory requirements can be considered a market barrier, as they can delay or obstacle the device approval, but they are necessary to ensure performance, quality, and safety, and at the same time, they can be a business opportunity if the manufacturer is able to define in advance the appropriate regulatory strategy. The abstract will provide an overview of the current regulatory framework, the evolution of the international requirements, and the standards applicable to medical device software in the potential market all over the world.Keywords: artificial intelligence, machine learning, SaMD, regulatory, clinical evaluation, classification, international requirements, MDR, 510k, PMA, IMDRF, cyber security, health care systems.
Procedia PDF Downloads 899667 Learning Vocabulary with SkELL: Developing a Methodology with University Students in Japan Using Action Research
Authors: Henry R. Troy
Abstract:
Corpora are becoming more prevalent in the language classroom, especially in the development of dictionaries and course materials. Nevertheless, corpora are still perceived by many educators as difficult to use directly in the classroom, a process which is also known as “data-driven learning” (DDL). Action research has been identified as a method by which DDL’s efficiency can be increased, but it is also an approach few studies on DDL have employed. Studies into the effectiveness of DDL in language education in Japan are also rare, and investigations focused more on student and teacher reactions rather than pre and post-test scores are rarer still. This study investigates the student and teacher reactions to the use of SkELL, a free online corpus designed to be user-friendly, for vocabulary learning at a university in Japan. Action research is utilized to refine the teaching methodology, with changes to the method based on student and teacher feedback received via surveys submitted after each of the four implementations of DDL. After some training, the students used tablets to study the target vocabulary autonomously in pairs and groups, with the teacher acting as facilitator. The results show that the students enjoyed using SkELL and felt it was effective for vocabulary learning, while the teaching methodology grew in efficiency throughout the course. These findings suggest that action research can be a successful method for increasing the efficacy of DDL in the language classroom, especially with teachers and students who are new to the practice.Keywords: action research, corpus linguistics, data-driven learning, vocabulary learning
Procedia PDF Downloads 2499666 Lifelong Education for Teachers: A Tool for Achieving Effective Teaching and Learning in Secondary Schools in Benue State, Nigeria
Authors: Adzongo Philomena Ibuh, Aloga O. Austin
Abstract:
The purpose of the study was to examine lifelong education for teachers as a tool for achieving effective teaching and learning. Lifelong education enhances social inclusion, personal development, citizenship, employability, teaching and learning, community and the nation, and the challenges of lifelong education were also discussed. Descriptive survey design was adopted for the study. A simple random sampling technique was used to select 80 teachers as sample from a population of 105 senior secondary school teachers in Makurdi local government area of Benue state. A 20-item self designed questionnaire subjected to expert validation and reliability was used to collect data. The reliability Alpha coefficient of 0.87 was established using Crombach Alpha technique, mean scores and standard deviation were used to answer the 2 research questions while chi-square was used to analyze data for the 2 hypotheses. The findings of the study revealed that, lifelong education for teachers can be used to achieve as a tool for achieving effective teaching and learning, and the study recommended among others that government, organizations and individuals should in collaboration put lifelong education programmes for teachers on the priority list. The paper concluded that the strategic position of lifelong education for teachers towards enhanced teaching and learning makes it imperative for all hands to be on deck to support the programme financially and otherwise.Keywords: effective teaching and learning, lifelong education, teachers, tool
Procedia PDF Downloads 4749665 Music Education for Blacks (Africans) in Apartheid and Post-Apartheid South Africa
Authors: Bernett Nkwayi Mulungo
Abstract:
There are vast community music projects in South African townships, and their courses range from music theory aural practical individual and ensemble lessons on orchestral instruments and recorders – these instruments being primarily “Western”. Despite this relative success – indeed one of the few in the realm of arts in post-apartheid South Africa – what remains troubling is the dominance of western thought (as music theory) and modes of teaching music that maintain the idea of music study as alien in black communities. This identified problem speaks to a significant theme, namely: Arts education for community development, which is my area of interest. Primarily for, it is a timely platform to firmly entrench appreciation, understanding, and, most undoubtedly, the value(s) of the arts to the youth. Drawing on one’s experience as a lecturer in (and graduate from) a South African tertiary institution and as a teacher in a community project, this research will interrogate the content of some of the program(s): from the theoretical material taught in music theory classes to the practical repertoire taught and/or performed. The focal point of this research is on how this content informs or speaks to its intended “beneficiaries” – the African youth. Through these and other considerations, the paper aims to sketch the potentially radical consequences that transformed music education at community and earlier levels will have for higher education music studies in South Africa.Keywords: decolonization, Africanization, indigenous knowledge, community engagement
Procedia PDF Downloads 809664 Dead Bodies that Matter: A Consensual Qualitative Research on the Lived Experience of Embalmers
Authors: Mark N. Abello, Betina Velanie L. Cruz, Angelo Joachim D. C. De Castro, Arnel A. Diego, John Ezequel V. Murillo
Abstract:
Embalmers are widely recognized as someone who mends the cadavers, but behind that is a great deal of work. These professionals are competent in physiology, chemicals, and cosmetics. Another is that such professionals face cadavers day-to-day. Given this background, the researchers intended to find out the lived experience of embalmers. The purpose of the present study is to discover the essence of the work of these professionals, to determine factors that influence their work, the depths of their life and on how the occupation affects upon physical, emotional-mental, spiritual, moral and social aspects. The researchers used the Consensual Qualitative Research, and eight embalmers, seven male and one female, from Manila and Bulacan were interviewed using open-ended questions and were used to triangulate the results. A primary research team conducted the consensus of domains, and an external auditor reviewed the results. A personal data sheet was also used, this helped the researchers group the respondents according to demographic profile. The results of the consensual qualitative research investigation revealed the four core components of the lived experience of embalmers which are motivation, struggles, acceptance, and contentment. The results revealed core components that play an important role in their everyday lives as an embalmer, daily hardships, and source of their pleasures. The present study will help future researchers, embalmers, and society.Keywords: embalmers, consensual qualitative research, lived experience, embalming
Procedia PDF Downloads 1679663 Resilient Machine Learning in the Nuclear Industry: Crack Detection as a Case Study
Authors: Anita Khadka, Gregory Epiphaniou, Carsten Maple
Abstract:
There is a dramatic surge in the adoption of machine learning (ML) techniques in many areas, including the nuclear industry (such as fault diagnosis and fuel management in nuclear power plants), autonomous systems (including self-driving vehicles), space systems (space debris recovery, for example), medical surgery, network intrusion detection, malware detection, to name a few. With the application of learning methods in such diverse domains, artificial intelligence (AI) has become a part of everyday modern human life. To date, the predominant focus has been on developing underpinning ML algorithms that can improve accuracy, while factors such as resiliency and robustness of algorithms have been largely overlooked. If an adversarial attack is able to compromise the learning method or data, the consequences can be fatal, especially but not exclusively in safety-critical applications. In this paper, we present an in-depth analysis of five adversarial attacks and three defence methods on a crack detection ML model. Our analysis shows that it can be dangerous to adopt machine learning techniques in security-critical areas such as the nuclear industry without rigorous testing since they may be vulnerable to adversarial attacks. While common defence methods can effectively defend against different attacks, none of the three considered can provide protection against all five adversarial attacks analysed.Keywords: adversarial machine learning, attacks, defences, nuclear industry, crack detection
Procedia PDF Downloads 1589662 Use of Technology to Improve Students’ Attitude in Learning Mathematics of Non- Mathematics Undergraduate Students
Authors: Asia Majeed
Abstract:
The learning of mathematics in science, engineering and social science programs can be enhanced through practical problem-solving techniques. The instructors can design their lessons with some strategies to improve students’ educational needs and accomplishments in mathematics classrooms. The use of technology in class problem solving and application sessions can enhance deep understanding of mathematics among students. As mathematician, we believe in subject specific and content-driven teaching methods. Through technology the relationship between the physical problems and the mathematical models can be analyzed. This paper is about selective use of technology in mathematics classrooms and helpful to others mathematics instructors who wishes to improve their traditional teaching techniques to improve students’ attitude in learning mathematics. These techniques corpus can be used in teaching large mathematics classes in science, technology, engineering, and social science.Keywords: attitude in learning mathematics, mathematics, non-mathematics undergraduate students, technology
Procedia PDF Downloads 2229661 Examining Employee Social Intrapreneurial Behaviour (ESIB) in Kuwait: Pilot Study
Authors: Ardita Malaj, Ahmad R. Alsaber, Bedour Alboloushi, Anwaar Alkandari
Abstract:
Organizations worldwide, particularly in Kuwait, are concerned with implementing a progressive workplace culture and fostering social innovation behaviours. The main aim of this research is to examine and establish a thorough comprehension of the relationship between an inventive organizational culture, employee intrapreneurial behaviour, authentic leadership, employee job satisfaction, and employee job commitment in the manufacturing sector of Kuwait, which is a developed economy. Literature reviews analyse the core concepts and their related areas by scrutinizing their definitions, dimensions, and importance to uncover any deficiencies in existing research. The examination of relevant research uncovered major gaps in understanding. This study examines the reliability and validity of a newly developed questionnaire designed to identify the appropriate applications for a large-scale investigation. A preliminary investigation was carried out, determining a sample size of 36 respondents selected randomly from a pool of 223 samples. SPSS was utilized to calculate the percentages of the demographic characteristics for the participants, assess the credibility of the measurements, evaluate the internal consistency, validate all agreements, and determine Pearson's correlation. The study's results indicated that the majority of participants were male (66.7%), aged between 35 and 44 (38.9%), and possessed a bachelor's degree (58.3%). Approximately 94.4% of the participants were employed full-time. 72.2% of the participants are employed in the electrical, computer, and ICT sector, whilst 8.3% work in the metal industry. Out of all the departments, the human resource department had the highest level of engagement, making up 13.9% of the total. Most participants (36.1%) possessed intermediate or advanced levels of experience, whilst 21% were classified as entry-level. Furthermore, 8.3% of individuals were categorized as first-level management, 22.2% were categorized as middle management, and 16.7% were categorized as executive or senior management. Around 19.4% of the participants have over a decade of professional experience. The Pearson's correlation coefficient for all 5 components varies between 0.4009 to 0.7183. The results indicate that all elements of the questionnaire were effectively verified, with a Cronbach alpha factor predominantly exceeding 0.6, which is the criterion commonly accepted by researchers. Therefore, the work on the larger scope of testing and analysis could continue.Keywords: pilot study, ESIB, innovative organizational culture, Kuwait, validation
Procedia PDF Downloads 329660 Using Q-Learning to Auto-Tune PID Controller Gains for Online Quadcopter Altitude Stabilization
Authors: Y. Alrubyli
Abstract:
Unmanned Arial Vehicles (UAVs), and more specifically, quadcopters need to be stable during their flights. Altitude stability is usually achieved by using a PID controller that is built into the flight controller software. Furthermore, the PID controller has gains that need to be tuned to reach optimal altitude stabilization during the quadcopter’s flight. For that, control system engineers need to tune those gains by using extensive modeling of the environment, which might change from one environment and condition to another. As quadcopters penetrate more sectors, from the military to the consumer sectors, they have been put into complex and challenging environments more than ever before. Hence, intelligent self-stabilizing quadcopters are needed to maneuver through those complex environments and situations. Here we show that by using online reinforcement learning with minimal background knowledge, the altitude stability of the quadcopter can be achieved using a model-free approach. We found that by using background knowledge instead of letting the online reinforcement learning algorithm wander for a while to tune the PID gains, altitude stabilization can be achieved faster. In addition, using this approach will accelerate development by avoiding extensive simulations before applying the PID gains to the real-world quadcopter. Our results demonstrate the possibility of using the trial and error approach of reinforcement learning combined with background knowledge to achieve faster quadcopter altitude stabilization in different environments and conditions.Keywords: reinforcement learning, Q-leanring, online learning, PID tuning, unmanned aerial vehicle, quadcopter
Procedia PDF Downloads 1749659 Influence of Some Psychological Factors on the Learning Gains of Distance Learners in Mathematics in Ibadan, Nigeria
Authors: Adeola Adejumo, Oluwole David Adebayo, Muraina Kamilu Olanrewaju
Abstract:
The purpose of this study was to investigate the influence of some psychological factors (i.e, school climate, parental involvement and classroom interaction) on the learning gains of university undergraduates in Mathematics in Ibadan, Nigeria. Three hundred undergraduates who are on open distance learning education programme in the University of Ibadan and thirty mathematics lecturers constituted the study’s sample. Both the independent and dependent variables were measured with relevant standardized instruments and the data obtained was analyzed using multiple regression statistical method. The instruments used were school climate scale, parental involvement scale and classroom interaction scale. Three research questions were answered in the study. The result showed that there was significant relationship between the three independent variables (school climate, parental involvement and classroom interaction) on the students’ learning gain in mathematics and that the independent variables both jointly and relatively contributed significantly to the prediction of students’ learning gain in mathematics. On the strength of these findings, the need to enhance the school climate, improve the parents’ involvement in the student’s education and encourage students’ classroom interaction were stressed and advocated.Keywords: school climate, parental involvement, ODL, learning gains, mathematics
Procedia PDF Downloads 5229658 A Formal Approach for Instructional Design Integrated with Data Visualization for Learning Analytics
Authors: Douglas A. Menezes, Isabel D. Nunes, Ulrich Schiel
Abstract:
Most Virtual Learning Environments do not provide support mechanisms for the integrated planning, construction and follow-up of Instructional Design supported by Learning Analytic results. The present work aims to present an authoring tool that will be responsible for constructing the structure of an Instructional Design (ID), without the data being altered during the execution of the course. The visual interface aims to present the critical situations present in this ID, serving as a support tool for the course follow-up and possible improvements, which can be made during its execution or in the planning of a new edition of this course. The model for the ID is based on High-Level Petri Nets and the visualization forms are determined by the specific kind of the data generated by an e-course, a population of students generating sequentially dependent data.Keywords: educational data visualization, high-level petri nets, instructional design, learning analytics
Procedia PDF Downloads 2439657 Observing Teaching Practices Through the Lenses of Self-Regulated Learning: A Study Within the String Instrument Individual Context
Authors: Marija Mihajlovic Pereira
Abstract:
Teaching and learning a musical instrument is challenging for both teachers and students. Teachers generally use diverse strategies to resolve students' particular issues in a one-to-one context. Considering individual sessions as a supportive educational context, the teacher can play a decisive role in stimulating and promoting self-regulated learning strategies, especially with beginning learners. The teachers who promote self-controlling behaviors, strategic monitoring, and regulation of actions toward goals could expect their students to practice more qualitatively and consciously. When encouraged to adopt self-regulation habits, students' could benefit from greater productivity on a longer path. Founded on Bary Zimmerman's cyclical model that comprehends three phases - forethought, performance, and self-reflection, this work aims to articulate self-regulated and music learning. Self-regulated learning appeals to the individual's attitude in planning, controlling, and reflecting on their performance. Furthermore, this study aimed to present an observation grid for perceiving teaching instructions that encourage students' controlling cognitive behaviors in light of the belief that conscious promotion of self-regulation may motivate strategic actions toward goals in musical performance. The participants, two teachers, and two students have been involved in the social inclusion project in Lisbon (Portugal). The author and one independent inter-observer analyzed six video-recorded string instrument lessons. The data correspond to three sessions per teacher lectured to one (different) student. Violin (f) and violoncello (m) teachers hold a Master's degree in music education and approximately five years of experience. In their second year of learning an instrument, students have acquired reasonable skills in musical reading, posture, and sound quality until then. The students also manifest positive learning behaviors, interest in learning a musical instrument, although their study habits are still inconsistent. According to the grid's four categories (parent codes), in-class rehearsal frames were coded using MaxQda software, version 20, according to the grid's four categories (parent codes): self-regulated learning, teaching verbalizations, teaching strategies, and students' in-class performance. As a result, selected rehearsal frames qualitatively describe teaching instructions that might promote students' body and hearing awareness, such as "close the eyes while playing" or "sing to internalize the pitch." Another analysis type, coding the short video events according to the observation grid's subcategories (child codes), made it possible to perceive the time teachers dedicate to specific verbal or non-verbal strategies. Furthermore, a coding overlay analysis indicated that teachers tend to stimulate. (i) Forethought – explain tasks, offer feedback and ensure that students identify a goal, (ii) Performance – teach study strategies and encourage students to sing and use vocal abilities to ensure inner audition, (iii) Self-reflection – frequent inquiring and encouraging the student to verbalize their perception of performance. Although developed in the context of individual string instrument lessons, this classroom observation grid brings together essential variables in a one-to-one lesson. It may find utility in a broader context of music education due to the possibility to organize, observe and evaluate teaching practices. Besides that, this study contributes to cognitive development by suggesting a practical approach to fostering self-regulated learning.Keywords: music education, observation grid, self-regulated learning, string instruments, teaching practices
Procedia PDF Downloads 989656 Holistic Solutions for Overcoming Fluoride Contamination Challenges in West Bengal, India: A Socio-economic Study on Water Quality, Infrastructure, and Community Engagement
Authors: Rajkumar Ghosh, Shyama Pada Gorai
Abstract:
Access to safe drinking water is a fundamental human right; however, regions like Purulia, Bankura, Birbhum, Malda, Dinajpur in West Bengal, India, face formidable challenges due to heightened fluoride levels. This paper delves into the hurdles of fresh drinking water production, presenting comprehensive solutions derived from literature reviews, field surveys, and scientific analyses. Encompassing fluoride-affected areas in Purulia, Bankura, Birbhum, Malda, North-South Dinajpur, and South 24 Parganas, the study emphasizes an integrated and sustainable approach. Employing a multidisciplinary methodology, combining scientific analysis and community engagement, the study identifies key factors influencing water quality and proposes sustainable strategies. Elevated fluoride concentrations exceeding international health standards (Purulia: 0.126 – 8.16 mg/L, Bankura: 0.1 – 12.2 mg/L, Malda: 0.1 – 4.54 mg/L, Birbhum: 0.023 – 18 mg/L) necessitate urgent intervention. Infrastructure deficiencies impede water treatment and distribution, while limited awareness obstructs community participation. The proposed solutions embrace advanced water treatment technologies, infrastructure development, community education, and sustainable water management practices. This comprehensive effort aims to provide clean drinking water, safeguarding the health of affected populations. Building on these foundations, the study explores the potential of rooftop rainwater harvesting as an effective and sustainable strategy to mitigate challenges in fresh drinking water production. By addressing fluoride contamination concerns and promoting community involvement, this approach presents a holistic solution to water quality issues in affected regions. The findings underscore the importance of integrating sustainable practices with community engagement to achieve long-term water security in Purulia, Bankura, Birbhum, Malda, North-South Dinajpur, and South 24 Parganas. This study serves as a cornerstone for further research and policy development, addressing fluoride contamination's impact on public health in affected areas. Recommendations include the establishment of long-term monitoring programs to assess the effectiveness of implemented solutions and conducting health impact studies to understand the long-term effects of fluoride contamination on the local population.Keywords: fluoride mitigation, rainwater harvesting, water quality, sustainable water management, community engagement
Procedia PDF Downloads 739655 Regulating User Experience Design, in the European Union, as a Way to Narrow Down the Gap Between Consumers’ Protection and Algorithms Employment
Authors: Prisecaru Diana-Sorina
Abstract:
The paper will show that, while the EU legislator tackled a series of UX patterns used in e-commerce to induce the consumers take actions that they would not normally undertake, it leaves out many other aspects related to misuse or poor UX design that adversely affect EU consumers. Further, the paper proposes a reevaluation of the regulatory addressability of the issue and hand and focuses on explaining why a joint strategy, based on the interplay between provisions aiming consumer protection and personal data protection is the key approach to this matter.Keywords: algorithms, consumer protection, European Union, user experience design
Procedia PDF Downloads 1369654 3D Printing Perceptual Models of Preference Using a Fuzzy Extreme Learning Machine Approach
Authors: Xinyi Le
Abstract:
In this paper, 3D printing orientations were determined through our perceptual model. Some FDM (Fused Deposition Modeling) 3D printers, which are widely used in universities and industries, often require support structures during the additive manufacturing. After removing the residual material, some surface artifacts remain at the contact points. These artifacts will damage the function and visual effect of the model. To prevent the impact of these artifacts, we present a fuzzy extreme learning machine approach to find printing directions that avoid placing supports in perceptually significant regions. The proposed approach is able to solve the evaluation problem by combing both the subjective knowledge and objective information. Our method combines the advantages of fuzzy theory, auto-encoders, and extreme learning machine. Fuzzy set theory is applied for dealing with subjective preference information, and auto-encoder step is used to extract good features without supervised labels before extreme learning machine. An extreme learning machine method is then developed successfully for training and learning perceptual models. The performance of this perceptual model will be demonstrated on both natural and man-made objects. It is a good human-computer interaction practice which draws from supporting knowledge on both the machine side and the human side.Keywords: 3d printing, perceptual model, fuzzy evaluation, data-driven approach
Procedia PDF Downloads 4389653 Trends in Practical Research on Universal Design for Learning (UDL) in Japanese Elementary Schools
Authors: Zolzaya Badmaavanchig, Shoko Miyamoto
Abstract:
In recent years, universal design for learning (hereinafter referred to as "UDL"), which aims to establish an inclusive education system and to make all children, regardless of their disabilities, experts in learning, has been attracting attention, and there have been some attempts to incorporate it into regular classrooms where children with developmental disabilities and those who show such tendencies are enrolled. The purpose of this study was to examine the effectiveness and challenges of implementing UDL in Japanese elementary schools based on the previous literature. As a method, we first searched for articles on UDL for learning and UDL in the classroom from 2010 to 2022. In addition, we selected practice studies that targeted children with special educational support needs and the classroom as a whole. In response to the extracted literature, this bridge examined the following five perspectives: (1) subjects and grades in which UDL was practiced, (2) methods to grasp the actual conditions of the children, (3) consideration for children with special needs during class, (4) form of class, and (5) effects of the practice. Based on the results, we would like to present issues related to future UDL efforts in Japanese elementary schools.Keywords: universal design for learning, regular elementary school class, children with special education needs, special educational support
Procedia PDF Downloads 629652 UKIYO-E: User Knowledge Improvement Based on Youth Oriented Entertainment, Art Appreciation Support by Interacting with Picture
Authors: Haruya Tamaki, Tsugunosuke Sakai, Ryuichi Yoshida, Ryohei Egusa, Shigenori Inagaki, Etsuji Yamaguchi, Fusako Kusunoki, Miki Namatame, Masanori Sugimoto, Hiroshi Mizoguchi
Abstract:
Art appreciation is important as part of children education. Art appreciation can enrich sensibility and creativity. To enrich sensibility and creativity, the children have to learning knowledge of picture such as social and historical backgrounds and author intention. High learning effect can acquire by actively learning. In short, it is important that encourage learning of the knowledge about pictures actively. It is necessary that children feel like interest to encourage learning of the knowledge about pictures actively. In a general art museum, comments on pictures are done through writing. Thus, we expect that this method cannot arouse the interest of the children in pictures, because children feel like boring. In brief, learning about the picture information is difficult. Therefore, we are developing an art-appreciation support system that will encourage learning of the knowledge about pictures actively by children feel like interest. This system uses that Interacting with Pictures to learning of the knowledge about pictures. To Interacting with Pictures, children have to utterance by themselves. We expect that will encourage learning of the knowledge about pictures actively by Interacting with Pictures. To more actively learning, children can choose who talking with by information that location and movement of the children. This system must be able to acquire real-time knowledge of the location, movement, and voice of the children. We utilize the Microsoft’s Kinect v2 sensor and its library, namely, Kinect for Windows SDK and Speech Platform SDK v11 for this purpose. By using these sensor and library, we can determine the location, movement, and voice of the children. As the first step of this system, we developed ukiyo-e game that use ukiyo-e to appreciation object. Ukiyo-e is a traditional Japanese graphic art that has influenced the western society. Therefore, we believe that the ukiyo-e game will be appreciated. In this study, we applied talking to pictures to learn information about the pictures because we believe that learning information about the pictures by talking to the pictures is more interesting than commenting on the pictures using only texts. However, we cannot confirm if talking to the pictures is more interesting than commenting using texts only. Thus, we evaluated through EDA measurement whether the user develops an interest in the pictures while talking to them using voice recognition or by commenting on the pictures using texts only. Hence, we evaluated that children have interest to picture while talking to them using voice recognition through EDA measurement. In addition, we quantitatively evaluate that enjoyed this game or not and learning information about the pictures for primary schoolchildren. In this paper, we summarize these two evaluation results.Keywords: actively learning, art appreciation, EDA, Kinect V2
Procedia PDF Downloads 285