Search results for: flow units
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6007

Search results for: flow units

3907 Non-Contact Measurement of Soil Deformation in a Cyclic Triaxial Test

Authors: Erica Elice Uy, Toshihiro Noda, Kentaro Nakai, Jonathan Dungca

Abstract:

Deformation in a conventional cyclic triaxial test is normally measured by using point-wise measuring device. In this study, non-contact measurement technique was applied to be able to monitor and measure the occurrence of non-homogeneous behavior of the soil under cyclic loading. Non-contact measurement is executed through image processing. Two-dimensional measurements were performed using Lucas and Kanade optical flow algorithm and it was implemented Labview. In this technique, the non-homogeneous deformation was monitored using a mirrorless camera. A mirrorless camera was used because it is economical and it has the capacity to take pictures at a fast rate. The camera was first calibrated to remove the distortion brought about the lens and the testing environment as well. Calibration was divided into 2 phases. The first phase was the calibration of the camera parameters and distortion caused by the lens. The second phase was to for eliminating the distortion brought about the triaxial plexiglass. A correction factor was established from this phase. A series of consolidated undrained cyclic triaxial test was performed using a coarse soil. The results from the non-contact measurement technique were compared to the measured deformation from the linear variable displacement transducer. It was observed that deformation was higher at the area where failure occurs.

Keywords: cyclic loading, non-contact measurement, non-homogeneous, optical flow

Procedia PDF Downloads 293
3906 Governance of the Waters in the Upper Iguazu Watershed: Case Study in Passaúna and Miringuava Watersheds

Authors: Matheus Fonseca Durães, Bruno da Silva Pereira, Bruna Stewart

Abstract:

The concept of Brazil’s water governance has been the topic of discussion and has undergone legal and organizational improvements due to the need to promote a more effective and sustainable relationship with natural resources and stemming from conflicts related to shortcomings in decision-making. The Waters Act has enabled Brazil to create interesting mechanisms for integrated management, but, on the other hand, it has created a challenge that involves the implementation of the principles established in this legal framework. This study aims to evaluate some challenges and opportunities for water governance in two watersheds based on data collection and analysis of concessions, the water use register, and flow data. The elements presented demonstrated, via an analysis of legally instituted criteria, that the level of commitment of water resources is high, especially to public supply, and the adoption of the reference flow constituted one of the main barriers to implementing an efficient system, demonstrating the need for a regulatory policy that considers the hydrological behavior of the watersheds. Finally, the current water management model presents challenges to be addressed to achieve the objectives proposed by the water policy, such as ensuring sustainable, rational, and integrated use of water resources.

Keywords: management, hydrology, public policies, Brazil

Procedia PDF Downloads 87
3905 Numerical Study of Natural Convection Heat Transfer in a Two-Dimensional Vertical Conical PartiallyAnnular Space

Authors: Belkacem Ould Said, Nourddine Retiel, Abdelilah Benazza, Mohamed Aichouni

Abstract:

In this paper, a numerical study of two-dimensional steady flow has been made of natural convection in a differentially heated vertical conical partially annular space. The heat transfer is assumed to take place by natural convection. The inner and outer surfaces of annulus are maintained at uniform wall temperature. The annulus is filled with air. The CFD FLUENT12.0 code is used to solve the governing equations of mass, momentum and energy using constant properties and the Boussinesq approximation for density variation. The streamlines and the isotherms of the fluid are presented for different annuli with different boundary conditions and Rayleigh numbers. Emphasis is placed on the influences of the height of the inner vertical cone on the flow and the temperature fields. In addition, the effects on the heat transfer are discussed for various values of physical parameters of the fluid and geometric parameters of the annulus. The heat transfer on the hot walls of the annulus is also calculated in order to make comparisons between the cylinder annulus for boundary conditions and several Rayleigh numbers. A good agreement of Nusselt number has been found between the present predictions and reference from the literature data.

Keywords: natural convection, heat transfer, numerical simulation, conical partially, annular space

Procedia PDF Downloads 299
3904 Simulation Study on Particle Fluidization and Drying in a Spray Fluidized Bed

Authors: Jinnan Guo, Daoyin Liu

Abstract:

The quality of final products in the coating process significantly depends on particle fluidization and drying in the spray-fluidized bed. In this study, fluidizing gas temperature and velocity are changed, and their effects on particle flow, moisture content, and heat transfer in a spray fluidized bed are investigated by the CFD – Discrete Element Model (DEM). The gas flow velocity distribution of the fluidized bed is symmetrical, with high velocity in the middle and low velocity on both sides. During the heating process, the particles inside the central tube and at the bottom of the bed are rapidly heated. The particle circulation in the annular area is heated slowly and the temperature is low. The inconsistency of particle circulation results in two peaks in the probability density distribution of the particle temperature during the heating process, and the overall temperature of the particles increases uniformly. During the drying process, the distribution of particle moisture transitions from initial uniform moisture to two peaks, and then the number of completely dried (moisture content of 0) particles gradually increases. Increasing the fluidizing gas temperature and velocity improves particle circulation, drying and heat transfer in the bed. The current study provides an effective method for studying the hydrodynamics of spray fluidized beds with simultaneous processes of heating and particle fluidization.

Keywords: heat transfer, CFD-DEM, spray fluidized bed, drying

Procedia PDF Downloads 55
3903 Thermal Radiation Effect on Mixed Convection Boundary Layer Flow over a Vertical Plate with Varying Density and Volumetric Expansion Coefficient

Authors: Sadia Siddiqa, Z. Khan, M. A. Hossain

Abstract:

In this article, the effect of thermal radiation on mixed convection boundary layer flow of a viscous fluid along a highly heated vertical flat plate is considered with varying density and volumetric expansion coefficient. The density of the fluid is assumed to vary exponentially with temperature, however; volumetric expansion coefficient depends linearly on temperature. Boundary layer equations are transformed into convenient form by introducing primitive variable formulations. Solutions of transformed system of equations are obtained numerically through implicit finite difference method along with Gaussian elimination technique. Results are discussed in view of various parameters, like thermal radiation parameter, volumetric expansion parameter and density variation parameter on the wall shear stress and heat transfer rate. It is concluded from the present investigation that increase in volumetric expansion parameter decreases wall shear stress and enhances heat transfer rate.

Keywords: thermal radiation, mixed convection, variable density, variable volumetric expansion coefficient

Procedia PDF Downloads 359
3902 Treatment of Septic Tank Effluent Using Moving Bed Biological Reactor

Authors: Fares Almomani, Majeda Khraisheh, Rahul Bhosale, Anand Kumar, Ujjal Gosh

Abstract:

Septic tanks (STs) are very commonly used wastewater collection systems in the world especially in rural areas. In this study, the use of moving bed biological reactors (MBBR) for the treatment of septic tanks effluents (STE) was studied. The study was included treating septic tank effluent from one house hold using MBBRs. Significant ammonia removal rate was observed in all the reactors throughout the 180 days of operation suggesting that the MBBRs were successful in reducing the concentration of ammonia from septic tank effluent. The average ammonia removal rate at 25◦C for the reactor operated at hydraulic retention time of 5.7 hr (R1) was 0.540 kg-N/m3and for the reactor operated at hydraulic retention time of 13.3hr (R2) was 0.279 kg-N/m3. Ammonia removal rates were decreased to 0.3208 kg-N/m3 for R1 and 0.212 kg-N/m3 for R3 as the temperature of reactor was decreased to 8 ◦C. A strong correlation exists between theta model and the rates of ammonia removal for the reactors operated in continuous flow. The average ϴ values for the continuous flow reactors during the temperature change from 8°C to 20 °C were found to be 1.053±0.051. MBBR technology can be successfully used as a polishing treatment for septic tank effluent.

Keywords: septic tanks, wastewater treatment, morphology, moving biological reactors, nitrification

Procedia PDF Downloads 333
3901 Risk Factors of Hospital Acquired Infection Mortality in a Tunisian Intensive Care Unit

Authors: Ben Cheikh Asma, Bouafia Nabiha, Ammar Asma, Ezzi Olfa, Meddeb Khaoula, Chouchène Imed, Boussarsar Hamadi, Njah Mansour

Abstract:

Background: Hospital Acquired Infection (HAI) constitutes an important worldwide health problem. It was associated with high mortality rate in intensive care units (ICU). This study aimed to determine HAI mortality rate in Tunisian intensive care units and identify its risk factors. Methods: We conducted a prospective observational cohort study over a 12 months period (September 15th 2015 to September 15 th 2016) in the adult medical ICU of University Hospital-Farhat Hached (Sousse-Tunisia). All patients admitted in the ICU for more than 48 hours were included in the study. We used an anonymous standardized survey record form to collect data by a medical hygienist assisted by an intensivist. We adopted definitions of Center for Diseases Control and prevention of Atlanta to detect HAI, Kaplan Meier survival analysis and Cox proportional hazard regression to identify independent risk factor of HAI mortality. Results: Of 171 patients, 67 developed ICU-acquired infection (global incidence rate=39.2%). The mean age of patients was 59 ± 21.2 years and 60.8% were male. The most frequently identified infections were pulmonary acquired infection (ventilator associated pneumonia (VAP) and infected atelectasis with density rates 21.4 VAP/1000 days of mechanical ventilation and 9.4 infected atelectasis /1000 days of mechanical ventilation; respectively) and central venous catheter associated infection (CVC - AI) with density rate 28.4 CVC-AI / 1000 CVC-days). HAI mortality rate was 66.7% (n=44). The median survival was 20 days 3.36, 95% Confidential Interval [13.39 – 26.60]. Specific mortality rates according to infectious site were 65.5%, 36.4% and 4.5% respectively for VAP, CVC associated infection and infected atelectasis. In univariate analysis, a significant associations between mortality and cardiovascular history (p=0.04) tracheotomy (p=0.00), peripheral venous catheterization (p=0.04), VAP (p=0.04) and infected atelectasis (p=0.04) were detected. Independent risk factors for HAI mortality were VAP with Hazard Ratio = 3.14, 95% Confidential Interval [1.63 – 6.05] (p=0.001) and tracheotomy (Hazard Ratio=0.22, 95% Confidential Interval [0.10 – 0.44], p=0.000). Conclusions: In the present study, hospital acquired infection mortality rate was relatively high. We need to intensify the fight against these infections especially ventilator-associated pneumonia that is associated with higher risk of mortality in many studies. Thus, more effective infection control interventions were necessary in our hospital.

Keywords: hospital acquired infection, intensive care unit, mortality, risk factors

Procedia PDF Downloads 477
3900 Counter-Current Extraction of Fish Oil and Toxic Elements from Fish Waste Using Supercritical Carbon Dioxide

Authors: Parvaneh Hajeb, Shahram Shakibazadeh, Md. Zaidul Islam Sarker

Abstract:

High-quality fish oil for human consumption requires low levels of toxic elements. The aim of this study was to develop a method to extract oil from fish wastes with the least toxic elements contamination. Supercritical fluid extraction (SFE) was applied to detoxify fish oils from toxic elements. The SFE unit used consisted of an intelligent HPLC pump equipped with a cooling jacket to deliver CO2. The freeze-dried fish waste sample was extracted by heating in a column oven. Under supercritical conditions, the oil dissolved in CO2 was separated from the supercritical phase using pressure reduction. The SFE parameters (pressure, temperature, CO2 flow rate, and extraction time) were optimized using response surface methodology (RSM) to extract the highest levels of toxic elements. The results showed that toxic elements in fish oil can be reduced using supercritical CO2 at optimum pressure 40 MPa, temperature 61 ºC, CO2 flow rate 3.8 MPa, and extraction time 4.25 hr. There were significant reductions in the mercury (98.2%), cadmium (98.9%), arsenic (96%), and lead contents (99.2%) of the fish oil. The fish oil extracted using this method contained elements at levels that were much lower than the accepted limits of 0.1 μg/g. The reduction of toxic elements using the SFE method was more efficient than that of the conventional methods due to the high selectivity of supercritical CO2 for non-polar compounds.

Keywords: food safety, toxic elements, fish oil, supercritical carbon dioxide

Procedia PDF Downloads 413
3899 Analyzing and Determining the Ideal Response Force for Combatting Terrorist Groups

Authors: Erhan Turgut, Salih Ergün, Abdülkadir Öz

Abstract:

Terror is a modern war strategy which uses violence as a means of communication in order to achieve political objectives. In today’s security environment narrowing the propaganda field of terrorist organization is the primary goal for the security forces. In this sense, providing and maintaining public support is the most necessary ability for security units. Rather than enemy and threat-oriented approach, homeland security oriented approach is essential to ensure public support. In this study, terror assumed as a homeland security issue and assigning the law enforcement forces with military status is analyzed.

Keywords: terrorism, counter-terrorism, military status law-enforcement, terrorist groups

Procedia PDF Downloads 450
3898 Developing Communicative Skills in Foreign Languages by Video Tasks

Authors: Ekaterina G. Lipatova

Abstract:

The developing potential of a video task in teaching foreign languages involves the opportunities to improve four aspects of speech production process: listening, reading, speaking and writing. A video represents the sequence of actions, realized in the pictures logically connected and verbalized speech flow that simplifies and stimulates the process of perception. In this connection listening skills of students are developed effectively as well as their intellectual properties such as synthesizing, analyzing and generalizing the information. In terms of teaching capacity, a video task, in our opinion, is more stimulating than a traditional listening, since it involves the student into the plot of the communicative situation, emotional background and potentially makes them react to the gist in the cognitive and communicative ways. To be an effective method of teaching the video task should be structured in the way of psycho-linguistic characteristics of speech production process, in other words, should include three phases: before-watching, while-watching and after-watching. The system of tasks provided to each phase might involve the situations on reflecting to the video content in the forms of filling-the-gap tasks, multiple choice, True-or-False tasks (reading skills), exercises on expressing the opinion, project fulfilling (writing and speaking skills). In the before-watching phase we offer the students to adjust their perception mechanism to the topic and the problem of the chosen video by such task as “what do you know about such a problem?”, “is it new for you?”, “have you ever faced the situation of…?”. Then we proceed with the lexical and grammatical analysis of language units that form the body of a speech sample to lessen the perception and develop the student’s lexicon. The goal of while-watching phase is to build the student’s awareness about the problem presented in the video and challenge their inner attitude towards what they have seen by identifying the mistakes in the statements about the video content or making the summary, justifying their understanding. Finally, we move on to development of their speech skills within the communicative situation they observed and learnt by stimulating them to search the similar ideas in their backgrounds and represent them orally or in the written form or express their own opinion on the problem. It is compulsory to highlight, that a video task should contain the urgent, valid and interesting event related to the future profession of the student, since it will help to activate cognitive, emotional, verbal and ethic capacity of students. Also, logically structured video tasks are easily integrated into the system of e-learning and can provide the opportunity for the students to work with the foreign language on their own.

Keywords: communicative situation, perception mechanism, speech production process, speech skills

Procedia PDF Downloads 236
3897 Superficial Metrology of Organometallic Chemical Vapour Deposited Undoped ZnO Thin Films on Stainless Steel and Soda-Lime Glass Substrates

Authors: Uchenna Sydney Mbamara, Bolu Olofinjana, Ezekiel Oladele B. Ajayi

Abstract:

Elaborate surface metrology of undoped ZnO thin films, deposited by organometallic chemical vapour deposition (OMCVD) technique at different precursor flow rates, was carried out. Dicarbomethyl-zinc precursor was used. The films were deposited on AISI304L steel and soda-lime glass substrates. Ultraviolet-visible-near-infrared (UV-Vis-NIR) spectroscopy showed that all the thin films were over 80% transparent, with an average bandgap of 3.39 eV, X-ray diffraction (XRD) results showed that the thin films were crystalline with a hexagonal structure, while Rutherford backscattering spectroscopy (RBS) results identified the elements present in each thin film as zinc and oxygen in the ratio of 1:1. Microscope and contactless profilometer results gave images with characteristic colours. The profilometer also gave the surface roughness data in both 2D and 3D. The asperity distribution of the thin film surfaces was Gaussian, while the average fractal dimension Da was in the range of 2.5 ≤ Da. The metrology proved the surfaces good for ‘touch electronics’ and coating mechanical parts for low friction.

Keywords: undoped ZnO, precursor flow rate, OMCVD, thin films, surface texture, tribology

Procedia PDF Downloads 55
3896 An Experimental Study on the Effects of Aspect Ratio of a Rectangular Microchannel on the Two-Phase Frictional Pressure Drop

Authors: J. A. Louw Coetzee, Josua P. Meyer

Abstract:

The thermodynamic properties of different refrigerants in combination with the variation in geometrical properties (hydraulic diameter, aspect ratio, and inclination angle) of a rectangular microchannel determine the two-phase frictional pressure gradient. The effect of aspect ratio on frictional pressure drop had not been investigated enough during adiabatic two-phase flow and condensation in rectangular microchannels. This experimental study was concerned with measurement of the frictional pressure gradient in a rectangular microchannel, with hydraulic diameter of 900 μm. The aspect ratio of this microchannel was varied over a range that stretched from 0.3 to 3 in order to capture the effect of aspect ratio variation. A commonly used refrigerant, R134a, was used in the tests that spanned over a mass flux range of 100 to 1000 kg m-2 s-1 as well as the whole vapour quality range. This study formed part of a refrigerant condensation experiment and was therefore conducted at a saturation temperature of 40 °C. The study found that there was little influence of the aspect ratio on the frictional pressure drop at the test conditions. The data was compared to some of the well known micro- and macro-channel two-phase pressure drop correlations. Most of the separated flow correlations predicted the pressure drop data well at mass fluxes larger than 400 kg m-2 s-1 and vapour qualities above 0.2.

Keywords: aspect ratio, microchannel, two-phase, pressure gradient

Procedia PDF Downloads 362
3895 Improving the Quality of Transport Management Services with Fuzzy Signatures

Authors: Csaba I. Hencz, István Á. Harmati

Abstract:

Nowadays the significance of road transport is gradually increasing. All transport companies are working in the same external environment where the speed of transport is defined by traffic rules. The main objective is to accelerate the speed of service and it is only dependent on the individual abilities of the managing members. These operational control units make decisions quickly (in a typically experiential and/or intuitive way). For this reason, support for these decisions is an important task. Our goal is to create a decision support model based on fuzzy signatures that can assist the work of operational management automatically. If the model sets parameters properly, the management of transport could be more economical and efficient.

Keywords: freight transport, decision support, information handling, fuzzy methods

Procedia PDF Downloads 250
3894 Roadway Infrastructure and Bus Safety

Authors: Richard J. Hanowski, Rebecca L. Hammond

Abstract:

Very few studies have been conducted to investigate safety issues associated with motorcoach/bus operations. The current study investigates the impact that roadway infrastructure, including locality, roadway grade, traffic flow and traffic density, have on bus safety. A naturalistic driving study was conducted in the U.S.A that involved 43 motorcoaches. Two fleets participated in the study and over 600,000 miles of naturalistic driving data were collected. Sixty-five bus drivers participated in this study; 48 male and 17 female. The average age of the drivers was 49 years. A sophisticated data acquisition system (DAS) was installed on each of the 43 motorcoaches and a variety of kinematic and video data were continuously recorded. The data were analyzed by identifying safety critical events (SCEs), which included crashes, near-crashes, crash-relevant conflicts, and unintentional lane deviations. Additionally, baseline (normative driving) segments were also identified and analyzed for comparison to the SCEs. This presentation highlights the need for bus safety research and the methods used in this data collection effort. With respect to elements of roadway infrastructure, this study highlights the methods used to assess locality, roadway grade, traffic flow, and traffic density. Locality was determined by manual review of the recorded video for each event and baseline and was characterized in terms of open country, residential, business/industrial, church, playground, school, urban, airport, interstate, and other. Roadway grade was similarly determined through video review and characterized in terms of level, grade up, grade down, hillcrest, and dip. The video was also used to make a determination of the traffic flow and traffic density at the time of the event or baseline segment. For traffic flow, video was used to assess which of the following best characterized the event or baseline: not divided (2-way traffic), not divided (center 2-way left turn lane), divided (median or barrier), one-way traffic, or no lanes. In terms of traffic density, level-of-service categories were used: A1, A2, B, C, D, E, and F. Highlighted in this abstract are only a few of the many roadway elements that were coded in this study. Other elements included lighting levels, weather conditions, roadway surface conditions, relation to junction, and roadway alignment. Note that a key component of this study was to assess the impact that driver distraction and fatigue have on bus operations. In this regard, once the roadway elements had been coded, the primary research questions that were addressed were (i) “What environmental condition are associated with driver choice of engagement in tasks?”, and (ii) “what are the odds of being in a SCE while engaging in tasks while encountering these conditions?”. The study may be of interest to researchers and traffic engineers that are interested in the relationship between roadway infrastructure elements and safety events in motorcoach bus operations.

Keywords: bus safety, motorcoach, naturalistic driving, roadway infrastructure

Procedia PDF Downloads 175
3893 Experimental Study on the Effect of Storage Conditions on Thermal Hazard of Nitrocellulose

Authors: Hua Chai, Qiangling Duan, Huiqi Cao, Mi Li, Jinhua Sun

Abstract:

Nitrocellulose (NC), a kind of energetic material, has been widely used in the industrial and military fields. However, this material can also cause serious social disasters due to storage conditions. Thermal hazard of nitrocellulose (NC) was experimentally investigated using the CALVET heat flux calorimeter C80, and three kinds of storage conditions were considered in the experiments: (1) drying time, (2) moisture content, (3) cycles. The results showed that the heat flow curves of NC moved to the low-temperature direction firstly and then slightly moved back by increasing the drying hours. Moisture that was responsible for the appearance of small exothermic peaks was proven to be the unfavorable safety factor yet it could increase the onset temperature of the main peak to some extent. And cycles could both lower the onset temperature and the maximum heat flow but enlarged the peak temperature. Besides, relevant kinetic parameters such as the heat of reaction (ΔH) and the activation energy (Ea) were obtained and compared. It was found that all the three conditions could reduce the values of Ea and most of them produced larger reaction heat. In addition, the critical explosion temperature (Tb) of the NC samples were derived. It was clear that not only the drying time but also the cycles would increase the thermal hazard of the NC. Yet, the right amount of water helped to reduce the thermal hazard.

Keywords: C80, nitrocellulose, storage conditions, the critical explosion temperature, thermal hazard

Procedia PDF Downloads 157
3892 Evaluating the Performance of Passive Direct Methanol Fuel Cell under Varying Operating and Structural Conditions

Authors: Rahul Saraswat

Abstract:

More recently, a focus is given on replacing machined stainless steel metal flow-fields with inexpensive wiremesh current collectors. The flow-fields are based on simple woven wiremesh screens of various stainless steels, which are sandwiched between a thin metal plate of the same material to create a bipolar plate/flow-field configuration for use in a stack. Major advantages of using stainless steel wire screens include the elimination of expensive raw materials as well as machining and/or other special fabrication costs. Objective of the project is to improve the performance of the passive direct methanol fuel cell without increasing the cost of the cell and to make it as compact and light as possible. From the literature survey, it was found that very little is done in this direction & the following methodology was used. 1.) The passive DMFC cell can be made more compact, lighter and less costly by changing the material used in its construction. 2.) Controlling the fuel diffusion rate through the cell improves the performance of the cell. A passive liquid feed direct methanol fuel cell ( DMFC ) was fabricated using given MEA( Membrane Electrode Assembly ) and tested for different current collector structure. Mesh current collectors of different mesh densities, along with different support structures, were used, and the performance was found to be better. Methanol concentration was also varied. Optimisation of mesh size, support structure and fuel concentration was achieved. Cost analysis was also performed hereby. From the performance analysis study of DMFC, we can conclude with the following points : Area specific resistance (ASR) of wiremesh current collectors is lower than ASR of stainless steel current collectors. Also, the power produced by wiremesh current collectors is always more than that produced by stainless steel current collectors. Low or moderate methanol concentrations should be used for better and stable DMFC performance. Wiremesh is a good substitute of stainless steel for current collector plates of passive DMFC because of lower cost( by about 27 %), flexibility and light in weight characteristics of wiremesh.

Keywords: direct methanol fuel cell, membrane electrode assembly, mesh, mesh size, methanol concentration and support structure

Procedia PDF Downloads 60
3891 Modeling of Electrokinetic Mixing in Lab on Chip Microfluidic Devices

Authors: Virendra J. Majarikar, Harikrishnan N. Unni

Abstract:

This paper sets to demonstrate a modeling of electrokinetic mixing employing electroosmotic stationary and time-dependent microchannel using alternate zeta patches on the lower surface of the micromixer in a lab on chip microfluidic device. Electroosmotic flow is amplified using different 2D and 3D model designs with alternate and geometric zeta potential values such as 25, 50, and 100 mV, respectively, to achieve high concentration mixing in the electrokinetically-driven microfluidic system. The enhancement of electrokinetic mixing is studied using Finite Element Modeling, and simulation workflow is accomplished with defined integral steps. It can be observed that the presence of alternate zeta patches can help inducing microvortex flows inside the channel, which in turn can improve mixing efficiency. Fluid flow and concentration fields are simulated by solving Navier-Stokes equation (implying Helmholtz-Smoluchowski slip velocity boundary condition) and Convection-Diffusion equation. The effect of the magnitude of zeta potential, the number of alternate zeta patches, etc. are analysed thoroughly. 2D simulation reveals that there is a cumulative increase in concentration mixing, whereas 3D simulation differs slightly with low zeta potential as that of the 2D model within the T-shaped micromixer for concentration 1 mol/m3 and 0 mol/m3, respectively. Moreover, 2D model results were compared with those of 3D to indicate the importance of the 3D model in a microfluidic design process.

Keywords: COMSOL Multiphysics®, electrokinetic, electroosmotic, microfluidics, zeta potential

Procedia PDF Downloads 231
3890 Thermomagnetic Convection of a Ferrofluid in a Non-Uniform Magnetic Field Induced a Current Carrying Wire

Authors: Ashkan Vatani, Peter Woodfield, Nam-Trung Nguyen, Dzung Dao

Abstract:

Thermomagnetic convection of a ferrofluid flow induced by the non-uniform magnetic field around a current-carrying wire was theoretically analyzed and experimentally tested. To show this phenomenon, the temperature rise of a hot wire, immersed in DIW and Ferrofluid, as a result of joule heating has been measured using a transient hot-wire technique. When current is applied to the wire, a temperature gradient is imposed on the magnetic fluid resulting in non-uniform magnetic susceptibility of the ferrofluid that results in a non-uniform magnetic body force which makes the ferrofluid flow as a bulk suspension. For the case of the wire immersed in DIW, free convection is the only means of cooling, while for the case of ferrofluid a combination of both free convection and thermomagnetic convection is expected to enhance the heat transfer from the wire beyond that of DIW. Experimental results at different temperatures and for a range of constant currents applied to the wire show that thermomagnetic convection becomes effective for the currents higher than 1.5A at all temperatures. It is observed that the onset of thermomagnetic convection is directly proportional to the current applied to the wire and that the thermomagnetic convection happens much faster than the free convection. Calculations show that a 35% enhancement in heat transfer can be expected for the ferrofluid compared to DIW, for a 3A current applied to the wire.

Keywords: cooling, ferrofluid, thermomagnetic convection, magnetic field

Procedia PDF Downloads 258
3889 Groundwater Flow Assessment Based on Numerical Simulation at Omdurman Area, Khartoum State, Sudan

Authors: Adil Balla Elkrail

Abstract:

Visual MODFLOW computer codes were selected to simulate head distribution, calculate the groundwater budgets of the area, and evaluate the effect of external stresses on the groundwater head and to demonstrate how the groundwater model can be used as a comparative technique in order to optimize utilization of the groundwater resource. A conceptual model of the study area, aquifer parameters, boundary, and initial conditions were used to simulate the flow model. The trial-and-error technique was used to calibrate the model. The most important criteria used to check the calibrated model were Root Mean Square error (RMS), Mean Absolute error (AM), Normalized Root Mean Square error (NRMS) and mass balance. The maps of the simulated heads elaborated acceptable model calibration compared to observed heads map. A time length of eight years and the observed heads of the year 2004 were used for model prediction. The predictive simulation showed that the continuation of pumping will cause relatively high changes in head distribution and components of groundwater budget whereas, the low deficit computed (7122 m3/d) between inflows and outflows cannot create a significant drawdown of the potentiometric level. Hence, the area under consideration may represent a high permeability and productive zone and strongly recommended for further groundwater development.

Keywords: aquifers, model simulation, groundwater, calibrations, trail-and- error, prediction

Procedia PDF Downloads 228
3888 Achieving Them Both: Business and Wellness Outcomes in Health Organizations – the 'Tip' Laser Intervention

Authors: Shosh Kazaz, Shmuel Banai, Vered Zilberberg

Abstract:

Optimizing high business performance and employee's well-being simultaneously often challenges organizations. 'TIP' intervention enables achieving them both as the given project demonstrates. Increasing outcomes and improving performance were the initial motivators for this explorative project, followed by a request of the head of the Cardiology department: 'I know we are the best at our clinical practice, but we need to take it further and break our own glass ceiling.' Two guided interventions were conducted in two different units within the department, designed to implement advanced managerial and business-oriented tools, along with 'soft tools' based on coaching psychology and particularly wellness coaching. The organ department multi-disciplinary teams were assembled, aiming to manage and lead the process: mapping the patients' flow, creating solutions, implementing, assessing, improving and assimilating them. Approximately four months later, without additional external resources, meaningful results emerged by the teams in terms of business and performance: shortening the hospitalization length at a given procedure (from 7 to 2.1 days); increasing the availability of Catheterization laboratory by 16% daily – resulting profitability raise; improving patients' journey and experience. A year later, those results are maintained. Furthermore, interviews with the participants revealed positive perceptions regarding the department; a higher sense of joyfulness, connectedness, belonging and a better department climate were reported. Additionally, participants reported a higher sense of fulfillment as opposed to their earliest skepticism and cynicism about their ability to enhance outcomes without more resources (budget and/or manpower), experiencing a mindset change toward the possibility of leading personal and professional growth processes. These reports were supported by analyzing a set of questionnaires that the participants completed, parallel to a control group of non-participating colleagues. Although the assessment was taken a year after the completion of the project and during 'covid-19th-3rd national quarantine, the results indicated a significant impact on several personal parameters associated with wellness, compared to the control group. The participants were higher in self-efficacy and organizational commitment; men were higher in resilience and optimism and women were higher in well-being. In conclusion, the 'TIP' relatively short intervention integrates advanced managerial and wellness coaching tools, empowers organizational resources: Team, Individual and Process and by that generates multi-impact measurable results in terms of employee's wellness parameters along with business performance and patient care.

Keywords: coaching, health and wellness, health management, leadership and well-being

Procedia PDF Downloads 178
3887 Facile Synthesis and Structure Characterization of Europium (III) Tungstate Nanoparticles

Authors: Mehdi Rahimi-Nasrabadi, Seied Mahdi Pourmortazavi

Abstract:

Taguchi robust design as a statistical method was applied for optimization of the process parameters in order to tunable, simple and fast synthesis of europium (III) tungstate nanoparticles. Europium (III) tungstate nanoparticles were synthesized by a chemical precipitation reaction involving direct addition of europium ion aqueous solution to the tungstate reagent solved in aqueous media. Effects of some synthesis procedure variables i.e., europium and tungstate concentrations, flow rate of cation reagent addition, and temperature of reaction reactor on the particle size of europium (III) tungstate nanoparticles were studied experimentally in order to tune particle size of europium (III) tungstate. Analysis of variance shows the importance of controlling tungstate concentration, cation feeding flow rate and temperature for preparation of europium (III) tungstate nanoparticles by the proposed chemical precipitation reaction. Finally, europium (III) tungstate nanoparticles were synthesized at the optimum conditions of the proposed method and the morphology and chemical composition of the prepared nano-material were characterized by means of X-Ray diffraction, scanning electron microscopy, transmission electron microscopy, FT-IR spectroscopy, and fluorescence.

Keywords: europium (III) tungstate, nano-material, particle size control, procedure optimization

Procedia PDF Downloads 386
3886 Computational Code for Solving the Navier-Stokes Equations on Unstructured Meshes Applied to the Leading Edge of the Brazilian Hypersonic Scramjet 14-X

Authors: Jayme R. T. Silva, Paulo G. P. Toro, Angelo Passaro, Giannino P. Camillo, Antonio C. Oliveira

Abstract:

An in-house C++ code has been developed, at the Prof. Henry T. Nagamatsu Laboratory of Aerothermodynamics and Hypersonics from the Institute of Advanced Studies (Brazil), to estimate the aerothermodynamic properties around the Hypersonic Vehicle Integrated to the Scramjet. In the future, this code will be applied to the design of the Brazilian Scramjet Technological Demonstrator 14-X B. The first step towards accomplishing this objective, is to apply the in-house C++ code at the leading edge of a flat plate, simulating the leading edge of the 14-X Hypersonic Vehicle, making possible the wave phenomena of oblique shock and boundary layer to be analyzed. The development of modern hypersonic space vehicles requires knowledge regarding the characteristics of hypersonic flows in the vicinity of a leading edge of lifting surfaces. The strong interaction between a shock wave and a boundary layer, in a high supersonic Mach number 4 viscous flow, close to the leading edge of the plate, considering no slip condition, is numerically investigated. The small slip region is neglecting. The study consists of solving the fluid flow equations for unstructured meshes applying the SIMPLE algorithm for Finite Volume Method. Unstructured meshes are generated by the in-house software ‘Modeler’ that was developed at Virtual’s Engineering Laboratory from the Institute of Advanced Studies, initially developed for Finite Element problems and, in this work, adapted to the resolution of the Navier-Stokes equations based on the SIMPLE pressure-correction scheme for all-speed flows, Finite Volume Method based. The in-house C++ code is based on the two-dimensional Navier-Stokes equations considering non-steady flow, with nobody forces, no volumetric heating, and no mass diffusion. Air is considered as calorically perfect gas, with constant Prandtl number and Sutherland's law for the viscosity. Solutions of the flat plate problem for Mach number 4 include pressure, temperature, density and velocity profiles as well as 2-D contours. Also, the boundary layer thickness, boundary conditions, and mesh configurations are presented. The same problem has been solved by the academic license of the software Ansys Fluent and for another C++ in-house code, which solves the fluid flow equations in structured meshes, applying the MacCormack method for Finite Difference Method, and the results will be compared.

Keywords: boundary-layer, scramjet, simple algorithm, shock wave

Procedia PDF Downloads 475
3885 Factor Study Affecting Visual Awareness on Dynamic Object Monitoring

Authors: Terry Liang Khin Teo, Sun Woh Lye, Kai Lun Brendon Goh

Abstract:

As applied to dynamic monitoring situations, the prevailing approach to situation awareness (SA) assumes that the relevant areas of interest (AOI) be perceived before that information can be processed further to affect decision-making and, thereafter, action. It is not entirely clear whether this is the case. This study seeks to investigate the monitoring of dynamic objects through matching eye fixations with the relevant AOIs in boundary-crossing scenarios. By this definition, a match is where a fixation is registered on the AOI. While many factors may affect monitoring characteristics, traffic simulations were designed in this study to explore two factors, namely: the number of inbounds/outbound traffic transfers and the number of entry and/or exit points in a radar monitoring sector. These two factors were graded into five levels of difficulty ranging from low to high traffic flow numbers. Combined permutation in terms of levels of difficulty of these two factors yielded a total of thirty scenarios. Through this, results showed that changes in the traffic flow numbers on transfer resulted in greater variations having match limits ranging from 29%-100%, as compared to the number of sector entry/exit points of range limit from 80%-100%. The subsequent analysis is able to determine the type and combination of traffic scenarios where imperfect matching is likely to occur.

Keywords: air traffic simulation, eye-tracking, visual monitoring, focus attention

Procedia PDF Downloads 52
3884 Experimental Investigation of Fluid Dynamic Effects on Crystallisation Scale Growth and Suppression in Agitation Tank

Authors: Prasanjit Das, M. M. K. Khan, M. G. Rasul, Jie Wu, I. Youn

Abstract:

Mineral scale formation is undoubtedly a more serious problem in the mineral industry than other process industries. To better understand scale growth and suppression, an experimental model is proposed in this study for supersaturated crystallised solutions commonly found in mineral process plants. In this experiment, surface crystallisation of potassium nitrate (KNO3) on the wall of the agitation tank and agitation effects on the scale growth and suppression are studied. The new quantitative scale suppression model predicts that at lower agitation speed, the scale growth rate is enhanced and at higher agitation speed, the scale suppression rate increases due to the increased flow erosion effect. A lab-scale agitation tank with and without baffles were used as a benchmark in this study. The fluid dynamic effects on scale growth and suppression in the agitation tank with three different size impellers (diameter 86, 114, 160 mm and model A310 with flow number 0.56) at various ranges of rotational speed (up to 700 rpm) and solution with different concentration (4.5, 4.75 and 5.25 mol/dm3) were investigated. For more elucidation, the effects of the different size of the impeller on wall surface scale growth and suppression rate as well as bottom settled scale accumulation rate are also discussed. Emphasis was placed on applications in the mineral industry, although results are also relevant to other industrial applications.

Keywords: agitation tank, crystallisation, impeller speed, scale

Procedia PDF Downloads 210
3883 Study Biogas Produced by Strain Archaea Methanothrix soehngenii in Different Biodigesters UASB in Treating Brewery Effluent in Brazil

Authors: Ederaldo Godoy Junior, Ricardo O. Jesus, Pedro H. Jesus, José R. Camargo, Jorge Y. Oliveira, Nicoly Milhardo Lourenço

Abstract:

This work aimed at the comparative study of the quality and quantity of biogas produced by archaea strain Methanothrix soehngenii operating in different versions of anaerobic digesters upflow sludge bed in the brewery wastewater treatment in Brazil in the tropical region. Four types of UASB digesters were studied made of different geometries and materials which are: a UASB IC steel 20 meters high; a circular UASB steel 6 meters high; an UASB reinforced concrete lined with geomembrane PEAB with 6 meters high; and finally a UASB plug flow comprising two UASB in serious rotomolded HDPE 6 meters high.Observed clearly that the biogas produced in the digester UASB steel H2S concentrations had values lower than the HDPE. With respect to efficiency in short time, the UASB IC showed the best results to absorb overloads, as the UASB circular steel showed an efficiency of 90% removal of the organic load. The UASB system plug flow in HDPE showed the lowest cost of deployment, and its efficiency in removing the organic load was 80%.

Keywords: biogas, achaeas, UASB, Brewery effluent

Procedia PDF Downloads 349
3882 Experimental Investigation of Partially Premixed Laminar Methane/Air Co-Flow Flames Using Mach-Zehnder Interferometry

Authors: Misagh Irandoost Shahrestani, Mehdi Ashjaee, Shahrokh Zandieh Vakili

Abstract:

In this paper, partially premixed laminar methane/air co-flow flame is studied experimentally. Methane-air flame was established on an axisymmetric coannular burner. The fuel-air jet flows from the central tube while the secondary air flows from the region between the inner and the outer tube. The aim is to investigate the flame features and to develop a nonintrusive method for temperature measurement of methane/air partially premixed flame using Mach-Zehnder interferometry method. Different equivalence ratios and Reynolds numbers are considered. Flame generic visible appearance was also investigated and its various structures were studied. Three distinguished flame regimes were seen based on its appearance. A double flame structure can be seen for the equivalence ratio in the range of 1<Φ<2.1. By adding air to the mixture up to Φ=4 the flame has the characteristics of both premixed and non-premixed flames. Finally for 4<Φ<∞ the flame mainly becomes non-premixed like and the luminous sooting region on its tip is the obvious feature of this type of flames. The Mach-Zehnder method is used to obtain temperature field of a transparent fluid by means of index of refraction. Temperature obtained from optical techniques was compared with that of obtained from thermocouples in order to validate the results. Good agreement was observed for these two methods.

Keywords: flame structure, Mach-Zehnder interferometry, partially premixed flame, temperature field

Procedia PDF Downloads 471
3881 Enhanced Near-Infrared Upconversion Emission Based Lateral Flow Immunoassay for Background-Free Detection of Avian Influenza Viruses

Authors: Jaeyoung Kim, Heeju Lee, Huijin Jung, Heesoo Pyo, Seungki Kim, Joonseok Lee

Abstract:

Avian influenza viruses (AIV) are the primary cause of highly contagious respiratory diseases caused by type A influenza viruses of the Orthomyxoviridae family. AIV are categorized on the basis of types of surface glycoproteins such as hemagglutinin and neuraminidase. Certain H5 and H7 subtypes of AIV have evolved to the high pathogenic avian influenza (HPAI) virus, which has caused considerable economic loss to the poultry industry and led to severe public health crisis. Several commercial kits have been developed for on-site detection of AIV. However, the sensitivity of these methods is too low to detect low virus concentrations in clinical samples and opaque stool samples. Here, we introduced a background-free near-infrared (NIR)-to-NIR upconversion nanoparticle-based lateral flow immunoassay (NNLFA) platform to yield a sensor that detects AIV within 20 minutes. Ca²⁺ ion in the shell was used to enhance the NIR-to-NIR upconversion photoluminescence (PL) emission as a heterogeneous dopant without inducing significant changes in the morphology and size of the UCNPs. In a mixture of opaque stool samples and gold nanoparticles (GNPs), which are components of commercial AIV LFA, the background signal of the stool samples mask the absorption peak of GNPs. However, UCNPs dispersed in the stool samples still show strong emission centered at 800 nm when excited at 980 nm, which enables the NNLFA platform to detect 10-times lower viral load than a commercial GNP-based AIV LFA. The detection limit of NNLFA for low pathogenic avian influenza (LPAI) H5N2 and HPAI H5N6 viruses was 10² EID₅₀/mL and 10³.⁵ EID₅₀/mL, respectively. Moreover, when opaque brown-colored samples were used as the target analytes, strong NIR emission signal from the test line in NNLFA confirmed the presence of AIV, whereas commercial AIV LFA detected AIV with difficulty. Therefore, we propose that this rapid and background-free NNLFA platform has the potential of detecting AIV in the field, which could effectively prevent the spread of these viruses at an early stage.

Keywords: avian influenza viruses, lateral flow immunoassay on-site detection, upconversion nanoparticles

Procedia PDF Downloads 156
3880 Facial Expression Recognition Using Sparse Gaussian Conditional Random Field

Authors: Mohammadamin Abbasnejad

Abstract:

The analysis of expression and facial Action Units (AUs) detection are very important tasks in fields of computer vision and Human Computer Interaction (HCI) due to the wide range of applications in human life. Many works have been done during the past few years which has their own advantages and disadvantages. In this work, we present a new model based on Gaussian Conditional Random Field. We solve our objective problem using ADMM and we show how well the proposed model works. We train and test our work on two facial expression datasets, CK+, and RU-FACS. Experimental evaluation shows that our proposed approach outperform state of the art expression recognition.

Keywords: Gaussian Conditional Random Field, ADMM, convergence, gradient descent

Procedia PDF Downloads 344
3879 Estimating Knowledge Flow Patterns of Business Method Patents with a Hidden Markov Model

Authors: Yoonjung An, Yongtae Park

Abstract:

Knowledge flows are a critical source of faster technological progress and stouter economic growth. Knowledge flows have been accelerated dramatically with the establishment of a patent system in which each patent is required by law to disclose sufficient technical information for the invention to be recreated. Patent analysis, thus, has been widely used to help investigate technological knowledge flows. However, the existing research is limited in terms of both subject and approach. Particularly, in most of the previous studies, business method (BM) patents were not covered although they are important drivers of knowledge flows as other patents. In addition, these studies usually focus on the static analysis of knowledge flows. Some use approaches that incorporate the time dimension, yet they still fail to trace a true dynamic process of knowledge flows. Therefore, we investigate dynamic patterns of knowledge flows driven by BM patents using a Hidden Markov Model (HMM). An HMM is a popular statistical tool for modeling a wide range of time series data, with no general theoretical limit in regard to statistical pattern classification. Accordingly, it enables characterizing knowledge patterns that may differ by patent, sector, country and so on. We run the model in sets of backward citations and forward citations to compare the patterns of knowledge utilization and knowledge dissemination.

Keywords: business method patents, dynamic pattern, Hidden-Markov Model, knowledge flow

Procedia PDF Downloads 321
3878 Deep Routing Strategy: Deep Learning based Intelligent Routing in Software Defined Internet of Things.

Authors: Zabeehullah, Fahim Arif, Yawar Abbas

Abstract:

Software Defined Network (SDN) is a next genera-tion networking model which simplifies the traditional network complexities and improve the utilization of constrained resources. Currently, most of the SDN based Internet of Things(IoT) environments use traditional network routing strategies which work on the basis of max or min metric value. However, IoT network heterogeneity, dynamic traffic flow and complexity demands intelligent and self-adaptive routing algorithms because traditional routing algorithms lack the self-adaptions, intelligence and efficient utilization of resources. To some extent, SDN, due its flexibility, and centralized control has managed the IoT complexity and heterogeneity but still Software Defined IoT (SDIoT) lacks intelligence. To address this challenge, we proposed a model called Deep Routing Strategy (DRS) which uses Deep Learning algorithm to perform routing in SDIoT intelligently and efficiently. Our model uses real-time traffic for training and learning. Results demonstrate that proposed model has achieved high accuracy and low packet loss rate during path selection. Proposed model has also outperformed benchmark routing algorithm (OSPF). Moreover, proposed model provided encouraging results during high dynamic traffic flow.

Keywords: SDN, IoT, DL, ML, DRS

Procedia PDF Downloads 104