Search results for: Y shape
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2247

Search results for: Y shape

177 The Role of China’s Rural Policies on the Changing the Rural Area in China: Changfu Village(China) Case

Authors: Zheng Lulin, Xiong Guoping

Abstract:

In recent years, agriculture, rural development, and peasants are among the top concerns and priorities of the Chinese Government. Several related issues have been paid many attentions by academic communities, including the impacts of corresponding policies on the rural villages, the mechanisms of these impacts, and the future development of rural society. However, most of the researchers focus on single rural policy instead of integral rural policy system. Hence, this dissertation focused on the mechanisms of policies’ influence on rural changes through a case study from Changfu Village in central Guangxi Province, China, to propose the optimized suggestions for rural development. Forty-three relevant pivotal policies of significant influence on rural development are summarized from literature and documents, covering five aspects of agricultural production, rural living security, open rural markets, rural household registration systems, and farmland transferring. Besides, having been live in this area for more than 20 years, researchers obtain the basic information about changing the social connection between citizens and villagers, the habitat of villagers by years of informal interviews. Furthermore, more than 200 questionnaires are given to villagers to analyze the changing of their personal and family information. The summary of rural policies revealed that the development trend of public rural policies followed the U-shape curve and these policies are characterized by economic intentions and operative economy. Report of questionnaires and interviews show that the development of rural economy was promoted greatly by public policies. Firstly, Social communication and rural culture were affected to a certain extent. Secondly, the educational level of rural individuals was significantly enhanced, whereas the quality of population had limited progress. Finally, the freedom of occupational choice for rural individuals into cities was greater than before, but still restricted by the class solidification of social background, resulting in more obstacles for rural individuals to settle down in cities. From what we discuss about, we may reach the conclusion on several perspectives: Firstly, the impact of the rural policies has a significant role in promoting the economy development of the rural area. However, separations between rural and urban area are still a major problem since rural policy contributed little to improve the rural population quality. Therefore, in the future, providing high quality educational facilities including teachers, libraries, and opportunities of broadening their knowledge base are key issues of future rural policy. Secondly, the development of rural economy would be a lack of driving force for further improvement owning to the fact that working hard couldn’t get more improvement. In the future, public policies should support the rural development of culture, technology, and personal qualities to create favorable social environment for the free increase of rural population.

Keywords: changing of rural area, rural development of China, rural policy, social environment

Procedia PDF Downloads 431
176 A High Amylose-Content and High-Yielding Elite Line Is Favorable to Cook 'Nanhan' (Semi-Soft Rice) for Nursing Care Food Particularly for Serving Aged Persons

Authors: M. Kamimukai, M. Bhattarai, B. B. Rana, K. Maeda, H. B. Kc, T. Kawano, M. Murai

Abstract:

Most of the aged people older than 70 have difficulty in chewing and swallowing more or less. According to magnitude of this difficulty, gruel, “nanhan” (semi-soft rice) and ordinary cooked rice are served in general, particularly in sanatoriums and homes for old people in Japan. Nanhan is the name of a cooked rice used in Japan, having softness intermediate between gruel and ordinary cooked rice, which is boiled with intermediate amount of water between those of the latter two kinds of cooked rice. In the present study, nanhan was made in the rate of 240g of water to 100g of milled rice with an electric rice cooker. Murai developed a high amylose-content and high-yielding elite line ‘Murai 79’. Sensory eating-quality test was performed for nanhan and ordinary cooked rice of Murai 79 and the standard variety ‘Hinohikari’ which is a high eating-quality variety representative in southern Japan. Panelists (6 to 14 persons) scored each cooked rice in six items viz. taste, stickiness, hardness, flavor, external appearance and overall evaluation. Grading (-3 ~ +3) in each trait was performed, regarding the value of the standard variety Hinohikari as 0. Paddy rice produced in a farmer’s field in 2013 and 2014 and in an experimental field of Kochi University in 2015 and 2016 were used for the sensory test. According to results of the sensory eating-quality test for nanhan, Murai 79 is higher in overall evaluation than Hinohikari in the four years. The former was less sticky than the latter in the four years, but the former was statistically significantly harder than the latter throughout the four years. In external appearance, the former was significantly higher than the latter in the four years. In the taste, the former was significantly higher than the latter in 2014, but significant difference was not noticed between them in the other three years. There were no significant differences throughout the four years in flavor. Regarding amylose content, Murai 79 is higher by 3.7 and 5.7% than Hinohikari in 2015 and 2016, respectively. As for protein content, Murai 79 was higher than Hinohikari in 2015, but the former was lower than the latter in 2016. Consequently, the nanhan of Murai 79 was harder and less sticky, keeping the shape of grains as compared with that of Hinohikari, which may be due to its higher amylose content. Hence, the nanhan of Murai 79 may be recognized as grains more easily in a human mouth, which could make easier the continuous performance of mastication and deglutition particularly in aged persons. Regarding ordinary cooked rice, Murai 79 was similar to or higher in both overall evaluation and external appearance as compared with Hinohikari, despite its higher hardness and lower stickiness. Additionally, Murai 79 had brown-rice yield of 1.55 times as compared with Hinohikari, suggesting that it would enable to supply inexpensive rice for making nanhan with high quality particularly for aged people in Japan.

Keywords: high-amylose content, high-yielding rice line, nanhan, nursing care food, sensory eating quality test

Procedia PDF Downloads 139
175 Tailorability of Poly(Aspartic Acid)/BSA Complex by Self-Assembling in Aqueous Solutions

Authors: Loredana E. Nita, Aurica P. Chiriac, Elena Stoleru, Alina Diaconu, Tudorachi Nita

Abstract:

Self-assembly processes are an attractive method to form new and complex structures between macromolecular compounds to be used for specific applications. In this context, intramolecular and intermolecular bonds play a key role during self-assembling processes in preparation of carrier systems of bioactive substances. Polyelectrolyte complexes (PECs) are formed through electrostatic interactions, and though they are significantly below of the covalent linkages in their strength, these complexes are sufficiently stable owing to the association processes. The relative ease way of PECs formation makes from them a versatile tool for preparation of various materials, with properties that can be tuned by adjusting several parameters, such as the chemical composition and structure of polyelectrolytes, pH and ionic strength of solutions, temperature and post-treatment procedures. For example, protein-polyelectrolyte complexes (PPCs) are playing an important role in various chemical and biological processes, such as protein separation, enzyme stabilization and polymer drug delivery systems. The present investigation is focused on evaluation of the PPC formation between a synthetic polypeptide (poly(aspartic acid) – PAS) and a natural protein (bovine serum albumin - BSA). The PPC obtained from PAS and BSA in different ratio was investigated by corroboration of various techniques of characterization as: spectroscopy, microscopy, thermo-gravimetric analysis, DLS and zeta potential determination, measurements which were performed in static and/or dynamic conditions. The static contact angle of the sample films was also determined in order to evaluate the changes brought upon surface free energy of the prepared PPCs in interdependence with the complexes composition. The evolution of hydrodynamic diameter and zeta potential of the PPC, recorded in situ, confirm changes of both co-partners conformation, a 1/1 ratio between protein and polyelectrolyte being benefit for the preparation of a stable PPC. Also, the study evidenced the dependence of PPC formation on the temperature of preparation. Thus, at low temperatures the PPC is formed with compact structure, small dimension and hydrodynamic diameter, close to those of BSA. The behavior at thermal treatment of the prepared PPCs is in agreement with the composition of the complexes. From the contact angle determination results the increase of the PPC films cohesion, which is higher than that of BSA films. Also, a higher hydrophobicity corresponds to the new PPC films denoting a good adhesion of the red blood cells onto the surface of PSA/BSA interpenetrated systems. The SEM investigation evidenced as well the specific internal structure of PPC concretized in phases with different size and shape in interdependence with the interpolymer mixture composition.

Keywords: polyelectrolyte – protein complex, bovine serum albumin, poly(aspartic acid), self-assembly

Procedia PDF Downloads 246
174 Fashion Utopias: The Role of Fashion Exhibitions and Fashion Archives to Defining (and Stimulating) Possible Future Fashion Landscapes

Authors: Vittorio Linfante

Abstract:

Utopìa is a term that, since its first appearance in 1516, in Tommaso Moro’s work, has taken on different meanings and forms in various fields: social studies, politics, art, creativity, and design. The utopias, although of short duration and in their apparent impossibility, have been able to give a shape to the future, laying the foundations for our present and the future of the next generations. The Twentieth century was the historical period crossed by many changes, and it saw the most significant number of utopias not only social, political, and scientific but also artistic, architectural, in design, communication, and, last but not least, in fashion. Over the years, fashion has been able to interpret various utopistic impulses giving form to the most futuristic visions. From the Manifesto del Vestito by Giacomo Balla, through the functional experiments that led to the Tuta by Thayath and the Varst by Aleksandr Rodčenko and Varvara Stepanova, through the Space Age visions of Rudi Gernreich, Paco Rabanne and Pierre Cardin, and the Archizoom’s political actions and their fashion project Vestirsi è facile. Experiments that have continued to the present days through the (sometimes) excessive visions of Hussein Chalayan, Alexander McQueen, and Gareth Pugh or those that are more anchored to the market (but no fewer innovative and visionaries) by Prada, Chanel, and Raf Simmons. If, as Bauman states, it is true that we have entered in a phase of Retrotopia characterized by the inability to think about new forms of the future; it is necessary, more than ever, to redefine the role of history, of its narration and its mise en scène, within the contemporary creative process. A process that increasingly requires an in-depth knowledge of the past for the definition of a renewed discourse about design processes. A discourse in which words like archive, exhibition, curating, revival, vintage, and costume take on new meanings. The paper aims to investigate–through case studies, research, and professional projects–the renewed role of curating and preserving fashion artefacts. A renewed role that–in an era of Retrotopia–museums, exhibitions, and archives can (and must) assume, to contribute to the definition of new design paradigms, capable of overcoming the traditional categories of revival or costume in favour of a more contemporary “mash-up” approach. Mash-up in which past and present, craftsmanship and new technologies, revival and experimentation merge seamlessly. In this perspective, dresses (as well as fashion accessories) should be considered not only as finished products but as artefacts capable of talking about the past and of producing unpublished new stories at the same time. Archives, exhibitions (academic and not), and museums thus become powerful sources of inspiration for fashion: places and projects capable of generating innovation, becoming active protagonists of the contemporary fashion design processes.

Keywords: heritage, history, costume and fashion interface, performance, language, design research

Procedia PDF Downloads 115
173 Using Teachers' Perceptions of Science Outreach Activities to Design an 'Optimum' Model of Science Outreach

Authors: Victoria Brennan, Andrea Mallaburn, Linda Seton

Abstract:

Science outreach programmes connect school pupils with external agencies to provide activities and experiences that enhance their exposure to science. It can be argued that these programmes not only aim to support teachers with curriculum engagement and promote scientific literacy but also provide pivotal opportunities to spark scientific interest in students. In turn, a further objective of these programmes is to increase awareness of career opportunities within this field. Although outreach work is also often described as a fun and satisfying venture, a plethora of researchers express caution to how successful the processes are to increases engagement post-16 in science. When researching the impact of outreach programmes, it is often student feedback regarding the activities or enrolment numbers to particular science courses post-16, which are generated and analysed. Although this is informative, the longevity of the programme’s impact could be better informed by the teacher’s perceptions; the evidence of which is far more limited in the literature. In addition, there are strong suggestions that teachers can have an indirect impact on a student’s own self-concept. These themes shape the focus and importance of this ongoing research project as it presents the rationale that teachers are under-used resources when it comes to considering the design of science outreach programmes. Therefore, the end result of the research will consist of a presentation of an ‘optimum’ model of outreach. The result of which should be of interest to the wider stakeholders such as universities or private or government organisations who design science outreach programmes in the hope to recruit future scientists. During phase one, questionnaires (n=52) and interviews (n=8) have generated both quantitative and qualitative data. These have been analysed using the Wilcoxon non-parametric test to compare teachers’ perceptions of science outreach interventions and thematic analysis for open-ended questions. Both of these research activities provide an opportunity for a cross-section of teacher opinions of science outreach to be obtained across all educational levels. Therefore, an early draft of the ‘optimum’ model of science outreach delivery was generated using both the wealth of literature and primary data. This final (ongoing) phase aims to refine this model using teacher focus groups to provide constructive feedback about the proposed model. The analysis uses principles of modified Grounded Theory to ensure that focus group data is used to further strengthen the model. Therefore, this research uses a pragmatist approach as it aims to focus on the strengths of the different paradigms encountered to ensure the data collected will provide the most suitable information to create an improved model of sustainable outreach. The results discussed will focus on this ‘optimum’ model and teachers’ perceptions of benefits and drawbacks when it comes to engaging with science outreach work. Although the model is still a ‘work in progress’, it provides both insight into how teachers feel outreach delivery can be a sustainable intervention tool within the classroom and what providers of such programmes should consider when designing science outreach activities.

Keywords: educational partnerships, science education, science outreach, teachers

Procedia PDF Downloads 134
172 The Shape of the Sculptor: Exploring Psychologist’s Perceptions of a Model of Parenting Ability to Guide Intervention in Child Custody Evaluations in South Africa

Authors: Anthony R. Townsend, Robyn L. Fasser

Abstract:

This research project provides an interpretative phenomenological analysis of a proposed conceptual model of parenting ability that has been designed to offer recommendations to guide intervention in child custody evaluations in South Africa. A recent review of the literature on child custody evaluations reveals that while there have been significant and valuable shifts in the capacity of the legal system aided by mental health professionals in understanding children and family dynamics, there remains a conceptual gap regarding the nature of parenting ability. With a view to addressing this paucity of a theoretical basis for considering parenting ability, this research project reviews a dimensional model for the assessment of parenting ability by conceiving parenting ability as a combination of good parenting and parental fitness. This model serves as a conceptual framework to guide child-custody evaluation and refine intervention in such cases to better meet the best interests of the child in a manner that bridges the professional gap between parties, legal entities, and mental health professionals. Using a model of good parenting as a point of theoretical departure, this model incorporates both intra-psychic and interpersonal attributes and behaviours of parents to form an impression of parenting ability and identify areas for potential enhancement. This research, therefore, hopes to achieve the following: (1) to provide nuanced descriptions of parents’ parenting ability; (2) to describe parents’ parenting potential; (3) to provide a parenting assessment tool for investigators in forensic family matters that will enable more useful recommendations and interventions; (4) to develop a language of consensus for investigators, attorneys, judges and parents, in forensic family matters, as to what comprises parenting ability and how this can be assessed; and (5) that all of the aforementioned will serve to advance the best interests of the children involved in such litigious matters. The evaluative promise and post-assessment prospects of this model are illustrated through three interlinking data sets: (1) the results of interviews with South African psychologists about the model, (2) retrospective analysis of care and contact evaluation reports using the model to determine if different conclusions or more specific recommendations are generated with its use and (3) the results of an interview with a psychologist who piloted this model by using it in care and contact evaluation.

Keywords: alienation, attachment, best interests of the child, care and contact evaluation, children’s act (38 of 2005), child custody evaluation, civil forensics, gatekeeping, good parenting, good-enough parenting, health professions council of South Africa, family law, forensic mental healthcare practitioners, parental fitness, parenting ability, parent management training, parenting plan, problem-determined system, psychotherapy, support of other child-parent relationship, voice of the child

Procedia PDF Downloads 117
171 Embedded Semantic Segmentation Network Optimized for Matrix Multiplication Accelerator

Authors: Jaeyoung Lee

Abstract:

Autonomous driving systems require high reliability to provide people with a safe and comfortable driving experience. However, despite the development of a number of vehicle sensors, it is difficult to always provide high perceived performance in driving environments that vary from time to season. The image segmentation method using deep learning, which has recently evolved rapidly, provides high recognition performance in various road environments stably. However, since the system controls a vehicle in real time, a highly complex deep learning network cannot be used due to time and memory constraints. Moreover, efficient networks are optimized for GPU environments, which degrade performance in embedded processor environments equipped simple hardware accelerators. In this paper, a semantic segmentation network, matrix multiplication accelerator network (MMANet), optimized for matrix multiplication accelerator (MMA) on Texas instrument digital signal processors (TI DSP) is proposed to improve the recognition performance of autonomous driving system. The proposed method is designed to maximize the number of layers that can be performed in a limited time to provide reliable driving environment information in real time. First, the number of channels in the activation map is fixed to fit the structure of MMA. By increasing the number of parallel branches, the lack of information caused by fixing the number of channels is resolved. Second, an efficient convolution is selected depending on the size of the activation. Since MMA is a fixed, it may be more efficient for normal convolution than depthwise separable convolution depending on memory access overhead. Thus, a convolution type is decided according to output stride to increase network depth. In addition, memory access time is minimized by processing operations only in L3 cache. Lastly, reliable contexts are extracted using the extended atrous spatial pyramid pooling (ASPP). The suggested method gets stable features from an extended path by increasing the kernel size and accessing consecutive data. In addition, it consists of two ASPPs to obtain high quality contexts using the restored shape without global average pooling paths since the layer uses MMA as a simple adder. To verify the proposed method, an experiment is conducted using perfsim, a timing simulator, and the Cityscapes validation sets. The proposed network can process an image with 640 x 480 resolution for 6.67 ms, so six cameras can be used to identify the surroundings of the vehicle as 20 frame per second (FPS). In addition, it achieves 73.1% mean intersection over union (mIoU) which is the highest recognition rate among embedded networks on the Cityscapes validation set.

Keywords: edge network, embedded network, MMA, matrix multiplication accelerator, semantic segmentation network

Procedia PDF Downloads 132
170 Looking at Women’s Status in India through Different Lenses: Evidence from Second Wave of IHDS Data

Authors: Vidya Yadav

Abstract:

In every society, males and females are expected to behave in certain ways, and in every culture, those expectation, values and norms are different and vary accordingly. Many of the inequalities between men and women are rooted in institutional structure such as in educational field, labour market, wages, decision-making power, access to services as well as in accessing the health and well-being care also. The marriage and kinship pattern shape both men’s and women’s lives. Earlier many studies have highlighted the gender disparities which vary tremendously between regions, social classes, and communities. This study will try to explore the prominent indicators to show the status of women and well-being condition in Indian society. Primarily this paper concern with firstly identification of indicators related to gender in each area like education, work status, mobility, women participation in public and private decision making, autonomy and domestic violence etc. And once the indicators are identified next task is to define them. The indicators which are selected here are for a comparison of women’s status across Indian states. Recent Indian Human Development Survey, 2011-12 has been procured to show the current situation of women. Result shows that in spite of rising levels of education and images of growing westernization in India, love marriages remain in rarity even among urban elite. In India marriage is universal, and most of the men and women marry at relatively young age. Even though the legal age of marriage is 18, but more than 60 percent are married before the legal age. Not surprisingly, but Bihar and Rajasthan are the states with earliest age at marriage. Most of them reported that they have very limited contact with their husband before marriages. Around 69 percent of women met their husbands on the day of the wedding or shortly before. In spite of decline in fertility, still childbearing remains essential to women’s lives. Mostly women aged 25 and older had at least one child. Women’s control over household resources, physical space and mobility is also limited. Indian women’s, mostly rely on men to purchase day to day necessities, as well as medicines, as well as other necessary items. This ultimately reduces the likelihood that women have cash in hand for such purchases. The story is quite different when it comes to have control over decision over purchasing household assets such as TVs or refrigerator, names on the bank account, and home ownership papers. However, the likelihood of ownership rises among urbanite educated women’s. Women’s still have to the cultural norms and the practice of purdah or ghunghat, familial control over women’s physical movement. Wife beating and domestic violence still remain pervasive, and beaten for minor transgression like going out without permission. Development of India cannot be realized without the very significant component of gender. Therefore detailed examinations of different indicators are required to understand, strategize, plan and formulate programmes.

Keywords: autonomy, empowerment, gender, violence

Procedia PDF Downloads 300
169 COVID-19 Laws and Policy: The Use of Policy Surveillance For Better Legal Preparedness

Authors: Francesca Nardi, Kashish Aneja, Katherine Ginsbach

Abstract:

The COVID-19 pandemic has demonstrated both a need for evidence-based and rights-based public health policy and how challenging it can be to make effective decisions with limited information, evidence, and data. The O’Neill Institute, in conjunction with several partners, has been working since the beginning of the pandemic to collect, analyze, and distribute critical data on public health policies enacted in response to COVID-19 around the world in the COVID-19 Law Lab. Well-designed laws and policies can help build strong health systems, implement necessary measures to combat viral transmission, enforce actions that promote public health and safety for everyone, and on the individual level have a direct impact on health outcomes. Poorly designed laws and policies, on the other hand, can fail to achieve the intended results and/or obstruct the realization of fundamental human rights, further disease spread, or cause unintended collateral harms. When done properly, laws can provide the foundation that brings clarity to complexity, embrace nuance, and identifies gaps of uncertainty. However, laws can also shape the societal factors that make disease possible. Law is inseparable from the rest of society, and COVID-19 has exposed just how much laws and policies intersects all facets of society. In the COVID-19 context, evidence-based and well-informed law and policy decisions—made at the right time and in the right place—can and have meant the difference between life or death for many. Having a solid evidentiary base of legal information can promote the understanding of what works well and where, and it can drive resources and action to where they are needed most. We know that legal mechanisms can enable nations to reduce inequities and prepare for emerging threats, like novel pathogens that result in deadly disease outbreaks or antibiotic resistance. The collection and analysis of data on these legal mechanisms is a critical step towards ensuring that legal interventions and legal landscapes are effectively incorporated into more traditional kinds of health science data analyses. The COVID-19 Law Labs see a unique opportunity to collect and analyze this kind of non-traditional data to inform policy using laws and policies from across the globe and across diseases. This global view is critical to assessing the efficacy of policies in a wide range of cultural, economic, and demographic circumstances. The COVID-19 Law Lab is not just a collection of legal texts relating to COVID-19; it is a dataset of concise and actionable legal information that can be used by health researchers, social scientists, academics, human rights advocates, law and policymakers, government decision-makers, and others for cross-disciplinary quantitative and qualitative analysis to identify best practices from this outbreak, and previous ones, to be better prepared for potential future public health events.

Keywords: public health law, surveillance, policy, legal, data

Procedia PDF Downloads 142
168 Catalytic Ammonia Decomposition: Cobalt-Molybdenum Molar Ratio Effect on Hydrogen Production

Authors: Elvis Medina, Alejandro Karelovic, Romel Jiménez

Abstract:

Catalytic ammonia decomposition represents an attractive alternative due to its high H₂ content (17.8% w/w), a product stream free of COₓ, among others; however, challenges need to be addressed for its consolidation as an H₂ chemical storage technology, especially, those focused on the synthesis of efficient bimetallic catalytic systems, as an alternative to the price and scarcity of ruthenium, the most active catalyst reported. In this sense, from the perspective of rational catalyst design, adjusting the main catalytic activity descriptor, a screening of supported catalysts with different compositional settings of cobalt-molybdenum metals is presented to evaluate their effect on the catalytic decomposition rate of ammonia. Subsequently, a kinetic study on the supported monometallic Co and Mo catalysts, as well as on the bimetallic CoMo catalyst with the highest activity is shown. The synthesis of catalysts supported on γ-alumina was carried out using the Charge Enhanced Dry Impregnation (CEDI) method, all with a 5% w/w loading metal. Seeking to maintain uniform dispersion, the catalysts were oxidized and activated (In-situ activation) using a flow of anhydrous air and hydrogen, respectively, under the same conditions: 40 ml min⁻¹ and 5 °C min⁻¹ from room temperature to 600 °C. Catalytic tests were carried out in a fixed-bed reactor, confirming the absence of transport limitations, as well as an Approach to equilibrium (< 1 x 10⁻⁴). The reaction rate on all catalysts was measured between 400 and 500 ºC at 53.09 kPa NH3. The synergy theoretically (DFT) reported for bimetallic catalysts was confirmed experimentally. Specifically, it was observed that the catalyst composed mainly of 75 mol% cobalt proved to be the most active in the experiments, followed by the monometallic cobalt and molybdenum catalysts, in this order of activity as referred to in the literature. A kinetic study was performed at 10.13 – 101.32 kPa NH3 and at four equidistant temperatures between 437 and 475 °C the data were adjusted to an LHHW-type model, which considered the desorption of nitrogen atoms from the active phase surface as the rate determining step (RDS). The regression analysis were carried out under an integral regime, using a minimization algorithm based on SLSQP. The physical meaning of the parameters adjusted in the kinetic model, such as the RDS rate constant (k₅) and the lumped adsorption constant of the quasi-equilibrated steps (α) was confirmed through their Arrhenius and Van't Hoff-type behavior (R² > 0.98), respectively. From an energetic perspective, the activation energy for cobalt, cobalt-molybdenum, and molybdenum was 115.2, 106.8, and 177.5 kJ mol⁻¹, respectively. With this evidence and considering the volcano shape described by the ammonia decomposition rate in relation to the metal composition ratio, the synergistic behavior of the system is clearly observed. However, since characterizations by XRD and TEM were inconclusive, the formation of intermetallic compounds should be still verified using HRTEM-EDS. From this point onwards, our objective is to incorporate parameters into the kinetic expressions that consider both compositional and structural elements and explore how these can maximize or influence H₂ production.

Keywords: CEDI, hydrogen carrier, LHHW, RDS

Procedia PDF Downloads 61
167 Urban Planning Patterns after (COVID-19): An Assessment toward Resiliency

Authors: Mohammed AL-Hasani

Abstract:

The Pandemic COVID-19 altered the daily habits and affected the functional performance of the cities after this crisis leaving remarkable impacts on many metropolises worldwide. It is so obvious that having more densification in the city leads to more threats altering this main approach that was called for achieving sustainable development. The main goal to achieve resiliency in the cities, especially in forcing risks, is to deal with a planning system that is able to resist, absorb, accommodate and recover from the impacts that had been affected. Many Cities in London, Wuhan, New York, and others worldwide carried different planning approaches and varied in reaction to safeguard the impacts of the pandemic. The cities globally varied from the radiant pattern predicted by Le Corbusier, or having multi urban centers more like the approach of Frank Lloyd Wright’s Broadacre City, or having linear growth or gridiron expansion that was common by Doxiadis, compact pattern, and many other hygiene patterns. These urban patterns shape the spatial distribution and Identify both open and natural spaces with gentrified and gentrifying areas. This crisis paid attention to reassess many planning approaches and examine the existing urban patterns focusing more on the aim of continuity and resiliency in managing the crises within the rapid transformation and the power of market forces. According to that, this paper hypothesized that those urban planning patterns determine the method of reaction in assuring quarantine for the inhabitance and the performance of public services and need to be updated through carrying out an innovative urban management system and adopt further resilience patterns in prospective urban planning approaches. This paper investigates the adaptivity and resiliency of variant urban planning patterns regarding selected cities worldwide that affected by COVID-19 and their role in applying certain management strategies in controlling the pandemic spread, finding out the main potentials that should be included in prospective planning approaches. The examination encompasses the spatial arrangement, blocks definition, plots arrangement, and urban space typologies. This paper aims to investigate the urban patterns to deliberate also the debate between densification as one of the more sustainable planning approaches and disaggregation tendency that was followed after the pandemic by restructuring and managing its application according to the assessment of the spatial distribution and urban patterns. The biggest long-term threat to dense cities proves the need to shift to online working and telecommuting, creating a mixture between using cyber and urban spaces to remobilize the city. Reassessing spatial design and growth, open spaces, urban population density, and public awareness are the main solutions that should be carried out to face the outbreak in our current cities that should be managed from global to tertiary levels and could develop criteria for designing the prospective cities

Keywords: COVID-19, densification, resiliency, urban patterns

Procedia PDF Downloads 131
166 Numerical Investigation of Combustion Chamber Geometry on Combustion Performance and Pollutant Emissions in an Ammonia-Diesel Common Rail Dual-Fuel Engine

Authors: Youcef Sehili, Khaled Loubar, Lyes Tarabet, Mahfoudh Cerdoun, Clement Lacroix

Abstract:

As emissions regulations grow more stringent and traditional fuel sources become increasingly scarce, incorporating carbon-free fuels in the transportation sector emerges as a key strategy for mitigating the impact of greenhouse gas emissions. While the utilization of hydrogen (H2) presents significant technological challenges, as evident in the engine limitation known as knocking, ammonia (NH3) provides a viable alternative that overcomes this obstacle and offers convenient transportation, storage, and distribution. Moreover, the implementation of a dual-fuel engine using ammonia as the primary gas is promising, delivering both ecological and economic benefits. However, when employing this combustion mode, the substitution of ammonia at high rates adversely affects combustion performance and leads to elevated emissions of unburnt NH3, especially under high loads, which requires special treatment of this mode of combustion. This study aims to simulate combustion in a common rail direct injection (CRDI) dual-fuel engine, considering the fundamental geometry of the combustion chamber as well as fifteen (15) alternative proposed geometries to determine the configuration that exhibits superior engine performance during high-load conditions. The research presented here focuses on improving the understanding of the equations and mechanisms involved in the combustion of finely atomized jets of liquid fuel and on mastering the CONVERGETM code, which facilitates the simulation of this combustion process. By analyzing the effect of piston bowl shape on the performance and emissions of a diesel engine operating in dual fuel mode, this work combines knowledge of combustion phenomena with proficiency in the calculation code. To select the optimal geometry, an evaluation of the Swirl, Tumble, and Squish flow patterns was conducted for the fifteen (15) studied geometries. Variations in-cylinder pressure, heat release rate, turbulence kinetic energy, turbulence dissipation rate, and emission rates were observed, while thermal efficiency and specific fuel consumption were estimated as functions of crankshaft angle. To maximize thermal efficiency, a synergistic approach involving the enrichment of intake air with oxygen (O2) and the enrichment of primary fuel with hydrogen (H2) was implemented. Based on the results obtained, it is worth noting that the proposed geometry (T8_b8_d0.6/SW_8.0) outperformed the others in terms of flow quality, reduction of pollutants emitted with a reduction of more than 90% in unburnt NH3, and an impressive improvement in engine efficiency of more than 11%.

Keywords: ammonia, hydrogen, combustion, dual-fuel engine, emissions

Procedia PDF Downloads 75
165 Geomorphology and Flood Analysis Using Light Detection and Ranging

Authors: George R. Puno, Eric N. Bruno

Abstract:

The natural landscape of the Philippine archipelago plus the current realities of climate change make the country vulnerable to flood hazards. Flooding becomes the recurring natural disaster in the country resulting to lose of lives and properties. Musimusi is among the rivers which exhibited inundation particularly at the inhabited floodplain portion of its watershed. During the event, rescue operations and distribution of relief goods become a problem due to lack of high resolution flood maps to aid local government unit identify the most affected areas. In the attempt of minimizing impact of flooding, hydrologic modelling with high resolution mapping is becoming more challenging and important. This study focused on the analysis of flood extent as a function of different geomorphologic characteristics of Musimusi watershed. The methods include the delineation of morphometric parameters in the Musimusi watershed using Geographic Information System (GIS) and geometric calculations tools. Digital Terrain Model (DTM) as one of the derivatives of Light Detection and Ranging (LiDAR) technology was used to determine the extent of river inundation involving the application of Hydrologic Engineering Center-River Analysis System (HEC-RAS) and Hydrology Modelling System (HEC-HMS) models. The digital elevation model (DEM) from synthetic Aperture Radar (SAR) was used to delineate watershed boundary and river network. Datasets like mean sea level, river cross section, river stage, discharge and rainfall were also used as input parameters. Curve number (CN), vegetation, and soil properties were calibrated based on the existing condition of the site. Results showed that the drainage density value of the watershed is low which indicates that the basin is highly permeable subsoil and thick vegetative cover. The watershed’s elongation ratio value of 0.9 implies that the floodplain portion of the watershed is susceptible to flooding. The bifurcation ratio value of 2.1 indicates higher risk of flooding in localized areas of the watershed. The circularity ratio value (1.20) indicates that the basin is circular in shape, high discharge of runoff and low permeability of the subsoil condition. The heavy rainfall of 167 mm brought by Typhoon Seniang last December 29, 2014 was characterized as high intensity and long duration, with a return period of 100 years produced 316 m3s-1 outflows. Portion of the floodplain zone (1.52%) suffered inundation with 2.76 m depth at the maximum. The information generated in this study is helpful to the local disaster risk reduction management council in monitoring the affected sites for more appropriate decisions so that cost of rescue operations and relief goods distribution is minimized.

Keywords: flooding, geomorphology, mapping, watershed

Procedia PDF Downloads 230
164 Regularizing Software for Aerosol Particles

Authors: Christine Böckmann, Julia Rosemann

Abstract:

We present an inversion algorithm that is used in the European Aerosol Lidar Network for the inversion of data collected with multi-wavelength Raman lidar. These instruments measure backscatter coefficients at 355, 532, and 1064 nm, and extinction coefficients at 355 and 532 nm. The algorithm is based on manually controlled inversion of optical data which allows for detailed sensitivity studies and thus provides us with comparably high quality of the derived data products. The algorithm allows us to derive particle effective radius, volume, surface-area concentration with comparably high confidence. The retrieval of the real and imaginary parts of the complex refractive index still is a challenge in view of the accuracy required for these parameters in climate change studies in which light-absorption needs to be known with high accuracy. Single-scattering albedo (SSA) can be computed from the retrieve microphysical parameters and allows us to categorize aerosols into high and low absorbing aerosols. From mathematical point of view the algorithm is based on the concept of using truncated singular value decomposition as regularization method. This method was adapted to work for the retrieval of the particle size distribution function (PSD) and is called hybrid regularization technique since it is using a triple of regularization parameters. The inversion of an ill-posed problem, such as the retrieval of the PSD, is always a challenging task because very small measurement errors will be amplified most often hugely during the solution process unless an appropriate regularization method is used. Even using a regularization method is difficult since appropriate regularization parameters have to be determined. Therefore, in a next stage of our work we decided to use two regularization techniques in parallel for comparison purpose. The second method is an iterative regularization method based on Pade iteration. Here, the number of iteration steps serves as the regularization parameter. We successfully developed a semi-automated software for spherical particles which is able to run even on a parallel processor machine. From a mathematical point of view, it is also very important (as selection criteria for an appropriate regularization method) to investigate the degree of ill-posedness of the problem which we found is a moderate ill-posedness. We computed the optical data from mono-modal logarithmic PSD and investigated particles of spherical shape in our simulations. We considered particle radii as large as 6 nm which does not only cover the size range of particles in the fine-mode fraction of naturally occurring PSD but also covers a part of the coarse-mode fraction of PSD. We considered errors of 15% in the simulation studies. For the SSA, 100% of all cases achieve relative errors below 12%. In more detail, 87% of all cases for 355 nm and 88% of all cases for 532 nm are well below 6%. With respect to the absolute error for non- and weak-absorbing particles with real parts 1.5 and 1.6 in all modes the accuracy limit +/- 0.03 is achieved. In sum, 70% of all cases stay below +/-0.03 which is sufficient for climate change studies.

Keywords: aerosol particles, inverse problem, microphysical particle properties, regularization

Procedia PDF Downloads 343
163 Electroactive Fluorene-Based Polymer Films Obtained by Electropolymerization

Authors: Mariana-Dana Damaceanu

Abstract:

Electrochemical oxidation is one of the most convenient ways to obtain conjugated polymer films as polypyrrole, polyaniline, polythiophene or polycarbazole. The research in the field has been mainly directed to the study of electrical conduction properties of the materials obtained by electropolymerization, often the main reason being their use as electroconducting electrodes, and very little attention has been paid to the morphological and optical quality of the films electrodeposited on flat surfaces. Electropolymerization of the monomer solution was scarcely used in the past to manufacture polymer-based light-emitting diodes (PLED), most probably due to the difficulty of obtaining defectless polymer films with good mechanical and optical properties, or conductive polymers with well controlled molecular weights. Here we report our attempts in using electrochemical deposition as appropriate method for preparing ultrathin films of fluorene-based polymers for PLED applications. The properties of these films were evaluated in terms of structural morphology, optical properties, and electrochemical conduction. Thus, electropolymerization of 4,4'-(9-fluorenylidene)-dianiline was performed in dichloromethane solution, at a concentration of 10-2 M, using 0.1 M tetrabutylammonium tetrafluoroborate as electrolyte salt. The potential was scanned between 0 and 1.3 V on the one hand, and 0 - 2 V on the other hand, when polymer films with different structures and properties were obtained. Indium tin oxide-coated glass substrate of different size was used as working electrode, platinum wire as counter electrode and calomel electrode as reference. For each potential range 100 cycles were recorded at a scan rate of 100 mV/s. The film obtained in the potential range from 0 to 1.3 V, namely poly(FDA-NH), is visible to the naked eye, being light brown, transparent and fluorescent, and displays an amorphous morphology. Instead, the electrogrowth poly(FDA) film in the potential range of 0 - 2 V is yellowish-brown and opaque, presenting a self-assembled structure in aggregates of irregular shape and size. The polymers structure was identified by FTIR spectroscopy, which shows the presence of broad bands specific to a polymer, the band centered at approx. 3443 cm-1 being ascribed to the secondary amine. The two polymer films display two absorption maxima, at 434-436 nm assigned to π-π* transitions of polymers, and another at 832 and 880 nm assigned to polaron transitions. The fluorescence spectra indicated the presence of emission bands in the blue domain, with two peaks at 422 and 488 nm for poly (FDA-NH), and four narrow peaks at 422, 447, 460 and 484 nm for poly(FDA), peaks originating from fluorene-containing segments of varying degrees of conjugation. Poly(FDA-NH) exhibited two oxidation peaks in the anodic region and the HOMO energy value of 5.41 eV, whereas poly(FDA) showed only one oxidation peak and the HOMO level localized at 5.29 eV. The electrochemical data are discussed in close correlation with the proposed chemical structure of the electrogrowth films. Further research will be carried out to study their use and performance in light-emitting devices.

Keywords: electrogrowth polymer films, fluorene, morphology, optical properties

Procedia PDF Downloads 345
162 Reliability Analysis of Geometric Performance of Onboard Satellite Sensors: A Study on Location Accuracy

Authors: Ch. Sridevi, A. Chalapathi Rao, P. Srinivasulu

Abstract:

The location accuracy of data products is a critical parameter in assessing the geometric performance of satellite sensors. This study focuses on reliability analysis of onboard sensors to evaluate their performance in terms of location accuracy performance over time. The analysis utilizes field failure data and employs the weibull distribution to determine the reliability and in turn to understand the improvements or degradations over a period of time. The analysis begins by scrutinizing the location accuracy error which is the root mean square (RMS) error of differences between ground control point coordinates observed on the product and the map and identifying the failure data with reference to time. A significant challenge in this study is to thoroughly analyze the possibility of an infant mortality phase in the data. To address this, the Weibull distribution is utilized to determine if the data exhibits an infant stage or if it has transitioned into the operational phase. The shape parameter beta plays a crucial role in identifying this stage. Additionally, determining the exact start of the operational phase and the end of the infant stage poses another challenge as it is crucial to eliminate residual infant mortality or wear-out from the model, as it can significantly increase the total failure rate. To address this, an approach utilizing the well-established statistical Laplace test is applied to infer the behavior of sensors and to accurately ascertain the duration of different phases in the lifetime and the time required for stabilization. This approach also helps in understanding if the bathtub curve model, which accounts for the different phases in the lifetime of a product, is appropriate for the data and whether the thresholds for the infant period and wear-out phase are accurately estimated by validating the data in individual phases with Weibull distribution curve fitting analysis. Once the operational phase is determined, reliability is assessed using Weibull analysis. This analysis not only provides insights into the reliability of individual sensors with regards to location accuracy over the required period of time, but also establishes a model that can be applied to automate similar analyses for various sensors and parameters using field failure data. Furthermore, the identification of the best-performing sensor through this analysis serves as a benchmark for future missions and designs, ensuring continuous improvement in sensor performance and reliability. Overall, this study provides a methodology to accurately determine the duration of different phases in the life data of individual sensors. It enables an assessment of the time required for stabilization and provides insights into the reliability during the operational phase and the commencement of the wear-out phase. By employing this methodology, designers can make informed decisions regarding sensor performance with regards to location accuracy, contributing to enhanced accuracy in satellite-based applications.

Keywords: bathtub curve, geometric performance, Laplace test, location accuracy, reliability analysis, Weibull analysis

Procedia PDF Downloads 65
161 Doctor-Patient Interaction in an L2: Pragmatic Study of a Nigerian Experience

Authors: Ayodele James Akinola

Abstract:

This study investigated the use of English in doctor-patient interaction in a university teaching hospital from a southwestern state in Nigeria with the aim of identifying the role of communication in an L2, patterns of communication, discourse strategies, pragmatic acts, and contexts that shape the interaction. Jacob Mey’s Pragmatic Acts notion complemented with Emanuel and Emanuel’s model of doctor-patient relationship provided the theoretical standpoint. Data comprising 7 audio-recorded doctors-patient interactions were collected from a University Hospital in Oyo state, Nigeria. Interactions involving the use of English language were purposefully selected. These were supplemented with patients’ case notes and interviews conducted with doctors. Transcription was patterned alongside modified Arminen’s notations of conversation analysis. In the study, interaction in English between doctor and patients has the preponderance of direct-translation, code-mixing and switching, Nigerianism and use of cultural worldviews to express medical experience. Irrespective of these, three patterns communication, namely the paternalistic, interpretive, and deliberative were identified. These were exhibited through varying discourse strategies. The paternalistic model reflected slightly casual conversational conventions and registers. These were achieved through the pragmemic activities of situated speech acts, psychological and physical acts, via patients’ quarrel-induced acts, controlled and managed through doctors’ shared situation knowledge. All these produced empathising, pacifying, promising and instructing practs. The patients’ practs were explaining, provoking, associating and greeting in the paternalistic model. The informative model reveals the use of adjacency pairs, formal turn-taking, precise detailing, institutional talks and dialogic strategies. Through the activities of the speech, prosody and physical acts, the practs of declaring, alerting and informing were utilised by doctors, while the patients exploited adapting, requesting and selecting practs. The negotiating conversational strategy of the deliberative model featured in the speech, prosody and physical acts. In this model, practs of suggesting, teaching, persuading and convincing were utilised by the doctors. The patients deployed the practs of questioning, demanding, considering and deciding. The contextual variables revealed that other patterns (such as phatic and informative) are also used and they coalesced in the hospital within the situational and psychological contexts. However, the paternalistic model was predominantly employed by doctors with over six years in practice, while the interpretive, informative and deliberative models were found among registrar and others below six years of medical practice. Doctors’ experience, patients’ peculiarities and shared cultural knowledge influenced doctor-patient communication in the study.

Keywords: pragmatics, communication pattern, doctor-patient interaction, Nigerian hospital situation

Procedia PDF Downloads 180
160 Verification of the Supercavitation Phenomena: Investigation of the Cavity Parameters and Drag Coefficients for Different Types of Cavitator

Authors: Sezer Kefeli, Sertaç Arslan

Abstract:

Supercavitation is a pressure dependent process which gives opportunity to eliminate the wetted surface effects on the underwater vehicle due to the differences of viscosity and velocity effects between liquid (freestream) and gas phase. Cavitation process occurs depending on rapid pressure drop or temperature rising in liquid phase. In this paper, pressure based cavitation is investigated due to the fact that is encountered in the underwater world, generally. Basically, this vapor-filled pressure based cavities are unstable and harmful for any underwater vehicle because these cavities (bubbles or voids) lead to intense shock waves while collapsing. On the other hand, supercavitation is a desired and stabilized phenomena than general pressure based cavitation. Supercavitation phenomena offers the idea of minimizing form drag, and thus supercavitating vehicles are revived. When proper circumstances are set up, which are either increasing the operating speed of the underwater vehicle or decreasing the pressure difference between free stream and artificial pressure, the continuity of the supercavitation is obtainable. There are 2 types of supercavitation to obtain stable and continuous supercavitation, and these are called as natural and artificial supercavitation. In order to generate natural supercavitation, various mechanical structures are discovered, which are called as cavitators. In literature, a lot of cavitator types are studied either experimentally or numerically on a CFD platforms with intent to observe natural supercavitation since the 1900s. In this paper, firstly, experimental results are obtained, and trend lines are generated based on supercavitation parameters in terms of cavitation number (), form drag coefficientC_D, dimensionless cavity diameter (d_m/d_c), and length (L_c/d_c). After that, natural cavitation verification studies are carried out for disk and cone shape cavitators. In addition, supercavitation parameters are numerically analyzed at different operating conditions, and CFD results are fitted into trend lines of experimental results. The aims of this paper are to generate one generally accepted drag coefficient equation for disk and cone cavitators at different cavitator half angle and investigation of the supercavitation parameters with respect to cavitation number. Moreover, 165 CFD analysis are performed at different cavitation numbers on FLUENT version 21R2. Five different cavitator types are modeled on SCDM with respect tocavitator’s half angles. After that, CFD database is generated depending on numerical results, and new trend lines are generated based on supercavitation parameters. These trend lines are compared with experimental results. Finally, the generally accepted drag coefficient equation and equations of supercavitation parameters are generated.

Keywords: cavity envelope, CFD, high speed underwater vehicles, supercavitation, supercavitating flows, supercavitation parameters, drag reduction, viscous force elimination, natural cavitation verification

Procedia PDF Downloads 131
159 The Cost of Beauty: Insecurity and Profit

Authors: D. Cole, S. Mahootian, P. Medlock

Abstract:

This research contributes to existing knowledge of the complexities surrounding women’s relationship to beauty standards by examining their lived experiences. While there is much academic work on the effects of culturally imposed and largely unattainable beauty standards, the arguments tend to fall into two paradigms. On the one hand is the radical feminist perspective that argues that women are subjected to absolute oppression within the patriarchal system in which beauty standards have been constructed. This position advocates for a complete restructuring of social institutions to liberate women from all types of oppression. On the other hand, there are liberal feminist arguments that focus on choice, arguing that women’s agency in how to present themselves is empowerment. These arguments center around what women do within the patriarchal system in order to liberate themselves. However, there is very little research on the lived experiences of women negotiating these two realms: the complex negotiation between the pressure to adhere to cultural beauty standards and the agency of self-expression and empowerment. By exploring beauty standards through the intersection of societal messages (including macro-level processes such as social media and advertising as well as smaller-scale interactions such as families and peers) and lived experiences, this study seeks to provide a nuanced understanding of how women navigate and negotiate their own presentation and sense of self-identity. Current research sees a rise in incidents of body dysmorphia, depression and anxiety since the advent of social media. Approximately 91% of women are unhappy with their bodies and resort to dieting to achieve their ideal body shape, but only 5% of women naturally possess the body type often portrayed by Americans in movies and media. It is, therefore, crucial we begin talking about the processes that are affecting self-image and mental health. A question that arises is that, given these negative effects, why do companies continue to advertise and target women with standards that very few could possibly attain? One obvious answer is that keeping beauty standards largely unattainable enables the beauty and fashion industries to make large profits by promising products and procedures that will bring one up to “standard”. The creation of dissatisfaction for some is profit for others. This research utilizes qualitative methods: interviews, questionnaires, and focus groups to investigate women’s relationships to beauty standards and empowerment. To this end, we reached out to potential participants through a video campaign on social media: short clips on Instagram, Facebook, and TikTok and a longer clip on YouTube inviting users to take part in the study. Participants are asked to react to images, videos, and other beauty-related texts. The findings of this research have implications for policy development, advocacy and interventions aimed at promoting healthy inclusivity and empowerment of women.

Keywords: women, beauty, consumerism, social media

Procedia PDF Downloads 64
158 Elucidation of Dynamics of Murine Double Minute 2 Shed Light on the Anti-cancer Drug Development

Authors: Nigar Kantarci Carsibasi

Abstract:

Coarse-grained elastic network models, namely Gaussian network model (GNM) and Anisotropic network model (ANM), are utilized in order to investigate the fluctuation dynamics of Murine Double Minute 2 (MDM2), which is the native inhibitor of p53. Conformational dynamics of MDM2 are elucidated in unbound, p53 bound, and non-peptide small molecule inhibitor bound forms. With this, it is aimed to gain insights about the alterations brought to global dynamics of MDM2 by native peptide inhibitor p53, and two small molecule inhibitors (HDM201 and NVP-CGM097) that are undergoing clinical stages in cancer studies. MDM2 undergoes significant conformational changes upon inhibitor binding, carrying pieces of evidence of induced-fit mechanism. Small molecule inhibitors examined in this work exhibit similar fluctuation dynamics and characteristic mode shapes with p53 when complexed with MDM2, which would shed light on the design of novel small molecule inhibitors for cancer therapy. The results showed that residues Phe 19, Trp 23, Leu 26 reside in the minima of slowest modes of p53, pointing to the accepted three-finger binding model. Pro 27 displays the most significant hinge present in p53 and comes out to be another functionally important residue. Three distinct regions are identified in MDM2, for which significant conformational changes are observed upon binding. Regions I (residues 50-77) and III (residues 90-105) correspond to the binding interface of MDM2, including (α2, L2, and α4), which are stabilized during complex formation. Region II (residues 77-90) exhibits a large amplitude motion, being highly flexible, both in the absence and presence of p53 or other inhibitors. MDM2 exhibits a scattered profile in the fastest modes of motion, while binding of p53 and inhibitors puts restraints on MDM2 domains, clearly distinguishing the kinetically hot regions. Mode shape analysis revealed that the α4 domain controls the size of the cleft by keeping the cleft narrow in unbound MDM2; and open in the bound states for proper penetration and binding of p53 and inhibitors, which points to the induced-fit mechanism of p53 binding. P53 interacts with α2 and α4 in a synchronized manner. Collective modes are shifted upon inhibitor binding, i.e., second mode characteristic motion in MDM2-p53 complex is observed in the first mode of apo MDM2; however, apo and bound MDM2 exhibits similar features in the softest modes pointing to pre-existing modes facilitating the ligand binding. Although much higher amplitude motions are attained in the presence of non-peptide small molecule inhibitor molecules as compared to p53, they demonstrate close similarity. Hence, NVP-CGM097 and HDM201 succeed in mimicking the p53 behavior well. Elucidating how drug candidates alter the MDM2 global and conformational dynamics would shed light on the rational design of novel anticancer drugs.

Keywords: cancer, drug design, elastic network model, MDM2

Procedia PDF Downloads 130
157 Influence of Kneading Conditions on the Textural Properties of Alumina Catalysts Supports for Hydrotreating

Authors: Lucie Speyer, Vincent Lecocq, Séverine Humbert, Antoine Hugon

Abstract:

Mesoporous alumina is commonly used as a catalyst support for the hydrotreating of heavy petroleum cuts. The process of fabrication usually involves: the synthesis of the boehmite AlOOH precursor, a kneading-extrusion step, and a calcination in order to obtain the final alumina extrudates. Alumina is described as a complex porous medium, generally agglomerates constituted of aggregated nanocrystallites. Its porous texture directly influences the active phase deposition and mass transfer, and the catalytic properties. Then, it is easy to figure out that each step of the fabrication of the supports has a role on the building of their porous network, and has to be well understood to optimize the process. The synthesis of boehmite by precipitation of aluminum salts was extensively studied in the literature and the effect of various parameters, such as temperature or pH, are known to influence the size and shape of the crystallites and the specific surface area of the support. The calcination step, through the topotactic transition from boehmite to alumina, determines the final properties of the support and can tune the surface area, pore volume and pore diameters from those of boehmite. However, the kneading extrusion step has been subject to a very few studies. It generally consists in two steps: an acid, then a basic kneading, where the boehmite powder is introduced in a mixer and successively added with an acid and a base solution to form an extrudable paste. During the acid kneading, the induced positive charges on the hydroxyl surface groups of boehmite create an electrostatic repulsion which tends to separate the aggregates and even, following the conditions, the crystallites. The basic kneading, by reducing the surface charges, leads to a flocculation phenomenon and can control the reforming of the overall structure. The separation and reassembling of the particles constituting the boehmite paste have a quite obvious influence on the textural properties of the material. In this work, we are focused on the influence of the kneading step on the alumina catalysts supports. Starting from an industrial boehmite, extrudates are prepared using various kneading conditions. The samples are studied by nitrogen physisorption in order to analyze the evolution of the textural properties, and by synchrotron small-angle X-ray scattering (SAXS), a more original method which brings information about agglomeration and aggregation of the samples. The coupling of physisorption and SAXS enables a precise description of the samples, as same as an accurate monitoring of their evolution as a function of the kneading conditions. These ones are found to have a strong influence of the pore volume and pore size distribution of the supports. A mechanism of evolution of the texture during the kneading step is proposed and could be attractive in order to optimize the texture of the supports and then, their catalytic performances.

Keywords: alumina catalyst support, kneading, nitrogen physisorption, small-angle X-ray scattering

Procedia PDF Downloads 254
156 A Practical Construction Technique to Enhance the Performance of Rock Bolts in Tunnels

Authors: Ojas Chaudhari, Ali Nejad Ghafar, Giedrius Zirgulis, Marjan Mousavi, Tommy Ellison, Sandra Pousette, Patrick Fontana

Abstract:

In Swedish tunnel construction, a critical issue that has been repeatedly acknowledged is corrosion and, consequently, failure of the rock bolts in rock support systems. The defective installation of rock bolts results in the formation of cavities in the cement mortar that is regularly used to fill the area under the dome plates. These voids allow for water-ingress to the rock bolt assembly, which results in corrosion of rock bolt components and eventually failure. In addition, the current installation technique consists of several manual steps with intense labor works that are usually done in uncomfortable and exhausting conditions, e.g., under the roof of the tunnels. Such intense tasks also lead to a considerable waste of materials and execution errors. Moreover, adequate quality control of the execution is hardly possible with the current technique. To overcome these issues, a non-shrinking/expansive cement-based mortar filled in the paper packaging has been developed in this study which properly fills the area under the dome plates without or with the least remaining cavities, ultimately that diminishes the potential of corrosion. This article summarizes the development process and the experimental evaluation of this technique for the installation of rock bolts. In the development process, the cementitious mortar was first developed using specific cement and shrinkage reducing/expansive additives. The mechanical and flow properties of the mortar were then evaluated using compressive strength, density, and slump flow measurement methods. In addition, isothermal calorimetry and shrinkage/expansion measurements were used to elucidate the hydration and durability attributes of the mortar. After obtaining the desired properties in both fresh and hardened conditions, the developed dry mortar was filled in specific permeable paper packaging and then submerged in water bath for specific intervals before the installation. The tests were enhanced progressively by optimizing different parameters such as shape and size of the packaging, characteristics of the paper used, immersion time in water and even some minor characteristics of the mortar. Finally, the developed prototype was tested in a lab-scale rock bolt assembly with various angles to analyze the efficiency of the method in real life scenario. The results showed that the new technique improves the performance of the rock bolts by reducing the material wastage, improving environmental performance, facilitating and accelerating the labor works, and finally enhancing the durability of the whole system. Accordingly, this approach provides an efficient alternative for the traditional way of tunnel bolt installation with considerable advantages for the Swedish tunneling industry.

Keywords: corrosion, durability, mortar, rock bolt

Procedia PDF Downloads 113
155 Simulation Research of the Aerodynamic Drag of 3D Structures for Individual Transport Vehicle

Authors: Pawel Magryta, Mateusz Paszko

Abstract:

In today's world, a big problem of individual mobility, especially in large urban areas, occurs. Commonly used grand way of transport such as buses, trains or cars do not fulfill their tasks, i.e. they are not able to meet the increasing mobility needs of the growing urban population. Additional to that, the limitations of civil infrastructure construction in the cities exist. Nowadays the most common idea is to transfer the part of urban transport on the level of air transport. However to do this, there is a need to develop an individual flying transport vehicle. The biggest problem occurring in this concept is the type of the propulsion system from which the vehicle will obtain a lifting force. Standard propeller drives appear to be too noisy. One of the ideas is to provide the required take-off and flight power by the machine using the innovative ejector system. This kind of the system will be designed through a suitable choice of the three-dimensional geometric structure with special shape of nozzle in order to generate overpressure. The authors idea is to make a device that would allow to cumulate the overpressure using the a five-sided geometrical structure that will be limited on the one side by the blowing flow of air jet. In order to test this hypothesis a computer simulation study of aerodynamic drag of such 3D structures have been made. Based on the results of these studies, the tests on real model were also performed. The final stage of work was a comparative analysis of the results of simulation and real tests. The CFD simulation studies of air flow was conducted using the Star CD - Star Pro 3.2 software. The design of virtual model was made using the Catia v5 software. Apart from the objective to obtain advanced aviation propulsion system, all of the tests and modifications of 3D structures were also aimed at achieving high efficiency of this device while maintaining the ability to generate high value of overpressures. This was possible only in case of a large mass flow rate of air. All these aspects have been possible to verify using CFD methods for observing the flow of the working medium in the tested model. During the simulation tests, the distribution and size of pressure and velocity vectors were analyzed. Simulations were made with different boundary conditions (supply air pressure), but with a fixed external conditions (ambient temp., ambient pressure, etc.). The maximum value of obtained overpressure is 2 kPa. This value is too low to exploit the power of this device for the individual transport vehicle. Both the simulation model and real object shows a linear dependence of the overpressure values obtained from the different geometrical parameters of three-dimensional structures. Application of computational software greatly simplifies and streamlines the design and simulation capabilities. This work has been financed by the Polish Ministry of Science and Higher Education.

Keywords: aviation propulsion, CFD, 3d structure, aerodynamic drag

Procedia PDF Downloads 311
154 Speech Acts of Selected Classroom Encounters: Analyzing the Speech Acts of a Career Technology Lesson

Authors: Michael Amankwaa Adu

Abstract:

Effective communication in the classroom plays a vital role in ensuring successful teaching and learning. In particular, the types of language and speech acts teachers use shape classroom interactions and influence student engagement. This study aims to analyze the speech acts employed by a Career Technology teacher in a junior high school. While much research has focused on speech acts in language classrooms, less attention has been given to how these acts operate in non-language subject areas like technical education. The study explores how different types of speech acts—directives, assertives, expressives, and commissives—are used during three classroom encounters: lesson introduction, content delivery, and classroom management. This research seeks to fill the gap in understanding how teachers of non-language subjects use speech acts to manage classroom dynamics and facilitate learning. The study employs a mixed-methods design, combining qualitative and quantitative approaches. Data was collected through direct classroom observation and audio recordings of a one-hour Career Technology lesson. The transcriptions of the lesson were analyzed using John Searle’s taxonomy of speech acts, classifying the teacher’s utterances into directives, assertives, expressives, and commissives. Results show that directives were the most frequently used speech act, accounting for 59.3% of the teacher's utterances. These speech acts were essential in guiding student behavior, giving instructions, and maintaining classroom control. Assertives made up 20.4% of the speech acts, primarily used for stating facts and reinforcing content. Expressives, at 14.2%, expressed emotions such as approval or frustration, helping to manage the emotional atmosphere of the classroom. Commissives were the least used, representing 6.2% of the speech acts, often used to set expectations or outline future actions. No declarations were observed during the lesson. The findings of this study reveal the critical role that speech acts play in managing classroom behavior and delivering content in technical subjects. Directives were crucial for ensuring students followed instructions and completed tasks, while assertives helped in reinforcing lesson objectives. Expressives contributed to motivating or disciplining students, and commissives, though less frequent, helped set clear expectations for students’ future actions. The absence of declarations suggests that the teacher prioritized guiding students over making formal pronouncements. These insights can inform teaching strategies across various subject areas, demonstrating that a diverse use of speech acts can create a balanced and interactive learning environment. This study contributes to the growing field of pragmatics in education and offers practical recommendations for educators, particularly in non-language classrooms, on how to utilize speech acts to enhance both classroom management and student engagement.

Keywords: classroom interaction, pragmatics, speech acts, teacher communication, career technology

Procedia PDF Downloads 22
153 Precise Determination of the Residual Stress Gradient in Composite Laminates Using a Configurable Numerical-Experimental Coupling Based on the Incremental Hole Drilling Method

Authors: A. S. Ibrahim Mamane, S. Giljean, M.-J. Pac, G. L’Hostis

Abstract:

Fiber reinforced composite laminates are particularly subject to residual stresses due to their heterogeneity and the complex chemical, mechanical and thermal mechanisms that occur during their processing. Residual stresses are now well known to cause damage accumulation, shape instability, and behavior disturbance in composite parts. Many works exist in the literature on techniques for minimizing residual stresses in thermosetting and thermoplastic composites mainly. To study in-depth the influence of processing mechanisms on the formation of residual stresses and to minimize them by establishing a reliable correlation, it is essential to be able to measure very precisely the profile of residual stresses in the composite. Residual stresses are important data to consider when sizing composite parts and predicting their behavior. The incremental hole drilling is very effective in measuring the gradient of residual stresses in composite laminates. This method is semi-destructive and consists of drilling incrementally a hole through the thickness of the material and measuring relaxation strains around the hole for each increment using three strain gauges. These strains are then converted into residual stresses using a matrix of coefficients. These coefficients, called calibration coefficients, depending on the diameter of the hole and the dimensions of the gauges used. The reliability of the incremental hole drilling depends on the accuracy with which the calibration coefficients are determined. These coefficients are calculated using a finite element model. The samples’ features and the experimental conditions must be considered in the simulation. Any mismatch can lead to inadequate calibration coefficients, thus introducing errors on residual stresses. Several calibration coefficient correction methods exist for isotropic material, but there is a lack of information on this subject concerning composite laminates. In this work, a Python program was developed to automatically generate the adequate finite element model. This model allowed us to perform a parametric study to assess the influence of experimental errors on the calibration coefficients. The results highlighted the sensitivity of the calibration coefficients to the considered errors and gave an order of magnitude of the precisions required on the experimental device to have reliable measurements. On the basis of these results, improvements were proposed on the experimental device. Furthermore, a numerical method was proposed to correct the calibration coefficients for different types of materials, including thick composite parts for which the analytical approach is too complex. This method consists of taking into account the experimental errors in the simulation. Accurate measurement of the experimental errors (such as eccentricity of the hole, angular deviation of the gauges from their theoretical position, or errors on increment depth) is therefore necessary. The aim is to determine more precisely the residual stresses and to expand the validity domain of the incremental hole drilling technique.

Keywords: fiber reinforced composites, finite element simulation, incremental hole drilling method, numerical correction of the calibration coefficients, residual stresses

Procedia PDF Downloads 132
152 Using Scilab® as New Introductory Method in Numerical Calculations and Programming for Computational Fluid Dynamics (CFD)

Authors: Nicoly Coelho, Eduardo Vieira Vilas Boas, Paulo Orestes Formigoni

Abstract:

Faced with the remarkable developments in the various segments of modern engineering, provided by the increasing technological development, professionals of all educational areas need to overcome the difficulties generated due to the good understanding of those who are starting their academic journey. Aiming to overcome these difficulties, this article aims at an introduction to the basic study of numerical methods applied to fluid mechanics and thermodynamics, demonstrating the modeling and simulations with its substance, and a detailed explanation of the fundamental numerical solution for the use of finite difference method, using SCILAB, a free software easily accessible as it is free and can be used for any research center or university, anywhere, both in developed and developing countries. It is known that the Computational Fluid Dynamics (CFD) is a necessary tool for engineers and professionals who study fluid mechanics, however, the teaching of this area of knowledge in undergraduate programs faced some difficulties due to software costs and the degree of difficulty of mathematical problems involved in this way the matter is treated only in postgraduate courses. This work aims to bring the use of DFC low cost in teaching Transport Phenomena for graduation analyzing a small classic case of fundamental thermodynamics with Scilab® program. The study starts from the basic theory involving the equation the partial differential equation governing heat transfer problem, implies the need for mastery of students, discretization processes that include the basic principles of series expansion Taylor responsible for generating a system capable of convergence check equations using the concepts of Sassenfeld, finally coming to be solved by Gauss-Seidel method. In this work we demonstrated processes involving both simple problems solved manually, as well as the complex problems that required computer implementation, for which we use a small algorithm with less than 200 lines in Scilab® in heat transfer study of a heated plate in rectangular shape on four sides with different temperatures on either side, producing a two-dimensional transport with colored graphic simulation. With the spread of computer technology, numerous programs have emerged requiring great researcher programming skills. Thinking that this ability to program DFC is the main problem to be overcome, both by students and by researchers, we present in this article a hint of use of programs with less complex interface, thus enabling less difficulty in producing graphical modeling and simulation for DFC with an extension of the programming area of experience for undergraduates.

Keywords: numerical methods, finite difference method, heat transfer, Scilab

Procedia PDF Downloads 388
151 An Algebraic Geometric Imaging Approach for Automatic Dairy Cow Body Condition Scoring System

Authors: Thi Thi Zin, Pyke Tin, Ikuo Kobayashi, Yoichiro Horii

Abstract:

Today dairy farm experts and farmers have well recognized the importance of dairy cow Body Condition Score (BCS) since these scores can be used to optimize milk production, managing feeding system and as an indicator for abnormality in health even can be utilized to manage for having healthy calving times and process. In tradition, BCS measures are done by animal experts or trained technicians based on visual observations focusing on pin bones, pin, thurl and hook area, tail heads shapes, hook angles and short and long ribs. Since the traditional technique is very manual and subjective, the results can lead to different scores as well as not cost effective. Thus this paper proposes an algebraic geometric imaging approach for an automatic dairy cow BCS system. The proposed system consists of three functional modules. In the first module, significant landmarks or anatomical points from the cow image region are automatically extracted by using image processing techniques. To be specific, there are 23 anatomical points in the regions of ribs, hook bones, pin bone, thurl and tail head. These points are extracted by using block region based vertical and horizontal histogram methods. According to animal experts, the body condition scores depend mainly on the shape structure these regions. Therefore the second module will investigate some algebraic and geometric properties of the extracted anatomical points. Specifically, the second order polynomial regression is employed to a subset of anatomical points to produce the regression coefficients which are to be utilized as a part of feature vector in scoring process. In addition, the angles at thurl, pin, tail head and hook bone area are computed to extend the feature vector. Finally, in the third module, the extracted feature vectors are trained by using Markov Classification process to assign BCS for individual cows. Then the assigned BCS are revised by using multiple regression method to produce the final BCS score for dairy cows. In order to confirm the validity of proposed method, a monitoring video camera is set up at the milk rotary parlor to take top view images of cows. The proposed method extracts the key anatomical points and the corresponding feature vectors for each individual cows. Then the multiple regression calculator and Markov Chain Classification process are utilized to produce the estimated body condition score for each cow. The experimental results tested on 100 dairy cows from self-collected dataset and public bench mark dataset show very promising with accuracy of 98%.

Keywords: algebraic geometric imaging approach, body condition score, Markov classification, polynomial regression

Procedia PDF Downloads 161
150 Preparation of Metallic Nanoparticles with the Use of Reagents of Natural Origin

Authors: Anna Drabczyk, Sonia Kudlacik-Kramarczyk, Dagmara Malina, Bozena Tyliszczak, Agnieszka Sobczak-Kupiec

Abstract:

Nowadays, nano-size materials are very popular group of materials among scientists. What is more, these materials find an application in a wide range of various areas. Therefore constantly increasing demand for nanomaterials including metallic nanoparticles such as silver of gold ones is observed. Therefore, new routes of their preparation are sought. Considering potential application of nanoparticles, it is important to select an adequate methodology of their preparation because it determines their size and shape. Among the most commonly applied methods of preparation of nanoparticles chemical and electrochemical techniques are leading. However, currently growing attention is directed into the biological or biochemical aspects of syntheses of metallic nanoparticles. This is associated with a trend of developing of new routes of preparation of given compounds according to the principles of green chemistry. These principles involve e.g. the reduction of the use of toxic compounds in the synthesis as well as the reduction of the energy demand or minimization of the generated waste. As a result, a growing popularity of the use of such components as natural plant extracts, infusions or essential oils is observed. Such natural substances may be used both as a reducing agent of metal ions and as a stabilizing agent of formed nanoparticles therefore they can replace synthetic compounds previously used for the reduction of metal ions or for the stabilization of obtained nanoparticles suspension. Methods that proceed in the presence of previously mentioned natural compounds are environmentally friendly and proceed without the application of any toxic reagents. Methodology: Presented research involves preparation of silver nanoparticles using selected plant extracts, e.g. artichoke extract. Extracts of natural origin were used as reducing and stabilizing agents at the same time. Furthermore, syntheses were carried out in the presence of additional polymeric stabilizing agent. Next, such features of obtained suspensions of nanoparticles as total antioxidant activity as well as content of phenolic compounds have been characterized. First of the mentioned studies involved the reaction with DPPH (2,2-Diphenyl-1-picrylhydrazyl) radical. The content of phenolic compounds was determined using Folin-Ciocalteu technique. Furthermore, an essential issue was also the determining of the stability of formed suspensions of nanoparticles. Conclusions: In the research it was demonstrated that metallic nanoparticles may be obtained using plant extracts or infusions as stabilizing or reducing agent. The methodology applied, i.e. a type of plant extract used during the synthesis, had an impact on the content of phenolic compounds as well as on the size and polydispersity of obtained nanoparticles. What is more, it is possible to prepare nano-size particles that will be characterized by properties desirable from the viewpoint of their potential application and such an effect may be achieved with the use of non-toxic reagents of natural origin. Furthermore, proposed methodology stays in line with the principles of green chemistry.

Keywords: green chemistry principles, metallic nanoparticles, plant extracts, stabilization of nanoparticles

Procedia PDF Downloads 125
149 An Investigation of Wind Loading Effects on the Design of Elevated Steel Tanks with Lattice Tower Supporting Structures

Authors: J. van Vuuren, D. J. van Vuuren, R. Muigai

Abstract:

In recent times, South Africa has experienced extensive droughts that created the need for reliable small water reservoirs. These reservoirs have comparatively quick fabrication and installation times compared to market alternatives. An elevated water tank has inherent potential energy, resulting in that no additional water pumps are required to sustain water pressure at the outlet point – thus ensuring that, without electricity, a water source is available. The initial construction formwork and the complex geometric shape of concrete towers that requires casting can become time-consuming, rendering steel towers preferable. Reinforced concrete foundations, cast in advance, are required to be of sufficient strength. Thereafter, the prefabricated steel supporting structure and tank, which consist of steel panels, can be assembled and erected on site within a couple of days. Due to the time effectiveness of this system, it has become a popular solution to aid drought-stricken areas. These sites are normally in rural, schools or farmland areas. As these tanks can contain up to 2000kL (approximately 19.62MN) of water, combined with supporting lattice steel structures ranging between 5m and 30m in height, failure of one of the supporting members will result in system failure. Thus, there is a need to gain a comprehensive understanding of the operation conditions because of wind loadings on both the tank and the supporting structure. The aim of the research is to investigate the relationship between the theoretical wind loading on a lattice steel tower in combination with an elevated sectional steel tank, and the current wind loading codes, as applicable to South Africa. The research compares the respective design parameters (both theoretical and wind loading codes) whereby FEA analyses are conducted on the various design solutions. The currently available wind loading codes are not sufficient to design slender cantilever latticed steel towers that support elevated water storage tanks. Numerous factors in the design codes are not comprehensively considered when designing the system as these codes are dependent on various assumptions. Factors that require investigation for the study are; the wind loading angle to the face of the structure that will result in maximum load; the internal structural effects on models with different bracing patterns; the loading influence of the aspect ratio of the tank; and the clearance height of the tank on the structural members. Wind loads, as the variable that results in the highest failure rate of cantilevered lattice steel tower structures, require greater understanding. This study aims to contribute towards the design process of elevated steel tanks with lattice tower supporting structures.

Keywords: aspect ratio, bracing patterns, clearance height, elevated steel tanks, lattice steel tower, wind loads

Procedia PDF Downloads 151
148 Impact of U.S. Insurance Reimbursement Policy on Healthcare Business and Entrepreneurship

Authors: Iris Xiaohong Quan, Sharon Qi, Kelly Tianqin Shi

Abstract:

This study focuses on the critical role of insurance policies in a world grappling with increasing mental health challenges, as they significantly influence the dynamics of healthcare businesses and entrepreneurial ventures. The paper utilizes the mental health sector as a case to examine the impact of insurance policies on healthcare service providers, entrepreneurs, and individuals seeking mental health support. This paper addressed the following research questions: To what extent do changes in insurance reimbursement policies affect the accessibility and affordability of mental health services for patients, and how does this impact the overall demand for such services? What are the barriers and opportunities that mental health entrepreneurs face and what strategies and adaptations do mental health businesses employ when navigating the evolving landscape of insurance reimbursement policies? How do changes in insurance reimbursement policies, specifically related to mental health services, influence the financial viability and sustainability of mental health clinics and private practices? Employing a self-designed survey aimed at autism spectrum disorder (ASD) treatment companies, alongside two in-depth case studies and an analysis of pertinent insurance policies and documents, this research aims to elucidate the multifaceted influence of insurance policies on the mental health industry. The findings from this study reveal how insurance policies shape the landscape of mental health businesses and their operations. A total of 821 autism treatment organizations or offices were contacted by telephone between November 1, 2019, and January 31, 2020. About half of the offices (53.33%) were established in the past five years, and 80% were established in the past 15 years. There is a significant increase in the establishment of ABA service centers in the recent two decades as a result of autism insurance reform, the increasing social awareness of ASD, and the redefinition of autism. In addition, almost half of the ABA service providers we surveyed had a patient size ranging from 20 to 50 in the year when the residence state passed the legislation for autism insurance coverage. On average, an ABA service provider works with 5.3 insurance companies. This research find that insurance is the main source of revenue for most ABA service providers. However, our survey reveals that clients’ out of pocket payment has been the second main revenue sources. Despite the changes of regulations and insurance policies in all states, clients still have to pay a fraction of, if not all, the ABA treatment service fees out of pocket. This research shows that some ABA service providers seek federal and government funds and grants to support their services and businesses. Our further analysis with the in-depth case studies and other secondary data also indicate the rise of entrepreneurial startups in the mental health industry. Overall, this research sheds light on both the challenges and opportunities presented by insurance policies in the mental health sector, offering insights into the new industry landscape.

Keywords: entrepreneurship, healthcare policy, insurance policy, mental health industry

Procedia PDF Downloads 57