Search results for: Vehicle Color Recognition
1987 Quality Control of Automotive Gearbox Based On Vibration Signal Analysis
Authors: Nilson Barbieri, Bruno Matos Martins, Gabriel de Sant'Anna Vitor Barbieri
Abstract:
In more complex systems, such as automotive gearbox, a rigorous treatment of the data is necessary because there are several moving parts (gears, bearings, shafts, etc.), and in this way, there are several possible sources of errors and also noise. The basic objective of this work is the detection of damage in automotive gearbox. The detection methods used are the wavelet method, the bispectrum; advanced filtering techniques (selective filtering) of vibrational signals and mathematical morphology. Gearbox vibration tests were performed (gearboxes in good condition and with defects) of a production line of a large vehicle assembler. The vibration signals are obtained using five accelerometers in different positions of the sample. The results obtained using the kurtosis, bispectrum, wavelet and mathematical morphology showed that it is possible to identify the existence of defects in automotive gearboxes.Keywords: automotive gearbox, mathematical morphology, wavelet, bispectrum
Procedia PDF Downloads 4751986 Use of Socially Assistive Robots in Early Rehabilitation to Promote Mobility for Infants with Motor Delays
Authors: Elena Kokkoni, Prasanna Kannappan, Ashkan Zehfroosh, Effrosyni Mavroudi, Kristina Strother-Garcia, James C. Galloway, Jeffrey Heinz, Rene Vidal, Herbert G. Tanner
Abstract:
Early immobility affects the motor, cognitive, and social development. Current pediatric rehabilitation lacks the technology that will provide the dosage needed to promote mobility for young children at risk. The addition of socially assistive robots in early interventions may help increase the mobility dosage. The aim of this study is to examine the feasibility of an early intervention paradigm where non-walking infants experience independent mobility while socially interacting with robots. A dynamic environment is developed where both the child and the robot interact and learn from each other. The environment involves: 1) a range of physical activities that are goal-oriented, age-appropriate, and ability-matched for the child to perform, 2) the automatic functions that perceive the child’s actions through novel activity recognition algorithms, and decide appropriate actions for the robot, and 3) a networked visual data acquisition system that enables real-time assessment and provides the means to connect child behavior with robot decision-making in real-time. The environment was tested by bringing a two-year old boy with Down syndrome for eight sessions. The child presented delays throughout his motor development with the current being on the acquisition of walking. During the sessions, the child performed physical activities that required complex motor actions (e.g. climbing an inclined platform and/or staircase). During these activities, a (wheeled or humanoid) robot was either performing the action or was at its end point 'signaling' for interaction. From these sessions, information was gathered to develop algorithms to automate the perception of activities which the robot bases its actions on. A Markov Decision Process (MDP) is used to model the intentions of the child. A 'smoothing' technique is used to help identify the model’s parameters which are a critical step when dealing with small data sets such in this paradigm. The child engaged in all activities and socially interacted with the robot across sessions. With time, the child’s mobility was increased, and the frequency and duration of complex and independent motor actions were also increased (e.g. taking independent steps). Simulation results on the combination of the MDP and smoothing support the use of this model in human-robot interaction. Smoothing facilitates learning MDP parameters from small data sets. This paradigm is feasible and provides an insight on how social interaction may elicit mobility actions suggesting a new early intervention paradigm for very young children with motor disabilities. Acknowledgment: This work has been supported by NIH under grant #5R01HD87133.Keywords: activity recognition, human-robot interaction, machine learning, pediatric rehabilitation
Procedia PDF Downloads 2921985 The Role of Facades in Conserving the Image of the City
Authors: Hemadri Raut
Abstract:
The city is a blend of the possible interactions of the built form, open spaces and their spatial organization layout in a geographical area to obtain an integrated pattern and environment with building facades being a dominant figure in the body of a city. Façades of each city have their own inherent properties responsive to the human behaviour, weather conditions, safety factors, material availability and composition along with the necessary aesthetics in coordination with adjacent building facades. Cities experience a huge transformation in the culture, lifestyle; socioeconomic conditions and technology nowadays because of the increasing population, urban sprawl, industrialization, contemporary architectural style, post-disaster consequences, war reconstructions, etc. This leads to the loss of the actual identity and architectural character of the city which in turn induces chaos and turbulence in the city. This paper attempts to identify and learn from the traditional elements that would make us more aware of the unique identity of the local communities in a city. It further studies the architectural style, color, shape, and design techniques through the case studies of contextual cities. The work focuses on the observation and transformation of the image of the city through these considerations in the designing of the facades to achieve the reconciliation of the people with urban spaces.Keywords: building facades, city, community, heritage, identity, transformation, urban
Procedia PDF Downloads 2161984 Development of Intelligent Construction Management System Using Web-Camera Image and 3D Object Image
Authors: Hyeon-Seung Kim, Bit-Na Cho, Tae-Woon Jeong, Soo-Young Yoon, Leen-Seok Kang
Abstract:
Recently, a construction project has been large in the size and complicated in the site work. The web-cameras are used to manage the construction site of such a large construction project. They can be used for monitoring the construction schedule as compared to the actual work image of the planned work schedule. Specially, because the 4D CAD system that the construction appearance is continually simulated in a 3D CAD object by work schedule is widely applied to the construction project, the comparison system between the real image of actual work appearance by web-camera and the simulated image of planned work appearance by 3D CAD object can be an intelligent construction schedule management system (ICON). The delayed activities comparing with the planned schedule can be simulated by red color in the ICON as a virtual reality object. This study developed the ICON and it was verified in a real bridge construction project in Korea. To verify the developed system, a web-camera was installed and operated in a case project for a month. Because the angle and zooming of the web-camera can be operated by Internet, a project manager can easily monitor and assume the corrective action.Keywords: 4D CAD, web-camera, ICON (intelligent construction schedule management system), 3D object image
Procedia PDF Downloads 5071983 Construction Sustainability Improvement through Using Recycled Aggregates in Concrete Production
Authors: Zhiqiang Zhu, Khalegh Barati, Xuesong Shen
Abstract:
Due to the energy consumption caused by the construction industry, the public is paying more and more attention to the sustainability of the buildings. With the advancement of research on recycled aggregates, it has become possible to replace natural aggregates with recycled aggregates and to achieve a reduction in energy consumption of materials during construction. The purpose of this paper is to quantitatively compare the emergy consumption of natural aggregate concrete (NAC) and recycled aggregate concrete (RAC). To do so, the emergy analysis method is adopted. Using this technique, it can effectively analyze different forms of energy and substance. The main analysis object is the direct and indirect emergy consumption of the stages in concrete production. Therefore, for indirect energy, consumption of production machinery and transportation vehicle also need to be considered. Finally, the emergy values required to produce the two concrete types are compared to analyze whether the RAC can reduce emergy consumption.Keywords: sustainable construction, NAC, RAC, emergy, concrete
Procedia PDF Downloads 1501982 A Deep Reinforcement Learning-Based Secure Framework against Adversarial Attacks in Power System
Authors: Arshia Aflaki, Hadis Karimipour, Anik Islam
Abstract:
Generative Adversarial Attacks (GAAs) threaten critical sectors, ranging from fingerprint recognition to industrial control systems. Existing Deep Learning (DL) algorithms are not robust enough against this kind of cyber-attack. As one of the most critical industries in the world, the power grid is not an exception. In this study, a Deep Reinforcement Learning-based (DRL) framework assisting the DL model to improve the robustness of the model against generative adversarial attacks is proposed. Real-world smart grid stability data, as an IIoT dataset, test our method and improves the classification accuracy of a deep learning model from around 57 percent to 96 percent.Keywords: generative adversarial attack, deep reinforcement learning, deep learning, IIoT, generative adversarial networks, power system
Procedia PDF Downloads 371981 An Evolutionary Algorithm for Optimal Fuel-Type Configurations in Car Lines
Authors: Charalampos Saridakis, Stelios Tsafarakis
Abstract:
Although environmental concern is on the rise across Europe, current market data indicate that adoption rates of environmentally friendly vehicles remain extremely low. Against this background, the aim of this paper is to a) assess preferences of European consumers for clean-fuel cars and their characteristics and b) design car lines that optimize the combination of fuel types among models in the line-up. In this direction, the authors introduce a new evolutionary mechanism and implement it to stated-preference data derived from a large-scale choice-based conjoint experiment that measures consumer preferences for various factors affecting clean-fuel vehicle (CFV) adoption. The proposed two-step methodology provides interesting insights into how new and existing fuel-types can be combined in a car line that maximizes customer satisfaction.Keywords: clean-fuel vehicles, product line design, conjoint analysis, choice experiment, differential evolution
Procedia PDF Downloads 2791980 Analysis of Formation Methods of Range Profiles for an X-Band Coastal Surveillance Radar
Authors: Nguyen Van Loi, Le Thanh Son, Tran Trung Kien
Abstract:
The paper deals with the problem of the formation of range profiles (RPs) for an X-band coastal surveillance radar. Two popular methods, the difference operator method, and the window-based method, are reviewed and analyzed via two tests with different datasets. The test results show that although the original window-based method achieves a better performance than the difference operator method, it has three main drawbacks that are the use of 3 or 4 peaks of an RP for creating the windows, the extension of the window size using the power sum of three adjacent cells in the left and the right sides of the windows and the same threshold applied for all types of vessels to finish the formation process of RPs. These drawbacks lead to inaccurate RPs due to the low signal-to-clutter ratio. Therefore, some suggestions are proposed to improve the original window-based method.Keywords: range profile, difference operator method, window-based method, automatic target recognition
Procedia PDF Downloads 1271979 The Industrial Property in the Context of Wine Production in Brazil
Authors: Fátima R. Zan, Daniela C. Guimarães, Rosângela O. Soares, Suzana L. Russo
Abstract:
The wine until it reaches the consumer has a long way to go, from planting the wine to the bottling and the placing on the market, bringing many years of experimentation, and through several generations to have recognition for quality and excellence. The winemaking grew dramatically and are today many brands, including the associated locations, demonstrating their origin and cultural order that is associated with their production. The production, circulation and marketing of wines and products of grape and wine in Brazil is regulated by Law 7.678/88, amended by Law 10970/04, and adjusting the legislation to Regulation Wine Mercosur. This study was based on a retrospective study, and aimed to identify and characterize the modalities of industrial property used in wine production in Brazil. The wineries were selected from the 2014 ranking list, drawn up by the World Association of Journalists and Writers of Wines and Spirits (WAWWJ). The results show that the registration with INPI, regarding Patents, Trademarks, Industrial Designs and Geographical Indications, is not used by the wineries analyzed.Keywords: counterfeiting, industrial property, protection, wine production
Procedia PDF Downloads 5731978 A Cross-Dialect Statistical Analysis of Final Declarative Intonation in Tuvinian
Authors: D. Beziakina, E. Bulgakova
Abstract:
This study continues the research on Tuvinian intonation and presents a general cross-dialect analysis of intonation of Tuvinian declarative utterances, specifically the character of the tone movement in order to test the hypothesis about the prevalence of level tone in some Tuvinian dialects. The results of the analysis of basic pitch characteristics of Tuvinian speech (in general and in comparison with two other Turkic languages - Uzbek and Azerbaijani) are also given in this paper. The goal of our work was to obtain the ranges of pitch parameter values typical for Tuvinian speech. Such language-specific values can be used in speaker identification systems in order to get more accurate results of ethnic speech analysis. We also present the results of a cross-dialect analysis of declarative intonation in the poorly studied Tuvinian language.Keywords: speech analysis, statistical analysis, speaker recognition, identification of person
Procedia PDF Downloads 4701977 Analysis of Efficiency Production of Grass Black Jelly (Mesona palustris) in Double Scale
Authors: Irvan Adhin Cholilie, Susinggih Wijana, Yusron Sugiarto
Abstract:
The aim of this research is to compare the results of black grass jelly produced using laboratory scale and double scale. In this research, the production from the laboratory scale is using ingredients of 1 kg black grass jelly added with 5 liters of water, while the double scale is using 5 kg black grass jelly and 75 liters of water. The results of organoleptic tests performed by 30 panelists (general) to the sample gels of grass black powder produced from both of laboratory and double scale are not different significantly in color, odor, flavor, and texture. Proximate test results conducted in both of grass black jelly powder produced in laboratory scale and double scale also have no significant differences in all parameters. Grass black jelly powder from double scale contains water, carbohydrate, crude fiber, and yield in the amount of 12,25 %; 43,7 %; 5,89 %; and 16,28 % respectively. The results of the energy efficiency analysis by boiling, draining, evaporation, drying, and milling processes are 85,11 %; 76,97 %; 99,64 %; 99,99% and 99,39% respectively. The utility needs including water needs for each batch amounted 0.1 m3 and cost Rp 220,5 per batch, the electricity needs for each batch is 20.01 kWh and cost Rp 18569.28 per batch, and LPG needs for each batch is 30 kg costed Rp 234,000.00 so that the total cost spent for the process is Rp 252,789.78 .Keywords: black grass jelly, powder, mass balance, energy balance, cost
Procedia PDF Downloads 3851976 Harmonic Distortion Caused by Electric Bus Battery Charger in Alexandria Distribution System
Authors: Mohamed Elhosieny Aly Ismail
Abstract:
The paper illustrates the total voltage and current harmonic distortion impact caused by fast-charging an electric bus and maintaining standard limit compliance. Measuring the current harmonic level in the range of 2 kHz-9 kHz. Also, the impact of the total demand distortions current caused by fast charger electric bus on the utility by measuring at the point of common coupling and comparing the measurement with IEEE519 -2014 standard. The results show that the total harmonic current distortion for the charger is within the limits of IEC 61000-3-12 and the fifth harmonic current was the most dominant frequency then the seventh harmonic current. The harmonic current in the range of 2 kHz- 9 kHz shows the frequency 5.1kHz is the most dominant frequency.Keywords: electric vehicle, total harmonic distortion, IEEE519-2014, IEC 61000-3-12, super harmonic distortion
Procedia PDF Downloads 1011975 Comparison of the Oxidative Stability of Chinese Vegetable Oils during Repeated Deep-Frying of French Fries
Authors: TranThi Ly, Ligang Yang, Hechun Liu, Dengfeng Xu, Haiteng Zhou, Shaokang Wang, Shiqing Chen, Guiju Sun
Abstract:
This study aims to evaluate the oxidative stability of Chinese vegetable oils during repeated deep-frying. For frying media, palm oil (PO), sunflower oil (SFO), soybean oil (SBO), and canola oil (CO) were used. French fries were fried in oils heated to 180 ± 50℃. The temperature was kept constant during the eight h of the frying process. The oil quality was measured according to the fatty acid (FA) content, trans fatty acid (TFA) compounds, and chemical properties such as peroxide value (PV), acid value (AV), anisidine value (AnV), and malondialdehyde (MDA). Additionally, the sensory characteristics such as color, flavor, greasiness, crispiness, and overall acceptability of the French fries were assessed. Results showed that the PV, AV, AnV, MDA, and TFA content of SFO, CO, and SBO significantly increased in conjunction with prolonged frying time. During the deep-frying process, the SBO showed the lowest oxidative stability at all indices, while PO retained oxidative stability and generated the lowest level of TFA. The French fries fried in PO also offered better sensory properties than the other oils. Therefore, results regarding oxidative stability and sensory attributes suggested that among the examined vegetable oils, PO appeared to be the best oil for frying food products.Keywords: vegetable oils, French fries, oxidative stability, sensory properties, frying oil
Procedia PDF Downloads 1171974 Auditing Hindi Celluloid as a Catalyst of Transition: The Eventual Delineation of LGBTQ+
Authors: Chinmayee Nanda
Abstract:
In this modern era, India is still chained up with the idea of ‘Heteronormativity’. As a result, homonormativity, transgressions, preconceived notions, and bigotry add to many raised eyebrows, the majority being the norm and overpowering the voices of the minority. In this country an undeniable space is the need of the hour to identify those unheard voices. Media can be considered as the most powerful space for the same. This paper aims to examine the representation as well as transition (if any) of the varied figments of the imagination and alternative facts relating to the LGBTQ+ community in celluloid in Hindi. This paper will also explore the visibility of the queer aspirations through this media. The portrayal of the LGBTQ community as the ‘other’ and ‘not normal’ is a matter of concern about any individual’s sexuality. The years 2014 and 2018 turned out to be remarkable in the Indian Legal System pertaining to the recognition of the ‘Third Gender’ and ‘Decriminalization of Homosexuality,’ respectively. In relation to that, this paper will also explore the impression of these dynamics on the subsequent depiction.Keywords: sexuality, hindi cinema, gender fluidity, legal framework
Procedia PDF Downloads 271973 A Consideration on the Offset Frontal Impact Modeling Using Spring-Mass Model
Authors: Jaemoon Lim
Abstract:
To construct the lumped spring-mass model considering the occupants for the offset frontal crash, the SISAME software and the NHTSA test data were used. The data on 56 kph 40% offset frontal vehicle to deformable barrier crash test of a MY2007 Mazda 6 4-door sedan were obtained from NHTSA test database. The overall behaviors of B-pillar and engine of simulation models agreed very well with the test data. The trends of accelerations at the driver and passenger head were similar but big differences in peak values. The differences of peak values caused the large errors of the HIC36 and 3 ms chest g’s. To predict well the behaviors of dummies, the spring-mass model for the offset frontal crash needs to be improved.Keywords: chest g’s, HIC36, lumped spring-mass model, offset frontal impact, SISAME
Procedia PDF Downloads 4571972 Three-Dimensional Off-Line Path Planning for Unmanned Aerial Vehicle Using Modified Particle Swarm Optimization
Authors: Lana Dalawr Jalal
Abstract:
This paper addresses the problem of offline path planning for Unmanned Aerial Vehicles (UAVs) in complex three-dimensional environment with obstacles, which is modelled by 3D Cartesian grid system. Path planning for UAVs require the computational intelligence methods to move aerial vehicles along the flight path effectively to target while avoiding obstacles. In this paper Modified Particle Swarm Optimization (MPSO) algorithm is applied to generate the optimal collision free 3D flight path for UAV. The simulations results clearly demonstrate effectiveness of the proposed algorithm in guiding UAV to the final destination by providing optimal feasible path quickly and effectively.Keywords: obstacle avoidance, particle swarm optimization, three-dimensional path planning unmanned aerial vehicles
Procedia PDF Downloads 4101971 Myth in Political Discourse as a Form of Linguistic Consciousness
Authors: Kuralay Kenzhekanova, Akmaral Dalelbekkyzy
Abstract:
The article is devoted to the problem of political discourse and its reflection on mass cognition. This article is dedicated to describe the myth as one of the main features of political discourse. The dominance of an expressional and emotional component in the myth is shown. Precedent phenomenon plays an important role in distinguishing the myth from the linguistic point of view. Precedent phenomena show the linguistic cognition, which is characterized by their fame and recognition. Four types of myths such as master myths, a foundation myth, sustaining myth, eschatological myths are observed. The myths about the national idea are characterized by national specificity. The main aim of the political discourse with the help of myths is to influence on the mass consciousness in order to motivate the addressee to certain actions so that the target purpose is reached owing to unity of forces.Keywords: cognition, myth, linguistic consciousness, types of myths, political discourse, political myth, precedent phenomena
Procedia PDF Downloads 4141970 Vibration and Freeze-Thaw Cycling Tests on Fuel Cells for Automotive Applications
Authors: Gema M. Rodado, Jose M. Olavarrieta
Abstract:
Hydrogen fuel cell technologies have experienced a great boost in the last decades, significantly increasing the production of these devices for both stationary and portable (mainly automotive) applications; these are influenced by two main factors: environmental pollution and energy shortage. A fuel cell is an electrochemical device that converts chemical energy directly into electricity by using hydrogen and oxygen gases as reactive components and obtaining water and heat as byproducts of the chemical reaction. Fuel cells, specifically those of Proton Exchange Membrane (PEM) technology, are considered an alternative to internal combustion engines, mainly because of the low emissions they produce (almost zero), high efficiency and low operating temperatures (< 373 K). The introduction and use of fuel cells in the automotive market requires the development of standardized and validated procedures to test and evaluate their performance in different environmental conditions including vibrations and freeze-thaw cycles. These situations of vibration and extremely low/high temperatures can affect the physical integrity or even the excellent operation or performance of the fuel cell stack placed in a vehicle in circulation or in different climatic conditions. The main objective of this work is the development and validation of vibration and freeze-thaw cycling test procedures for fuel cell stacks that can be used in a vehicle in order to consolidate their safety, performance, and durability. In this context, different experimental tests were carried out at the facilities of the National Hydrogen Centre (CNH2). The experimental equipment used was: A vibration platform (shaker) for vibration test analysis on fuel cells in three axes directions with different vibration profiles. A walk-in climatic chamber to test the starting, operating, and stopping behavior of fuel cells under defined extreme conditions. A test station designed and developed by the CNH2 to test and characterize PEM fuel cell stacks up to 10 kWe. A 5 kWe PEM fuel cell stack in off-operation mode was used to carry out two independent experimental procedures. On the one hand, the fuel cell was subjected to a sinusoidal vibration test on the shaker in the three axes directions. It was defined by acceleration and amplitudes in the frequency range of 7 to 200 Hz for a total of three hours in each direction. On the other hand, the climatic chamber was used to simulate freeze-thaw cycles by defining a temperature range between +313 K and -243 K with an average relative humidity of 50% and a recommended ramp up and rump down of 1 K/min. The polarization curve and gas leakage rate were determined before and after the vibration and freeze-thaw tests at the fuel cell stack test station to evaluate the robustness of the stack. The results were very similar, which indicates that the tests did not affect the fuel cell stack structure and performance. The proposed procedures were verified and can be used as an initial point to perform other tests with different fuel cells.Keywords: climatic chamber, freeze-thaw cycles, PEM fuel cell, shaker, vibration tests
Procedia PDF Downloads 1171969 Geographical Data Visualization Using Video Games Technologies
Authors: Nizar Karim Uribe-Orihuela, Fernando Brambila-Paz, Ivette Caldelas, Rodrigo Montufar-Chaveznava
Abstract:
In this paper, we present the advances corresponding to the implementation of a strategy to visualize geographical data using a Software Development Kit (SDK) for video games. We use multispectral images from Landsat 7 platform and Laser Imaging Detection and Ranging (LIDAR) data from The National Institute of Geography and Statistics of Mexican (INEGI). We select a place of interest to visualize from Landsat platform and make some processing to the image (rotations, atmospheric correction and enhancement). The resulting image will be our gray scale color-map to fusion with the LIDAR data, which was selected using the same coordinates than in Landsat. The LIDAR data is translated to 8-bit raw data. Both images are fused in a software developed using Unity (an SDK employed for video games). The resulting image is then displayed and can be explored moving around. The idea is the software could be used for students of geology and geophysics at the Engineering School of the National University of Mexico. They will download the software and images corresponding to a geological place of interest to a smartphone and could virtually visit and explore the site with a virtual reality visor such as Google cardboard.Keywords: virtual reality, interactive technologies, geographical data visualization, video games technologies, educational material
Procedia PDF Downloads 2461968 The Twin Terminal of Pedestrian Trajectory Based on City Intelligent Model (CIM) 4.0
Authors: Chen Xi, Liu Xuebing, Lao Xueru, Kuan Sinman, Jiang Yike, Wang Hanwei, Yang Xiaolang, Zhou Junjie, Xie Jinpeng
Abstract:
To further promote the development of smart cities, the microscopic "nerve endings" of the City Intelligent Model (CIM) are extended to be more sensitive. In this paper, we develop a pedestrian trajectory twin terminal based on the CIM and CNN technology. It also uses 5G networks, architectural and geoinformatics technologies, convolutional neural networks, combined with deep learning networks for human behavior recognition models, to provide empirical data such as 'pedestrian flow data and human behavioral characteristics data', and ultimately form spatial performance evaluation criteria and spatial performance warning systems, to make the empirical data accurate and intelligent for prediction and decision making.Keywords: urban planning, urban governance, CIM, artificial intelligence, sustainable development
Procedia PDF Downloads 4191967 Induction Motor Eccentricity Fault Recognition Using Rotor Slot Harmonic with Stator Current Technique
Authors: Nouredine Benouzza, Ahmed Hamida Boudinar, Azeddine Bendiabdellah
Abstract:
An algorithm for Eccentricity Fault Detection (EFD) applied to a squirrel cage induction machine is proposed in this paper. This algorithm employs the behavior of the stator current spectral analysis and the localization of the Rotor Slot Harmonic (RSH) frequency to detect eccentricity faults in three phase induction machine. The RHS frequency once obtained is used as a key parameter into a simple developed expression to directly compute the eccentricity fault frequencies in the induction machine. Experimental tests performed for both a healthy motor and a faulty motor with different eccentricity fault severities illustrate the effectiveness and merits of the proposed EFD algorithm.Keywords: squirrel cage motor, diagnosis, eccentricity faults, current spectral analysis, rotor slot harmonic
Procedia PDF Downloads 4891966 A Semiparametric Approach to Estimate the Mode of Continuous Multivariate Data
Authors: Tiee-Jian Wu, Chih-Yuan Hsu
Abstract:
Mode estimation is an important task, because it has applications to data from a wide variety of sources. We propose a semi-parametric approach to estimate the mode of an unknown continuous multivariate density function. Our approach is based on a weighted average of a parametric density estimate using the Box-Cox transform and a non-parametric kernel density estimate. Our semi-parametric mode estimate improves both the parametric- and non-parametric- mode estimates. Specifically, our mode estimate solves the non-consistency problem of parametric mode estimates (at large sample sizes) and reduces the variability of non-parametric mode estimates (at small sample sizes). The performance of our method at practical sample sizes is demonstrated by simulation examples and two real examples from the fields of climatology and image recognition.Keywords: Box-Cox transform, density estimation, mode seeking, semiparametric method
Procedia PDF Downloads 2851965 Roasting Process of Sesame Seeds Modelling Using Gene Expression Programming: A Comparative Analysis with Response Surface Methodology
Authors: Alime Cengiz, Talip Kahyaoglu
Abstract:
Roasting process has the major importance to obtain desired aromatic taste of nuts. In this study, two kinds of roasting process were applied to hulled sesame seeds - vacuum oven and hot air roasting. Efficiency of Gene Expression Programming (GEP), a new soft computing technique of evolutionary algorithm that describes the cause and effect relationships in the data modelling system, and response surface methodology (RSM) were examined in the modelling of roasting processes over a range of temperature (120-180°C) for various times (30-60 min). Color attributes (L*, a*, b*, Browning Index (BI)), textural properties (hardness and fracturability) and moisture content were evaluated and modelled by RSM and GEP. The GEP-based formulations and RSM approach were compared with experimental results and evaluated according to correlation coefficients. The results showed that both GEP and RSM were found to be able to adequately learn the relation between roasting conditions and physical and textural parameters of roasted seeds. However, GEP had better prediction performance than the RSM with the high correlation coefficients (R2 >0.92) for the all quality parameters. This result indicates that the soft computing techniques have better capability for describing the physical changes occuring in sesame seeds during roasting process.Keywords: genetic expression programming, response surface methodology, roasting, sesame seed
Procedia PDF Downloads 4181964 Statistical Wavelet Features, PCA, and SVM-Based Approach for EEG Signals Classification
Authors: R. K. Chaurasiya, N. D. Londhe, S. Ghosh
Abstract:
The study of the electrical signals produced by neural activities of human brain is called Electroencephalography. In this paper, we propose an automatic and efficient EEG signal classification approach. The proposed approach is used to classify the EEG signal into two classes: epileptic seizure or not. In the proposed approach, we start with extracting the features by applying Discrete Wavelet Transform (DWT) in order to decompose the EEG signals into sub-bands. These features, extracted from details and approximation coefficients of DWT sub-bands, are used as input to Principal Component Analysis (PCA). The classification is based on reducing the feature dimension using PCA and deriving the support-vectors using Support Vector Machine (SVM). The experimental are performed on real and standard dataset. A very high level of classification accuracy is obtained in the result of classification.Keywords: discrete wavelet transform, electroencephalogram, pattern recognition, principal component analysis, support vector machine
Procedia PDF Downloads 6391963 Effects of Boiling Temperature and Time on Colour, Texture and Sensory Properties of Volutharpa ampullacea perryi Meat
Authors: Xianbao Sun, Jinlong Zhao, Shudong He, Jing Li
Abstract:
Volutharpa ampullacea perryi is a high-protein marine shellfish. However, few data are available on the effects of boiling temperatures and time on quality of the meat. In this study, colour, texture and sensory characteristics of Volutharpa ampullacea perryi meat during the boiling cooking processes (75-100 °C, 5-60 min) were investigated by colors analysis, texture profile analysis (TPA), scanning electron microscope (SEM) and sensory evaluation. The ratio of cooking loss gradually increased with the increase of temperature and time. The colour of meat became lighter and more yellower from 85 °C to 95 °C in a short time (5-20 min), but it became brown after a 30 min treatment. TPA results showed that the Volutharpa ampullacea perryi meat were more firm and less cohesive after a higher temperature (95-100 °C) treatment even in a short period (5-15 min). Based on the SEM analysis, it was easily found that the myofibrils structure was destroyed at a higher temperature (85-100 °C). Sensory data revealed that the meat cooked at 85-90 °C in 10-20 min showed higher scores in overall acceptance, as well as color, hardness and taste. Based on these results, it could be constructed that Volutharpa ampullacea perryi meat should be heated on a suitable condition (such as 85 °C 15 min or 90 °C 10 min) in the boiling cooking to be ensure a better acceptability.Keywords: Volutharpa ampullacea perryi meat, boiling cooking, colour, sensory, texture
Procedia PDF Downloads 2811962 An Overall Evaluation of Food Nanotechnology
Authors: Raana Babadi Fathipour
Abstract:
Nourishment nanotechnology is an range of rising intrigued and opens up a entirety universe of modern conceivable outcomes for the nourishment industry. The essential categories of nanotechnology applications and functionalities right now within the improvement of nourishment bundling incorporate: the enhancement of plastic materials obstructions, the consolidation of dynamic components that can convey utilitarian properties past those of customary dynamic bundling, and the detecting and signaling of significant data. Nano nourishment bundling materials may amplify nourishment life, move forward nourishment security, alarm buyers that nourishment is sullied or ruined, repair tears in bundling, and indeed release preservatives to expand the life of the nourishment within the bundle. Nanotechnology applications within the nourishment industry can be utilized to identify microbes in bundling, or produce stronger flavors and color quality, and security by expanding the obstruction properties. Nanotechnology holds extraordinary guarantee to supply benefits not fair inside nourishment items but too around nourishment items. In reality, nanotechnology presents modern chances for advancement within the nourishment industry at monstrous speed, but instability and wellbeing concerns are moreover developing. EU/WE/global enactment for the direction of nanotechnology in nourishment are scanty. Besides, current enactment shows up unacceptable to nanotechnology specificity.Keywords: nano technology, nano foods, food packaging, nano participle
Procedia PDF Downloads 651961 The Urban Stray Animal Identification Management System Based on YOLOv5
Authors: Chen Xi, Kuan Sinman, LI Haofeng, Huang Hongming, Zeng Chengyu, Tong Zhiyuan
Abstract:
Stray animals are on the rise in mainland China's cities. There are legal reasons for this, namely the lack of protection for domestic pets in mainland China, where only wildlife protection laws exist. At a social level, the ease with which families adopt pets and the lack of a social view of animal nature has led to the frequent abandonment and loss of stray animals. If left unmanaged, conflicts between humans and stray animals can also increase. This project provides an inexpensive and widely applicable management tool for urban management by collecting videos and pictures of stray animals captured by surveillance or transmitted by humans and using artificial intelligence technology (mainly using YOLOv5 recognition technology) and recording and managing them in a database.Keywords: urban planning, urban governance, artificial intelligence, convolutional neural network
Procedia PDF Downloads 1041960 Establishment of Precision System for Underground Facilities Based on 3D Absolute Positioning Technology
Authors: Yonggu Jang, Jisong Ryu, Woosik Lee
Abstract:
The study aims to address the limitations of existing underground facility exploration equipment in terms of exploration depth range, relative depth measurement, data processing time, and human-centered ground penetrating radar image interpretation. The study proposed the use of 3D absolute positioning technology to develop a precision underground facility exploration system. The aim of this study is to establish a precise exploration system for underground facilities based on 3D absolute positioning technology, which can accurately survey up to a depth of 5m and measure the 3D absolute location of precise underground facilities. The study developed software and hardware technologies to build the precision exploration system. The software technologies developed include absolute positioning technology, ground surface location synchronization technology of GPR exploration equipment, GPR exploration image AI interpretation technology, and integrated underground space map-based composite data processing technology. The hardware systems developed include a vehicle-type exploration system and a cart-type exploration system. The data was collected using the developed exploration system, which employs 3D absolute positioning technology. The GPR exploration images were analyzed using AI technology, and the three-dimensional location information of the explored precise underground facilities was compared to the integrated underground space map. The study successfully developed a precision underground facility exploration system based on 3D absolute positioning technology. The developed exploration system can accurately survey up to a depth of 5m and measure the 3D absolute location of precise underground facilities. The system comprises software technologies that build a 3D precise DEM, synchronize the GPR sensor's ground surface 3D location coordinates, automatically analyze and detect underground facility information in GPR exploration images and improve accuracy through comparative analysis of the three-dimensional location information, and hardware systems, including a vehicle-type exploration system and a cart-type exploration system. The study's findings and technological advancements are essential for underground safety management in Korea. The proposed precision exploration system significantly contributes to establishing precise location information of underground facility information, which is crucial for underground safety management and improves the accuracy and efficiency of exploration. The study addressed the limitations of existing equipment in exploring underground facilities, proposed 3D absolute positioning technology-based precision exploration system, developed software and hardware systems for the exploration system, and contributed to underground safety management by providing precise location information. The developed precision underground facility exploration system based on 3D absolute positioning technology has the potential to provide accurate and efficient exploration of underground facilities up to a depth of 5m. The system's technological advancements contribute to the establishment of precise location information of underground facility information, which is essential for underground safety management in Korea.Keywords: 3D absolute positioning, AI interpretation of GPR exploration images, complex data processing, integrated underground space maps, precision exploration system for underground facilities
Procedia PDF Downloads 621959 Contribution to the Study of Automatic Epileptiform Pattern Recognition in Long Term EEG Signals
Authors: Christine F. Boos, Fernando M. Azevedo
Abstract:
Electroencephalogram (EEG) is a record of the electrical activity of the brain that has many applications, such as monitoring alertness, coma and brain death; locating damaged areas of the brain after head injury, stroke and tumor; monitoring anesthesia depth; researching physiology and sleep disorders; researching epilepsy and localizing the seizure focus. Epilepsy is a chronic condition, or a group of diseases of high prevalence, still poorly explained by science and whose diagnosis is still predominantly clinical. The EEG recording is considered an important test for epilepsy investigation and its visual analysis is very often applied for clinical confirmation of epilepsy diagnosis. Moreover, this EEG analysis can also be used to help define the types of epileptic syndrome, determine epileptiform zone, assist in the planning of drug treatment and provide additional information about the feasibility of surgical intervention. In the context of diagnosis confirmation the analysis is made using long term EEG recordings with at least 24 hours long and acquired by a minimum of 24 electrodes in which the neurophysiologists perform a thorough visual evaluation of EEG screens in search of specific electrographic patterns called epileptiform discharges. Considering that the EEG screens usually display 10 seconds of the recording, the neurophysiologist has to evaluate 360 screens per hour of EEG or a minimum of 8,640 screens per long term EEG recording. Analyzing thousands of EEG screens in search patterns that have a maximum duration of 200 ms is a very time consuming, complex and exhaustive task. Because of this, over the years several studies have proposed automated methodologies that could facilitate the neurophysiologists’ task of identifying epileptiform discharges and a large number of methodologies used neural networks for the pattern classification. One of the differences between all of these methodologies is the type of input stimuli presented to the networks, i.e., how the EEG signal is introduced in the network. Five types of input stimuli have been commonly found in literature: raw EEG signal, morphological descriptors (i.e. parameters related to the signal’s morphology), Fast Fourier Transform (FFT) spectrum, Short-Time Fourier Transform (STFT) spectrograms and Wavelet Transform features. This study evaluates the application of these five types of input stimuli and compares the classification results of neural networks that were implemented using each of these inputs. The performance of using raw signal varied between 43 and 84% efficiency. The results of FFT spectrum and STFT spectrograms were quite similar with average efficiency being 73 and 77%, respectively. The efficiency of Wavelet Transform features varied between 57 and 81% while the descriptors presented efficiency values between 62 and 93%. After simulations we could observe that the best results were achieved when either morphological descriptors or Wavelet features were used as input stimuli.Keywords: Artificial neural network, electroencephalogram signal, pattern recognition, signal processing
Procedia PDF Downloads 5281958 Adaptive Few-Shot Deep Metric Learning
Authors: Wentian Shi, Daming Shi, Maysam Orouskhani, Feng Tian
Abstract:
Whereas currently the most prevalent deep learning methods require a large amount of data for training, few-shot learning tries to learn a model from limited data without extensive retraining. In this paper, we present a loss function based on triplet loss for solving few-shot problem using metric based learning. Instead of setting the margin distance in triplet loss as a constant number empirically, we propose an adaptive margin distance strategy to obtain the appropriate margin distance automatically. We implement the strategy in the deep siamese network for deep metric embedding, by utilizing an optimization approach by penalizing the worst case and rewarding the best. Our experiments on image recognition and co-segmentation model demonstrate that using our proposed triplet loss with adaptive margin distance can significantly improve the performance.Keywords: few-shot learning, triplet network, adaptive margin, deep learning
Procedia PDF Downloads 171