Search results for: estimation algorithms
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3838

Search results for: estimation algorithms

1738 Exhaustive Study of Essential Constraint Satisfaction Problem Techniques Based on N-Queens Problem

Authors: Md. Ahsan Ayub, Kazi A. Kalpoma, Humaira Tasnim Proma, Syed Mehrab Kabir, Rakib Ibna Hamid Chowdhury

Abstract:

Constraint Satisfaction Problem (CSP) is observed in various applications, i.e., scheduling problems, timetabling problems, assignment problems, etc. Researchers adopt a CSP technique to tackle a certain problem; however, each technique follows different approaches and ways to solve a problem network. In our exhaustive study, it has been possible to visualize the processes of essential CSP algorithms from a very concrete constraint satisfaction example, NQueens Problem, in order to possess a deep understanding about how a particular constraint satisfaction problem will be dealt with by our studied and implemented techniques. Besides, benchmark results - time vs. value of N in N-Queens - have been generated from our implemented approaches, which help understand at what factor each algorithm produces solutions; especially, in N-Queens puzzle. Thus, extended decisions can be made to instantiate a real life problem within CSP’s framework.

Keywords: arc consistency (AC), backjumping algorithm (BJ), backtracking algorithm (BT), constraint satisfaction problem (CSP), forward checking (FC), least constrained values (LCV), maintaining arc consistency (MAC), minimum remaining values (MRV), N-Queens problem

Procedia PDF Downloads 364
1737 Housing Price Prediction Using Machine Learning Algorithms: The Case of Melbourne City, Australia

Authors: The Danh Phan

Abstract:

House price forecasting is a main topic in the real estate market research. Effective house price prediction models could not only allow home buyers and real estate agents to make better data-driven decisions but may also be beneficial for the property policymaking process. This study investigates the housing market by using machine learning techniques to analyze real historical house sale transactions in Australia. It seeks useful models which could be deployed as an application for house buyers and sellers. Data analytics show a high discrepancy between the house price in the most expensive suburbs and the most affordable suburbs in the city of Melbourne. In addition, experiments demonstrate that the combination of Stepwise and Support Vector Machine (SVM), based on the Mean Squared Error (MSE) measurement, consistently outperforms other models in terms of prediction accuracy.

Keywords: house price prediction, regression trees, neural network, support vector machine, stepwise

Procedia PDF Downloads 231
1736 A Self Organized Map Method to Classify Auditory-Color Synesthesia from Frontal Lobe Brain Blood Volume

Authors: Takashi Kaburagi, Takamasa Komura, Yosuke Kurihara

Abstract:

Absolute pitch is the ability to identify a musical note without a reference tone. Training for absolute pitch often occurs in preschool education. It is necessary to clarify how well the trainee can make use of synesthesia in order to evaluate the effect of the training. To the best of our knowledge, there are no existing methods for objectively confirming whether the subject is using synesthesia. Therefore, in this study, we present a method to distinguish the use of color-auditory synesthesia from the separate use of color and audition during absolute pitch training. This method measures blood volume in the prefrontal cortex using functional Near-infrared spectroscopy (fNIRS) and assumes that the cognitive step has two parts, a non-linear step and a linear step. For the linear step, we assume a second order ordinary differential equation. For the non-linear part, it is extremely difficult, if not impossible, to create an inverse filter of such a complex system as the brain. Therefore, we apply a method based on a self-organizing map (SOM) and are guided by the available data. The presented method was tested using 15 subjects, and the estimation accuracy is reported.

Keywords: absolute pitch, functional near-infrared spectroscopy, prefrontal cortex, synesthesia

Procedia PDF Downloads 263
1735 Performance Evaluation of Task Scheduling Algorithm on LCQ Network

Authors: Zaki Ahmad Khan, Jamshed Siddiqui, Abdus Samad

Abstract:

The Scheduling and mapping of tasks on a set of processors is considered as a critical problem in parallel and distributed computing system. This paper deals with the problem of dynamic scheduling on a special type of multiprocessor architecture known as Linear Crossed Cube (LCQ) network. This proposed multiprocessor is a hybrid network which combines the features of both linear type of architectures as well as cube based architectures. Two standard dynamic scheduling schemes namely Minimum Distance Scheduling (MDS) and Two Round Scheduling (TRS) schemes are implemented on the LCQ network. Parallel tasks are mapped and the imbalance of load is evaluated on different set of processors in LCQ network. The simulations results are evaluated and effort is made by means of through analysis of the results to obtain the best solution for the given network in term of load imbalance left and execution time. The other performance matrices like speedup and efficiency are also evaluated with the given dynamic algorithms.

Keywords: dynamic algorithm, load imbalance, mapping, task scheduling

Procedia PDF Downloads 451
1734 DNA PLA: A Nano-Biotechnological Programmable Device

Authors: Hafiz Md. HasanBabu, Khandaker Mohammad Mohi Uddin, Md. IstiakJaman Ami, Rahat Hossain Faisal

Abstract:

Computing in biomolecular programming performs through the different types of reactions. Proteins and nucleic acids are used to store the information generated by biomolecular programming. DNA (Deoxyribose Nucleic Acid) can be used to build a molecular computing system and operating system for its predictable molecular behavior property. The DNA device has clear advantages over conventional devices when applied to problems that can be divided into separate, non-sequential tasks. The reason is that DNA strands can hold so much data in memory and conduct multiple operations at once, thus solving decomposable problems much faster. Programmable Logic Array, abbreviated as PLA is a programmable device having programmable AND operations and OR operations. In this paper, a DNA PLA is designed by different molecular operations using DNA molecules with the proposed algorithms. The molecular PLA could take advantage of DNA's physical properties to store information and perform calculations. These include extremely dense information storage, enormous parallelism, and extraordinary energy efficiency.

Keywords: biological systems, DNA computing, parallel computing, programmable logic array, PLA, DNA

Procedia PDF Downloads 130
1733 Patent Protection for AI Innovations in Pharmaceutical Products

Authors: Nerella Srinivas

Abstract:

This study explores the significance of patent protection for artificial intelligence (AI) innovations in the pharmaceutical sector, emphasizing applications in drug discovery, personalized medicine, and clinical trial optimization. The challenges of patenting AI-driven inventions are outlined, focusing on the classification of algorithms as abstract ideas, meeting the non-obviousness standard, and issues around defining inventorship. The methodology includes examining case studies and existing patents, with an emphasis on how companies like Benevolent AI and Insilico Medicine have successfully secured patent rights. Findings demonstrate that a strategic approach to patent protection is essential, with particular attention to showcasing AI’s technical contributions to pharmaceutical advancements. Conclusively, the study underscores the critical role of understanding patent law and innovation strategies in leveraging intellectual property rights in the rapidly advancing field of AI-driven pharmaceuticals.

Keywords: artificial intelligence, pharmaceutical industry, patent protection, drug discovery, personalized medicine, clinical trials, intellectual property, non-obviousness

Procedia PDF Downloads 13
1732 Experimental and Analytical Dose Assessment of Patient's Family Members Treated with I-131

Authors: Marzieh Ebrahimi, Vahid Changizi, Mohammad Reza Kardan, Seyed Mahdi Hosseini Pooya, Parham Geramifar

Abstract:

Radiation exposure to the patient's family members is one of the major concerns during thyroid cancer radionuclide therapy. The aim of this study was to measure the total effective dose of the family members by means of thermoluminescence personal dosimeter, and compare with those calculated by analytical methods. Eighty-five adult family members of fifty-one patients volunteered to participate in this research study. Considering the minimum and maximum range of dose rate from 15 µsv/h to 120 µsv/h at patients' release time, the calculated mean and median dose values of family members were 0.45 mSv and 0.28 mSv, respectively. Moreover, almost all family members’ doses were measured to be less than the dose constraint of 5 mSv recommended by Basic Safety Standards. Considering the influence parameters such as patient dose rate and administrated activity, the total effective doses of family members were calculated by TEDE and NRC formulas and compared with those of experimental results. The results indicated that, it is fruitful to use the quantitative calculations for releasing patients treated with I-131 and correct estimation of patients' family doses.

Keywords: effective dose, thermoluminescence, I-131, thyroid cancer

Procedia PDF Downloads 400
1731 Influence of Parameters of Modeling and Data Distribution for Optimal Condition on Locally Weighted Projection Regression Method

Authors: Farhad Asadi, Mohammad Javad Mollakazemi, Aref Ghafouri

Abstract:

Recent research in neural networks science and neuroscience for modeling complex time series data and statistical learning has focused mostly on learning from high input space and signals. Local linear models are a strong choice for modeling local nonlinearity in data series. Locally weighted projection regression is a flexible and powerful algorithm for nonlinear approximation in high dimensional signal spaces. In this paper, different learning scenario of one and two dimensional data series with different distributions are investigated for simulation and further noise is inputted to data distribution for making different disordered distribution in time series data and for evaluation of algorithm in locality prediction of nonlinearity. Then, the performance of this algorithm is simulated and also when the distribution of data is high or when the number of data is less the sensitivity of this approach to data distribution and influence of important parameter of local validity in this algorithm with different data distribution is explained.

Keywords: local nonlinear estimation, LWPR algorithm, online training method, locally weighted projection regression method

Procedia PDF Downloads 502
1730 HPPDFIM-HD: Transaction Distortion and Connected Perturbation Approach for Hierarchical Privacy Preserving Distributed Frequent Itemset Mining over Horizontally-Partitioned Dataset

Authors: Fuad Ali Mohammed Al-Yarimi

Abstract:

Many algorithms have been proposed to provide privacy preserving in data mining. These protocols are based on two main approaches named as: the perturbation approach and the Cryptographic approach. The first one is based on perturbation of the valuable information while the second one uses cryptographic techniques. The perturbation approach is much more efficient with reduced accuracy while the cryptographic approach can provide solutions with perfect accuracy. However, the cryptographic approach is a much slower method and requires considerable computation and communication overhead. In this paper, a new scalable protocol is proposed which combines the advantages of the perturbation and distortion along with cryptographic approach to perform privacy preserving in distributed frequent itemset mining on horizontally distributed data. Both the privacy and performance characteristics of the proposed protocol are studied empirically.

Keywords: anonymity data, data mining, distributed frequent itemset mining, gaussian perturbation, perturbation approach, privacy preserving data mining

Procedia PDF Downloads 505
1729 Approximation of Convex Set by Compactly Semidefinite Representable Set

Authors: Anusuya Ghosh, Vishnu Narayanan

Abstract:

The approximation of convex set by semidefinite representable set plays an important role in semidefinite programming, especially in modern convex optimization. To optimize a linear function over a convex set is a hard problem. But optimizing the linear function over the semidefinite representable set which approximates the convex set is easy to solve as there exists numerous efficient algorithms to solve semidefinite programming problems. So, our approximation technique is significant in optimization. We develop a technique to approximate any closed convex set, say K by compactly semidefinite representable set. Further we prove that there exists a sequence of compactly semidefinite representable sets which give tighter approximation of the closed convex set, K gradually. We discuss about the convergence of the sequence of compactly semidefinite representable sets to closed convex set K. The recession cone of K and the recession cone of the compactly semidefinite representable set are equal. So, we say that the sequence of compactly semidefinite representable sets converge strongly to the closed convex set. Thus, this approximation technique is very useful development in semidefinite programming.

Keywords: semidefinite programming, semidefinite representable set, compactly semidefinite representable set, approximation

Procedia PDF Downloads 387
1728 Shoreline Change Estimation from Survey Image Coordinates and Neural Network Approximation

Authors: Tienfuan Kerh, Hsienchang Lu, Rob Saunders

Abstract:

Shoreline erosion problems caused by global warming and sea level rising may result in losing of land areas, so it should be examined regularly to reduce possible negative impacts. Initially in this study, three sets of survey images obtained from the years of 1990, 2001, and 2010, respectively, are digitalized by using graphical software to establish the spatial coordinates of six major beaches around the island of Taiwan. Then, by overlaying the known multi-period images, the change of shoreline can be observed from their distribution of coordinates. In addition, the neural network approximation is used to develop a model for predicting shoreline variation in the years of 2015 and 2020. The comparison results show that there is no significant change of total sandy area for all beaches in the three different periods. However, the prediction results show that two beaches may exhibit an increasing of total sandy areas under a statistical 95% confidence interval. The proposed method adopted in this study may be applicable to other shorelines of interest around the world.

Keywords: digitalized shoreline coordinates, survey image overlaying, neural network approximation, total beach sandy areas

Procedia PDF Downloads 273
1727 Deep Learning in Chest Computed Tomography to Differentiate COVID-19 from Influenza

Authors: Hongmei Wang, Ziyun Xiang, Ying liu, Li Yu, Dongsheng Yue

Abstract:

Intro: The COVID-19 (Corona Virus Disease 2019) has greatly changed the global economic, political and financial ecology. The mutation of the coronavirus in the UK in December 2020 has brought new panic to the world. Deep learning was performed on Chest Computed tomography (CT) of COVID-19 and Influenza and describes their characteristics. The predominant features of COVID-19 pneumonia was ground-glass opacification, followed by consolidation. Lesion density: most lesions appear as ground-glass shadows, and some lesions coexist with solid lesions. Lesion distribution: the focus is mainly on the dorsal side of the periphery of the lung, with the lower lobe of the lungs as the focus, and it is often close to the pleura. Other features it has are grid-like shadows in ground glass lesions, thickening signs of diseased vessels, air bronchi signs and halo signs. The severe disease involves whole bilateral lungs, showing white lung signs, air bronchograms can be seen, and there can be a small amount of pleural effusion in the bilateral chest cavity. At the same time, this year's flu season could be near its peak after surging throughout the United States for months. Chest CT for Influenza infection is characterized by focal ground glass shadows in the lungs, with or without patchy consolidation, and bronchiole air bronchograms are visible in the concentration. There are patchy ground-glass shadows, consolidation, air bronchus signs, mosaic lung perfusion, etc. The lesions are mostly fused, which is prominent near the hilar and two lungs. Grid-like shadows and small patchy ground-glass shadows are visible. Deep neural networks have great potential in image analysis and diagnosis that traditional machine learning algorithms do not. Method: Aiming at the two major infectious diseases COVID-19 and influenza, which are currently circulating in the world, the chest CT of patients with two infectious diseases is classified and diagnosed using deep learning algorithms. The residual network is proposed to solve the problem of network degradation when there are too many hidden layers in a deep neural network (DNN). The proposed deep residual system (ResNet) is a milestone in the history of the Convolutional neural network (CNN) images, which solves the problem of difficult training of deep CNN models. Many visual tasks can get excellent results through fine-tuning ResNet. The pre-trained convolutional neural network ResNet is introduced as a feature extractor, eliminating the need to design complex models and time-consuming training. Fastai is based on Pytorch, packaging best practices for in-depth learning strategies, and finding the best way to handle diagnoses issues. Based on the one-cycle approach of the Fastai algorithm, the classification diagnosis of lung CT for two infectious diseases is realized, and a higher recognition rate is obtained. Results: A deep learning model was developed to efficiently identify the differences between COVID-19 and influenza using chest CT.

Keywords: COVID-19, Fastai, influenza, transfer network

Procedia PDF Downloads 142
1726 Short Arc Technique for Baselines Determinations

Authors: Gamal F.Attia

Abstract:

The baselines are the distances and lengths of the chords between projections of the positions of the laser stations on the reference ellipsoid. For the satellite geodesy, it is very important to determine the optimal length of orbital arc along which laser measurements are to be carried out. It is clear that for the dynamical methods long arcs (one month or more) are to be used. According to which more errors of modeling of different physical forces such as earth's gravitational field, air drag, solar radiation pressure, and others that may influence the accuracy of the estimation of the satellites position, at the same time the measured errors con be almost completely excluded and high stability in determination of relative coordinate system can be achieved. It is possible to diminish the influence of the errors of modeling by using short-arcs of the satellite orbit (several revolutions or days), but the station's coordinates estimated by different arcs con differ from each other by a larger quantity than statistical zero. Under the semidynamical ‘short arc’ method one or several passes of the satellite in one of simultaneous visibility from both ends of the chord is known and the estimated parameter in this case is the length of the chord. The comparison of the same baselines calculated with long and short arcs methods shows a good agreement and even speaks in favor of the last one. In this paper the Short Arc technique has been explained and 3 baselines have been determined using the ‘short arc’ method.

Keywords: baselines, short arc, dynamical, gravitational field

Procedia PDF Downloads 463
1725 Multi-Objective Variable Neighborhood Search Algorithm to Solving Scheduling Problem with Transportation Times

Authors: Majid Khalili

Abstract:

This paper deals with a bi-objective hybrid no-wait flowshop scheduling problem minimizing the makespan and total weighted tardiness, in which we consider transportation times between stages. Obtaining an optimal solution for this type of complex, large-sized problem in reasonable computational time by using traditional approaches and optimization tools is extremely difficult. This paper presents a new multi-objective variable neighborhood algorithm (MOVNS). A set of experimental instances are carried out to evaluate the algorithm by advanced multi-objective performance measures. The algorithm is carefully evaluated for its performance against available algorithm by means of multi-objective performance measures and statistical tools. The related results show that a variant of our proposed MOVNS provides sound performance comparing with other algorithms.

Keywords: no-wait hybrid flowshop scheduling; multi-objective variable neighborhood algorithm; makespan; total weighted tardiness

Procedia PDF Downloads 418
1724 Home Range and Spatial Interaction Modelling of Black Bears

Authors: Fekadu L. Bayisa, Elvan Ceyhan, Todd D. Steury

Abstract:

Interaction between individuals within the same species is an important component of population dynamics. An interaction can be either static (based on spatial overlap) or dynamic (based on movement interactions). Using GPS collar data, we can quantify both static and dynamic interactions between black bears. The goal of this work is to determine the level of black bear interactions using the 95% and 50% home ranges, as well as to model black bear spatial interactions, which could be attraction, avoidance/repulsion, or a lack of interaction at all, to gain new insights and improve our understanding of ecological processes. Recent methodological developments in home range estimation, inhomogeneous multitype/cross-type summary statistics, and envelope testing methods are explored to study the nature of black bear interactions. Our findings, in general, indicate that the black bears of one type in our data set tend to cluster around another type.

Keywords: autocorrelated kernel density estimator, cross-type summary function, inhomogeneous multitype Poisson process, kernel density estimator, minimum convex polygon, pointwise and global envelope tests

Procedia PDF Downloads 81
1723 FCNN-MR: A Parallel Instance Selection Method Based on Fast Condensed Nearest Neighbor Rule

Authors: Lu Si, Jie Yu, Shasha Li, Jun Ma, Lei Luo, Qingbo Wu, Yongqi Ma, Zhengji Liu

Abstract:

Instance selection (IS) technique is used to reduce the data size to improve the performance of data mining methods. Recently, to process very large data set, several proposed methods divide the training set into some disjoint subsets and apply IS algorithms independently to each subset. In this paper, we analyze the limitation of these methods and give our viewpoint about how to divide and conquer in IS procedure. Then, based on fast condensed nearest neighbor (FCNN) rule, we propose a large data sets instance selection method with MapReduce framework. Besides ensuring the prediction accuracy and reduction rate, it has two desirable properties: First, it reduces the work load in the aggregation node; Second and most important, it produces the same result with the sequential version, which other parallel methods cannot achieve. We evaluate the performance of FCNN-MR on one small data set and two large data sets. The experimental results show that it is effective and practical.

Keywords: instance selection, data reduction, MapReduce, kNN

Procedia PDF Downloads 253
1722 Neural Networks and Genetic Algorithms Approach for Word Correction and Prediction

Authors: Rodrigo S. Fonseca, Antônio C. P. Veiga

Abstract:

Aiming at helping people with some movement limitation that makes typing and communication difficult, there is a need to customize an assistive tool with a learning environment that helps the user in order to optimize text input, identifying the error and providing the correction and possibilities of choice in the Portuguese language. The work presents an Orthographic and Grammatical System that can be incorporated into writing environments, improving and facilitating the use of an alphanumeric keyboard, using a prototype built using a genetic algorithm in addition to carrying out the prediction, which can occur based on the quantity and position of the inserted letters and even placement in the sentence, ensuring the sequence of ideas using a Long Short Term Memory (LSTM) neural network. The prototype optimizes data entry, being a component of assistive technology for the textual formulation, detecting errors, seeking solutions and informing the user of accurate predictions quickly and effectively through machine learning.

Keywords: genetic algorithm, neural networks, word prediction, machine learning

Procedia PDF Downloads 194
1721 Relay Mining: Verifiable Multi-Tenant Distributed Rate Limiting

Authors: Daniel Olshansky, Ramiro Rodrıguez Colmeiro

Abstract:

Relay Mining presents a scalable solution employing probabilistic mechanisms and crypto-economic incentives to estimate RPC volume usage, facilitating decentralized multitenant rate limiting. Network traffic from individual applications can be concurrently serviced by multiple RPC service providers, with costs, rewards, and rate limiting governed by a native cryptocurrency on a distributed ledger. Building upon established research in token bucket algorithms and distributed rate-limiting penalty models, our approach harnesses a feedback loop control mechanism to adjust the difficulty of mining relay rewards, dynamically scaling with network usage growth. By leveraging crypto-economic incentives, we reduce coordination overhead costs and introduce a mechanism for providing RPC services that are both geopolitically and geographically distributed.

Keywords: remote procedure call, crypto-economic, commit-reveal, decentralization, scalability, blockchain, rate limiting, token bucket

Procedia PDF Downloads 54
1720 Design of an Automated Deep Learning Recurrent Neural Networks System Integrated with IoT for Anomaly Detection in Residential Electric Vehicle Charging in Smart Cities

Authors: Wanchalerm Patanacharoenwong, Panaya Sudta, Prachya Bumrungkun

Abstract:

The paper focuses on the development of a system that combines Internet of Things (IoT) technologies and deep learning algorithms for anomaly detection in residential Electric Vehicle (EV) charging in smart cities. With the increasing number of EVs, ensuring efficient and reliable charging systems has become crucial. The aim of this research is to develop an integrated IoT and deep learning system for detecting anomalies in residential EV charging and enhancing EV load profiling and event detection in smart cities. This approach utilizes IoT devices equipped with infrared cameras to collect thermal images and household EV charging profiles from the database of Thailand utility, subsequently transmitting this data to a cloud database for comprehensive analysis. The methodology includes the use of advanced deep learning techniques such as Recurrent Neural Networks (RNN) and Long Short-Term Memory (LSTM) algorithms. IoT devices equipped with infrared cameras are used to collect thermal images and EV charging profiles. The data is transmitted to a cloud database for comprehensive analysis. The researchers also utilize feature-based Gaussian mixture models for EV load profiling and event detection. Moreover, the research findings demonstrate the effectiveness of the developed system in detecting anomalies and critical profiles in EV charging behavior. The system provides timely alarms to users regarding potential issues and categorizes the severity of detected problems based on a health index for each charging device. The system also outperforms existing models in event detection accuracy. This research contributes to the field by showcasing the potential of integrating IoT and deep learning techniques in managing residential EV charging in smart cities. The system ensures operational safety and efficiency while also promoting sustainable energy management. The data is collected using IoT devices equipped with infrared cameras and is stored in a cloud database for analysis. The collected data is then analyzed using RNN, LSTM, and feature-based Gaussian mixture models. The approach includes both EV load profiling and event detection, utilizing a feature-based Gaussian mixture model. This comprehensive method aids in identifying unique power consumption patterns among EV owners and outperforms existing models in event detection accuracy. In summary, the research concludes that integrating IoT and deep learning techniques can effectively detect anomalies in residential EV charging and enhance EV load profiling and event detection accuracy. The developed system ensures operational safety and efficiency, contributing to sustainable energy management in smart cities.

Keywords: cloud computing framework, recurrent neural networks, long short-term memory, Iot, EV charging, smart grids

Procedia PDF Downloads 64
1719 Performance Comparison of ADTree and Naive Bayes Algorithms for Spam Filtering

Authors: Thanh Nguyen, Andrei Doncescu, Pierre Siegel

Abstract:

Classification is an important data mining technique and could be used as data filtering in artificial intelligence. The broad application of classification for all kind of data leads to be used in nearly every field of our modern life. Classification helps us to put together different items according to the feature items decided as interesting and useful. In this paper, we compare two classification methods Naïve Bayes and ADTree use to detect spam e-mail. This choice is motivated by the fact that Naive Bayes algorithm is based on probability calculus while ADTree algorithm is based on decision tree. The parameter settings of the above classifiers use the maximization of true positive rate and minimization of false positive rate. The experiment results present classification accuracy and cost analysis in view of optimal classifier choice for Spam Detection. It is point out the number of attributes to obtain a tradeoff between number of them and the classification accuracy.

Keywords: classification, data mining, spam filtering, naive bayes, decision tree

Procedia PDF Downloads 411
1718 Verification of Space System Dynamics Using the MATLAB Identification Toolbox in Space Qualification Test

Authors: Yuri V. Kim

Abstract:

This article presents a new approach to the Functional Testing of Space Systems (SS). It can be considered as a generic test and used for a wide class of SS that from the point of view of System Dynamics and Control may be described by the ordinary differential equations. Suggested methodology is based on using semi-natural experiment- laboratory stand that doesn’t require complicated, precise and expensive technological control-verification equipment. However, it allows for testing system as a whole totally assembled unit during Assembling, Integration and Testing (AIT) activities, involving system hardware (HW) and software (SW). The test physically activates system input (sensors) and output (actuators) and requires recording their outputs in real time. The data is then inserted in laboratory PC where it is post-experiment processed by Matlab/Simulink Identification Toolbox. It allows for estimating system dynamics in form of estimation of system differential equations by the experimental way and comparing them with expected mathematical model prematurely verified by mathematical simulation during the design process.

Keywords: system dynamics, space system ground tests and space qualification, system dynamics identification, satellite attitude control, assembling, integration and testing

Procedia PDF Downloads 163
1717 Geophysical Methods and Machine Learning Algorithms for Stuck Pipe Prediction and Avoidance

Authors: Ammar Alali, Mahmoud Abughaban

Abstract:

Cost reduction and drilling optimization is the goal of many drilling operators. Historically, stuck pipe incidents were a major segment of non-productive time (NPT) associated costs. Traditionally, stuck pipe problems are part of the operations and solved post-sticking. However, the real key to savings and success is in predicting the stuck pipe incidents and avoiding the conditions leading to its occurrences. Previous attempts in stuck-pipe predictions have neglected the local geology of the problem. The proposed predictive tool utilizes geophysical data processing techniques and Machine Learning (ML) algorithms to predict drilling activities events in real-time using surface drilling data with minimum computational power. The method combines two types of analysis: (1) real-time prediction, and (2) cause analysis. Real-time prediction aggregates the input data, including historical drilling surface data, geological formation tops, and petrophysical data, from wells within the same field. The input data are then flattened per the geological formation and stacked per stuck-pipe incidents. The algorithm uses two physical methods (stacking and flattening) to filter any noise in the signature and create a robust pre-determined pilot that adheres to the local geology. Once the drilling operation starts, the Wellsite Information Transfer Standard Markup Language (WITSML) live surface data are fed into a matrix and aggregated in a similar frequency as the pre-determined signature. Then, the matrix is correlated with the pre-determined stuck-pipe signature for this field, in real-time. The correlation used is a machine learning Correlation-based Feature Selection (CFS) algorithm, which selects relevant features from the class and identifying redundant features. The correlation output is interpreted as a probability curve of stuck pipe incidents prediction in real-time. Once this probability passes a fixed-threshold defined by the user, the other component, cause analysis, alerts the user of the expected incident based on set pre-determined signatures. A set of recommendations will be provided to reduce the associated risk. The validation process involved feeding of historical drilling data as live-stream, mimicking actual drilling conditions, of an onshore oil field. Pre-determined signatures were created for three problematic geological formations in this field prior. Three wells were processed as case studies, and the stuck-pipe incidents were predicted successfully, with an accuracy of 76%. This accuracy of detection could have resulted in around 50% reduction in NPT, equivalent to 9% cost saving in comparison with offset wells. The prediction of stuck pipe problem requires a method to capture geological, geophysical and drilling data, and recognize the indicators of this issue at a field and geological formation level. This paper illustrates the efficiency and the robustness of the proposed cross-disciplinary approach in its ability to produce such signatures and predicting this NPT event.

Keywords: drilling optimization, hazard prediction, machine learning, stuck pipe

Procedia PDF Downloads 229
1716 Redefining Infrastructure as Code Orchestration Using AI

Authors: Georges Bou Ghantous

Abstract:

This research delves into the transformative impact of Artificial Intelligence (AI) on Infrastructure as Code (IaaC) practices, specifically focusing on the redefinition of infrastructure orchestration. By harnessing AI technologies such as machine learning algorithms and predictive analytics, organizations can achieve unprecedented levels of efficiency and optimization in managing their infrastructure resources. AI-driven IaaC introduces proactive decision-making through predictive insights, enabling organizations to anticipate and address potential issues before they arise. Dynamic resource scaling, facilitated by AI, ensures that infrastructure resources can seamlessly adapt to fluctuating workloads and changing business requirements. Through case studies and best practices, this paper sheds light on the tangible benefits and challenges associated with AI-driven IaaC transformation, providing valuable insights for organizations navigating the evolving landscape of digital infrastructure management.

Keywords: artificial intelligence, infrastructure as code, efficiency optimization, predictive insights, dynamic resource scaling, proactive decision-making

Procedia PDF Downloads 34
1715 Friction Calculation and Simulation of Column Electric Power Steering System

Authors: Seyed Hamid Mirmohammad Sadeghi, Raffaella Sesana, Daniela Maffiodo

Abstract:

This study presents a procedure for friction calculation of column electric power steering (C-EPS) system which affects handling and comfort in driving. The friction losses estimation is obtained from experimental tests and mathematical calculation. Parts in C-EPS mainly involved in friction losses are bearings and worm gear. In the theoretical approach, the gear geometry and Hertz law were employed to measure the normal load and the sliding velocity and contact areas from the worm gears driving conditions. The viscous friction generated in the worm gear was obtained with a theoretical approach and the result was applied to model the friction in the steering system. Finally, by viscous friction coefficient and Coulomb friction coefficient, values of friction in worm gear were calculated. According to the Bearing Company and the characteristics of each bearing, the friction torques due to load and due to speed were calculated. A MATLAB Simulink model for calculating the friction in bearings and worm gear in C-EPS were done and the total friction value was estimated.

Keywords: friction, worm gear, column electric power steering system, simulink, bearing, EPS

Procedia PDF Downloads 358
1714 A Second Look at Gesture-Based Passwords: Usability and Vulnerability to Shoulder-Surfing Attacks

Authors: Lakshmidevi Sreeramareddy, Komalpreet Kaur, Nane Pothier

Abstract:

For security purposes, it is important to detect passwords entered by unauthorized users. With traditional alphanumeric passwords, if the content of a password is acquired and correctly entered by an intruder, it is impossible to differentiate the password entered by the intruder from those entered by the authorized user because the password entries contain precisely the same character set. However, no two entries for the gesture-based passwords, even those entered by the person who created the password, will be identical. There are always variations between entries, such as the shape and length of each stroke, the location of each stroke, and the speed of drawing. It is possible that passwords entered by the unauthorized user contain higher levels of variations when compared with those entered by the authorized user (the creator). The difference in the levels of variations may provide cues to detect unauthorized entries. To test this hypothesis, we designed an empirical study, collected and analyzed the data with the help of machine-learning algorithms. The results of the study are significant.

Keywords: authentication, gesture-based passwords, shoulder-surfing attacks, usability

Procedia PDF Downloads 139
1713 A Reliable Multi-Type Vehicle Classification System

Authors: Ghada S. Moussa

Abstract:

Vehicle classification is an important task in traffic surveillance and intelligent transportation systems. Classification of vehicle images is facing several problems such as: high intra-class vehicle variations, occlusion, shadow, illumination. These problems and others must be considered to develop a reliable vehicle classification system. In this study, a reliable multi-type vehicle classification system based on Bag-of-Words (BoW) paradigm is developed. Our proposed system used and compared four well-known classifiers; Linear Discriminant Analysis (LDA), Support Vector Machine (SVM), k-Nearest Neighbour (KNN), and Decision Tree to classify vehicles into four categories: motorcycles, small, medium and large. Experiments on a large dataset show that our approach is efficient and reliable in classifying vehicles with accuracy of 95.7%. The SVM outperforms other classification algorithms in terms of both accuracy and robustness alongside considerable reduction in execution time. The innovativeness of developed system is it can serve as a framework for many vehicle classification systems.

Keywords: vehicle classification, bag-of-words technique, SVM classifier, LDA classifier, KNN classifier, decision tree classifier, SIFT algorithm

Procedia PDF Downloads 358
1712 Development of Application Architecture for RFID Based Indoor Tracking Using Passive RFID Tag

Authors: Sumaya Ismail, Aijaz Ahmad Rehi

Abstract:

Abstract The location tracking and positioning systems have technologically grown exponentially in recent decade. In particular, Global Position system (GPS) has become a universal norm to be a part of almost every software application directly or indirectly for the location based modules. However major drawback of GPS based system is their inability of working in indoor environments. Researchers are thus focused on the alternative technologies which can be used in indoor environments for a vast range of application domains which require indoor location tracking. One of the most popular technology used for indoor tracking is radio frequency identification (RFID). Due to its numerous advantages, including its cost effectiveness, it is considered as a technology of choice in indoor location tracking systems. To contribute to the emerging trend of the research, this paper proposes an application architecture of passive RFID tag based indoor location tracking system. For the proof of concept, a test bed will be developed to in this study. In addition, various indoor location tracking algorithms will be used to assess their appropriateness in the proposed application architecture.

Keywords: RFID, GPS, indoor location tracking, application architecture, passive RFID tag

Procedia PDF Downloads 117
1711 Optimal Load Control Strategy in the Presence of Stochastically Dependent Renewable Energy Sources

Authors: Mahmoud M. Othman, Almoataz Y. Abdelaziz, Yasser G. Hegazy

Abstract:

This paper presents a load control strategy based on modification of the Big Bang Big Crunch optimization method. The proposed strategy aims to determine the optimal load to be controlled and the corresponding time of control in order to minimize the energy purchased from substation. The presented strategy helps the distribution network operator to rely on the renewable energy sources in supplying the system demand. The renewable energy sources used in the presented study are modeled using the diagonal band Copula method and sequential Monte Carlo method in order to accurately consider the multivariate stochastic dependence between wind power, photovoltaic power and the system demand. The proposed algorithms are implemented in MATLAB environment and tested on the IEEE 37-node feeder. Several case studies are done and the subsequent discussions show the effectiveness of the proposed algorithm.

Keywords: big bang big crunch, distributed generation, load control, optimization, planning

Procedia PDF Downloads 345
1710 Bayes Estimation of Parameters of Binomial Type Rayleigh Class Software Reliability Growth Model using Non-informative Priors

Authors: Rajesh Singh, Kailash Kale

Abstract:

In this paper, the Binomial process type occurrence of software failures is considered and failure intensity has been characterized by one parameter Rayleigh class Software Reliability Growth Model (SRGM). The proposed SRGM is mathematical function of parameters namely; total number of failures i.e. η-0 and scale parameter i.e. η-1. It is assumed that very little or no information is available about both these parameters and then considering non-informative priors for both these parameters, the Bayes estimators for the parameters η-0 and η-1 have been obtained under square error loss function. The proposed Bayes estimators are compared with their corresponding maximum likelihood estimators on the basis of risk efficiencies obtained by Monte Carlo simulation technique. It is concluded that both the proposed Bayes estimators of total number of failures and scale parameter perform well for proper choice of execution time.

Keywords: binomial process, non-informative prior, maximum likelihood estimator (MLE), rayleigh class, software reliability growth model (SRGM)

Procedia PDF Downloads 389
1709 System Identification in Presence of Outliers

Authors: Chao Yu, Qing-Guo Wang, Dan Zhang

Abstract:

The outlier detection problem for dynamic systems is formulated as a matrix decomposition problem with low-rank, sparse matrices and further recast as a semidefinite programming (SDP) problem. A fast algorithm is presented to solve the resulting problem while keeping the solution matrix structure and it can greatly reduce the computational cost over the standard interior-point method. The computational burden is further reduced by proper construction of subsets of the raw data without violating low rank property of the involved matrix. The proposed method can make exact detection of outliers in case of no or little noise in output observations. In case of significant noise, a novel approach based on under-sampling with averaging is developed to denoise while retaining the saliency of outliers and so-filtered data enables successful outlier detection with the proposed method while the existing filtering methods fail. Use of recovered “clean” data from the proposed method can give much better parameter estimation compared with that based on the raw data.

Keywords: outlier detection, system identification, matrix decomposition, low-rank matrix, sparsity, semidefinite programming, interior-point methods, denoising

Procedia PDF Downloads 307