Search results for: Network Time Protocol
20264 Excitonic Refractive Index Change in High Purity GaAs Modulator at Room Temperature for Optical Fiber Communication Network
Authors: Durga Prasad Sapkota, Madhu Sudan Kayastha, Koichi Wakita
Abstract:
In this paper, we have compared and analyzed the electron absorption properties between with and without excitonic effect bulk in high purity GaAs spatial light modulator for an optical fiber communication network. The electroabsorption properties such as absorption spectra, change in absorption spectra, change in refractive index and extinction ratio have been calculated. We have also compared the result of absorption spectra and change in absorption spectra with the experimental results and found close agreement with experimental results.Keywords: exciton, refractive index change, extinction ratio, GaAs
Procedia PDF Downloads 57720263 U-Net Based Multi-Output Network for Lung Disease Segmentation and Classification Using Chest X-Ray Dataset
Authors: Jaiden X. Schraut
Abstract:
Medical Imaging Segmentation of Chest X-rays is used for the purpose of identification and differentiation of lung cancer, pneumonia, COVID-19, and similar respiratory diseases. Widespread application of computer-supported perception methods into the diagnostic pipeline has been demonstrated to increase prognostic accuracy and aid doctors in efficiently treating patients. Modern models attempt the task of segmentation and classification separately and improve diagnostic efficiency; however, to further enhance this process, this paper proposes a multi-output network that follows a U-Net architecture for image segmentation output and features an additional CNN module for auxiliary classification output. The proposed model achieves a final Jaccard Index of .9634 for image segmentation and a final accuracy of .9600 for classification on the COVID-19 radiography database.Keywords: chest X-ray, deep learning, image segmentation, image classification
Procedia PDF Downloads 14820262 An Effective Modification to Multiscale Elastic Network Model and Its Evaluation Based on Analyses of Protein Dynamics
Authors: Weikang Gong, Chunhua Li
Abstract:
Dynamics plays an essential role in function exertion of proteins. Elastic network model (ENM), a harmonic potential-based and cost-effective computational method, is a valuable and efficient tool for characterizing the intrinsic dynamical properties encoded in biomacromolecule structures and has been widely used to detect the large-amplitude collective motions of proteins. Gaussian network model (GNM) and anisotropic network model (ANM) are the two often-used ENM models. In recent years, many ENM variants have been proposed. Here, we propose a small but effective modification (denoted as modified mENM) to the multiscale ENM (mENM) where fitting weights of Kirchhoff/Hessian matrixes with the least square method (LSM) is modified since it neglects the details of pairwise interactions. Then we perform its comparisons with the original mENM, traditional ENM, and parameter-free ENM (pfENM) on reproducing dynamical properties for the six representative proteins whose molecular dynamics (MD) trajectories are available in http://mmb.pcb.ub.es/MoDEL/. In the results, for B-factor prediction, mENM achieves the best performance among the four ENM models. Additionally, it is noted that with the weights of the multiscale Kirchhoff/Hessian matrixes modified, interestingly, the modified mGNM/mANM still has a much better performance than the corresponding traditional ENM and pfENM models. As to dynamical cross-correlation map (DCCM) calculation, taking the data obtained from MD trajectories as the standard, mENM performs the worst while the results produced by the modified mENM and pfENM models are close to those from MD trajectories with the latter a little better than the former. Generally, ANMs perform better than the corresponding GNMs except for the mENM. Thus, pfANM and the modified mANM, especially the former, have an excellent performance in dynamical cross-correlation calculation. Compared with GNMs (except for mGNM), the corresponding ANMs can capture quite a number of positive correlations for the residue pairs nearly largest distances apart, which is maybe due to the anisotropy consideration in ANMs. Furtherly, encouragingly the modified mANM displays the best performance in capturing the functional motional modes, followed by pfANM and traditional ANM models, while mANM fails in all the cases. This suggests that the consideration of long-range interactions is critical for ANM models to produce protein functional motions. Based on the analyses, the modified mENM is a promising method in capturing multiple dynamical characteristics encoded in protein structures. This work is helpful for strengthening the understanding of the elastic network model and provides a valuable guide for researchers to utilize the model to explore protein dynamics.Keywords: elastic network model, ENM, multiscale ENM, molecular dynamics, parameter-free ENM, protein structure
Procedia PDF Downloads 12420261 Comparative Connectionism: Study of the Biological Constraints of Learning Through the Manipulation of Various Architectures in a Neural Network Model under the Biological Principle of the Correlation Between Structure and Function
Authors: Giselle Maggie-Fer Castañeda Lozano
Abstract:
The main objective of this research was to explore the role of neural network architectures in simulating behavioral phenomena as a potential explanation for selective associations, specifically related to biological constraints on learning. Biological constraints on learning refer to the limitations observed in conditioning procedures, where learning is expected to occur. The study involved simulations of five different experiments exploring various phenomena and sources of biological constraints in learning. These simulations included the interaction between response and reinforcer, stimulus and reinforcer, specificity of stimulus-reinforcer associations, species differences, neuroanatomical constraints, and learning in uncontrolled conditions. The overall results demonstrated that by manipulating neural network architectures, conditions can be created to model and explain diverse biological constraints frequently reported in comparative psychology literature as learning typicities. Additionally, the simulations offer predictive content worthy of experimental testing in the pursuit of new discoveries regarding the specificity of learning. The implications and limitations of these findings are discussed. Finally, it is suggested that this research could inaugurate a line of inquiry involving the use of neural networks to study biological factors in behavior, fostering the development of more ethical and precise research practices.Keywords: comparative psychology, connectionism, conditioning, experimental analysis of behavior, neural networks
Procedia PDF Downloads 7720260 The Development of Space-Time and Space-Number Associations: The Role of Non-Symbolic vs. Symbolic Representations
Authors: Letizia Maria Drammis, Maria Antonella Brandimonte
Abstract:
The idea that people use space representations to think about time and number received support from several lines of research. However, how these representations develop in children and then shape space-time and space-number mappings is still a debated issue. In the present study, 40 children (20 pre-schoolers and 20 elementary-school children) performed 4 main tasks, which required the use of more concrete (non-symbolic) or more abstract (symbolic) space-time and space-number associations. In the non-symbolic conditions, children were required to order pictures of everyday-life events occurring in a specific temporal order (Temporal sequences) and of quantities varying in numerosity (Numerical sequences). In the symbolic conditions, they were asked to perform the typical time-to-position and number-to-position tasks by mapping time-related words and numbers onto lines. Results showed that children performed reliably better in the non-symbolic Time conditions than the symbolic Time conditions, independently of age, whereas only pre-schoolers performed worse in the Number-to-position task (symbolic) as compared to the Numerical sequence (non-symbolic) task. In addition, only older children mapped time-related words onto space following the typical left-right orientation, pre-schoolers’ performance being somewhat mixed. In contrast, mapping numbers onto space showed a clear left-right orientation, independently of age. Overall, these results indicate a cross-domain difference in the way younger and older children process time and number, with time-related tasks being more difficult than number-related tasks only when space-time tasks require symbolic representations.Keywords: space-time associations, space-number associations, orientation, children
Procedia PDF Downloads 34120259 A Machine Learning Approach for Earthquake Prediction in Various Zones Based on Solar Activity
Authors: Viacheslav Shkuratskyy, Aminu Bello Usman, Michael O’Dea, Saifur Rahman Sabuj
Abstract:
This paper examines relationships between solar activity and earthquakes; it applied machine learning techniques: K-nearest neighbour, support vector regression, random forest regression, and long short-term memory network. Data from the SILSO World Data Center, the NOAA National Center, the GOES satellite, NASA OMNIWeb, and the United States Geological Survey were used for the experiment. The 23rd and 24th solar cycles, daily sunspot number, solar wind velocity, proton density, and proton temperature were all included in the dataset. The study also examined sunspots, solar wind, and solar flares, which all reflect solar activity and earthquake frequency distribution by magnitude and depth. The findings showed that the long short-term memory network model predicts earthquakes more correctly than the other models applied in the study, and solar activity is more likely to affect earthquakes of lower magnitude and shallow depth than earthquakes of magnitude 5.5 or larger with intermediate depth and deep depth.Keywords: k-nearest neighbour, support vector regression, random forest regression, long short-term memory network, earthquakes, solar activity, sunspot number, solar wind, solar flares
Procedia PDF Downloads 7720258 The Influence of Noise on Aerial Image Semantic Segmentation
Authors: Pengchao Wei, Xiangzhong Fang
Abstract:
Noise is ubiquitous in this world. Denoising is an essential technology, especially in image semantic segmentation, where noises are generally categorized into two main types i.e. feature noise and label noise. The main focus of this paper is aiming at modeling label noise, investigating the behaviors of different types of label noise on image semantic segmentation tasks using K-Nearest-Neighbor and Convolutional Neural Network classifier. The performance without label noise and with is evaluated and illustrated in this paper. In addition to that, the influence of feature noise on the image semantic segmentation task is researched as well and a feature noise reduction method is applied to mitigate its influence in the learning procedure.Keywords: convolutional neural network, denoising, feature noise, image semantic segmentation, k-nearest-neighbor, label noise
Procedia PDF Downloads 22320257 Deep Reinforcement Learning Approach for Optimal Control of Industrial Smart Grids
Authors: Niklas Panten, Eberhard Abele
Abstract:
This paper presents a novel approach for real-time and near-optimal control of industrial smart grids by deep reinforcement learning (DRL). To achieve highly energy-efficient factory systems, the energetic linkage of machines, technical building equipment and the building itself is desirable. However, the increased complexity of the interacting sub-systems, multiple time-variant target values and stochastic influences by the production environment, weather and energy markets make it difficult to efficiently control the energy production, storage and consumption in the hybrid industrial smart grids. The studied deep reinforcement learning approach allows to explore the solution space for proper control policies which minimize a cost function. The deep neural network of the DRL agent is based on a multilayer perceptron (MLP), Long Short-Term Memory (LSTM) and convolutional layers. The agent is trained within multiple Modelica-based factory simulation environments by the Advantage Actor Critic algorithm (A2C). The DRL controller is evaluated by means of the simulation and then compared to a conventional, rule-based approach. Finally, the results indicate that the DRL approach is able to improve the control performance and significantly reduce energy respectively operating costs of industrial smart grids.Keywords: industrial smart grids, energy efficiency, deep reinforcement learning, optimal control
Procedia PDF Downloads 20120256 Detection of New Attacks on Ubiquitous Services in Cloud Computing and Countermeasures
Authors: L. Sellami, D. Idoughi, P. F. Tiako
Abstract:
Cloud computing provides infrastructure to the enterprise through the Internet allowing access to cloud services at anytime and anywhere. This pervasive aspect of the services, the distributed nature of data and the wide use of information make cloud computing vulnerable to intrusions that violate the security of the cloud. This requires the use of security mechanisms to detect malicious behavior in network communications and hosts such as intrusion detection systems (IDS). In this article, we focus on the detection of intrusion into the cloud sing IDSs. We base ourselves on client authentication in the computing cloud. This technique allows to detect the abnormal use of ubiquitous service and prevents the intrusion of cloud computing. This is an approach based on client authentication data. Our IDS provides intrusion detection inside and outside cloud computing network. It is a double protection approach: The security user node and the global security cloud computing.Keywords: cloud computing, intrusion detection system, privacy, trust
Procedia PDF Downloads 32720255 Analysis and Design of Simultaneous Dual Band Harvesting System with Enhanced Efficiency
Authors: Zina Saheb, Ezz El-Masry, Jean-François Bousquet
Abstract:
This paper presents an enhanced efficiency simultaneous dual band energy harvesting system for wireless body area network. A bulk biasing is used to enhance the efficiency of the adapted rectifier design to reduce Vth of MOSFET. The presented circuit harvests the radio frequency (RF) energy from two frequency bands: 1 GHz and 2.4 GHz. It is designed with TSMC 65-nm CMOS technology and high quality factor dual matching network to boost the input voltage. Full circuit analysis and modeling is demonstrated. The simulation results demonstrate a harvester with an efficiency of 23% at 1 GHz and 46% at 2.4 GHz at an input power as low as -30 dBm.Keywords: energy harvester, simultaneous, dual band, CMOS, differential rectifier, voltage boosting, TSMC 65nm
Procedia PDF Downloads 40820254 ARABEX: Automated Dotted Arabic Expiration Date Extraction using Optimized Convolutional Autoencoder and Custom Convolutional Recurrent Neural Network
Authors: Hozaifa Zaki, Ghada Soliman
Abstract:
In this paper, we introduced an approach for Automated Dotted Arabic Expiration Date Extraction using Optimized Convolutional Autoencoder (ARABEX) with bidirectional LSTM. This approach is used for translating the Arabic dot-matrix expiration dates into their corresponding filled-in dates. A custom lightweight Convolutional Recurrent Neural Network (CRNN) model is then employed to extract the expiration dates. Due to the lack of available dataset images for the Arabic dot-matrix expiration date, we generated synthetic images by creating an Arabic dot-matrix True Type Font (TTF) matrix to address this limitation. Our model was trained on a realistic synthetic dataset of 3287 images, covering the period from 2019 to 2027, represented in the format of yyyy/mm/dd. We then trained our custom CRNN model using the generated synthetic images to assess the performance of our model (ARABEX) by extracting expiration dates from the translated images. Our proposed approach achieved an accuracy of 99.4% on the test dataset of 658 images, while also achieving a Structural Similarity Index (SSIM) of 0.46 for image translation on our dataset. The ARABEX approach demonstrates its ability to be applied to various downstream learning tasks, including image translation and reconstruction. Moreover, this pipeline (ARABEX+CRNN) can be seamlessly integrated into automated sorting systems to extract expiry dates and sort products accordingly during the manufacturing stage. By eliminating the need for manual entry of expiration dates, which can be time-consuming and inefficient for merchants, our approach offers significant results in terms of efficiency and accuracy for Arabic dot-matrix expiration date recognition.Keywords: computer vision, deep learning, image processing, character recognition
Procedia PDF Downloads 8720253 Classification of Contexts for Mentioning Love in Interviews with Victims of the Holocaust
Authors: Marina Yurievna Aleksandrova
Abstract:
Research of the Holocaust retains value not only for history but also for sociology and psychology. One of the most important fields of study is how people were coping during and after this traumatic event. The aim of this paper is to identify the main contexts of the topic of love and to determine which contexts are more characteristic for different groups of victims of the Holocaust (gender, nationality, age). In this research, transcripts of interviews with Holocaust victims that were collected during 1946 for the "Voices of the Holocaust" project were used as data. Main contexts were analyzed with methods of network analysis and latent semantic analysis and classified by gender, age, and nationality with random forest. The results show that love is articulated and described significantly differently for male and female informants, nationality is shown results with lower values of quality metrics, as well as the age.Keywords: Holocaust, latent semantic analysis, network analysis, text-mining, random forest
Procedia PDF Downloads 18420252 Dalit Struggle in Nepal: From Invoking Dalit to Becoming Part of the Nepalese Power
Authors: Mom Bishwakarma
Abstract:
This research traces out how the Dalit in Nepal evolved from the early 1950s to the current day, from invoking Dalit against caste discrimination through to the asserting proportional representation in state structures. The research focused most closely on the formation of Dalit association and resistance, as well as on the different struggles throughout this period. It then discusses the expansion of Dalit movement in NGOs, its internationalization and responses. The research sees that Dalit movement has been influenced by its network with the national and international civil rights movement particularly Dalit movement in India and argues that Dalit movement in Nepal have in many ways, challenged the orthodox based caste stratification for Dalit equality and justice. It can be seen that at the same time as Dalit participation was increasing, divisions by caste line also emerged. Rather reshaping the power structures, Dalit movement encircled into division and contentious politics.Keywords: Dalit, equality, justice, movements, Nepal
Procedia PDF Downloads 23120251 Chemical Synthesis of a cDNA and Its Expression Analysis
Authors: Salman Akrokayan
Abstract:
Synthetic cDNA (ScDNA) of granulocyte colony-stimulating factor (G-CSF) was constructed using a DNA synthesizer with the aim to increase its expression level. 5' end of the ScDNA of G-CSF coding region was modified by decreasing the GC content without altering the predicted amino acids sequence. The identity of the resulting protein from ScDNA was confirmed by the highly specific enzyme-linked immunosorbent assay. In conclusion, a synthetic G-CSF cDNA in combination with the recombinant DNA protocol offers a rapid and reliable strategy for synthesizing the target protein. However, the commercial utilization of this methodology requires rigorous validation and quality control.Keywords: synthetic cDNA, recombinant G-CSF, cloning, gene expression
Procedia PDF Downloads 29020250 Exploring Error-Minimization Protocols for Upper-Limb Function During Activities of Daily Life in Chronic Stroke Patients
Authors: M. A. Riurean, S. Heijnen, C. A. Knott, J. Makinde, D. Gotti, J. VD. Kamp
Abstract:
Objectives: The current study is done in preparation for a randomized controlled study investigating the effects of an implicit motor learning protocol implemented using an extension-supporting glove. It will explore different protocols to find out which is preferred when studying motor learn-ing in the chronic stroke population that struggles with hand spasticity. Design: This exploratory study will follow 24 individuals who have a chronic stroke (> 6 months) during their usual care journey. We will record the results of two 9-Hole Peg Tests (9HPT) done during their therapy ses-sions with a physiotherapist or in their home before and after 4 weeks of them wearing an exten-sion-supporting glove used to employ the to-be-studied protocols. The participants will wear the glove 3 times/week for one hour while performing their activities of daily living and record the times they wore it in a diary. Their experience will be monitored through telecommunication once every week. Subjects: Individuals that have had a stroke at least 6 months prior to participation, hand spasticity measured on the modified Ashworth Scale of maximum 3, and finger flexion motor control measured on the Motricity Index of at least 19/33. Exclusion criteria: extreme hemi-neglect. Methods: The participants will be randomly divided into 3 groups: one group using the glove in a pre-set way of decreasing support (implicit motor learning), one group using the glove in a self-controlled way of decreasing support (autonomous motor learning), and the third using the glove with constant support (as control). Before and after the 4-week period, there will be an intake session and a post-assessment session. Analysis: We will compare the results of the two 9HPTs to check whether the protocols were effective. Furthermore, we will compare the results between the three groups to find the preferred one. A qualitative analysis will be run of the experience of participants throughout the 4-week period. Expected results: We expect that the group using the implicit learning protocol will show superior results.Keywords: implicit learning, hand spasticity, stroke, error minimization, motor task
Procedia PDF Downloads 6320249 Effect of Fermented Orange Juice Intake on Urinary 6‑Sulfatoxymelatonin in Healthy Volunteers
Authors: I. Cerrillo, A. Carrillo-Vico, M. A. Ortega, B. Escudero-López, N. Álvarez-Sánchez, F. Martín, M. S. Fernández-Pachón
Abstract:
Melatonin is a bioactive compound involved in multiple biological activities such as glucose tolerance, circadian rhythm regulation, antioxidant defense or immune system action. In elderly subjects the intake of foods and drinks rich in melatonin is very important due to its endogenous level decreases with age. Alcoholic fermentation is a process carried out in fruits, vegetables and legumes to obtain new products with improved bioactive compounds profile in relation to original substrates. Alcoholic fermentation process carried out by Saccharomycetaceae var. Pichia kluyveri induces an important synthesis of melatonin in orange juice. A novel beverage derived of fermented orange juice could be a promising source of this bioactive compound. The aim of the present study was to determine whether the acute intake of fermented orange juice increase the levels of urinary 6-sulfatoxymelatonin in healthy humans. Nine healthy volunteers (7 women and 2 men), aged between 20 and 25 years old and BMI of 21.1 2.4 kg/m2, were recruited. On the study day, participants ingested 500 mL of fermented orange juice. The first urine collection was made before fermented orange juice consumption (basal). The rest of urine collections were made in the following time intervals after fermented orange juice consumption: 0-2, 2-5, 5-10, 10- 15 and 15-24 hours. During the experimental period only the consumption of water was allowed. At lunch time a meal was provided (60 g of white bread, two slices of ham, a slice of cheese, 125 g of sweetened natural yoghurt and water). The subjects repeated the protocol with orange juice following a 2-wk washout period between both types of beverages. The levels of 6-sulfatoxymelatonin (6-SMT) were measured in urine recollected at different time points using the Melatonin-Sulfate Urine ELISA (IBL International GMBH, Hamburg, Germany). Levels of 6-SMT were corrected to those of creatinine for each sample. A significant (p < 0.05) increase in urinary 6-SMT levels was observed between 2-5 hours after fermented orange juice ingestion with respect to basal values (increase of 67,8 %). The consumption of orange juice did not induce any significant change in urinary 6-SMT levels. In addition, urinary 6-SMT levels obtained between 2-5 hours after fermented orange juice ingestion (115,6 ng/mg) were significantly different (p < 0.05) from those of orange juice (42,4 ng/mg). The enhancement of urinary 6-SMT after the ingestion of 500 mL of fermented orange juice in healthy humans compared to orange juice could be an important advantage of this novel product as an excellent source of melatonin. Fermented orange juice could be a new functional food, and its consumption could exert a potentially positive effect on health in both the maintenance of health status and the prevention of chronic diseases.Keywords: fermented orange juice, functional beverage, healthy human, melatonin
Procedia PDF Downloads 41220248 Detection of Resistive Faults in Medium Voltage Overhead Feeders
Authors: Mubarak Suliman, Mohamed Hassan
Abstract:
Detection of downed conductors occurring with high fault resistance (reaching kilo-ohms) has always been a challenge, especially in countries like Saudi Arabia, on which earth resistivity is very high in general (reaching more than 1000 Ω-meter). The new approaches for the detection of resistive and high impedance faults are based on the analysis of the fault current waveform. These methods are still under research and development, and they are currently lacking security and dependability. The other approach is communication-based solutions which depends on voltage measurement at the end of overhead line branches and communicate the measured signals to substation feeder relay or a central control center. However, such a detection method is costly and depends on the availability of communication medium and infrastructure. The main objective of this research is to utilize the available standard protection schemes to increase the probability of detection of downed conductors occurring with a low magnitude of fault currents and at the same time avoiding unwanted tripping in healthy conditions and feeders. By specifying the operating region of the faulty feeder, use of tripping curve for discrimination between faulty and healthy feeders, and with proper selection of core balance current transformer (CBCT) and voltage transformers with fewer measurement errors, it is possible to set the pick-up of sensitive earth fault current to minimum values of few amps (i.e., Pick-up Settings = 3 A or 4 A, …) for the detection of earth faults with fault resistance more than (1 - 2 kΩ) for 13.8kV overhead network and more than (3-4) kΩ fault resistance in 33kV overhead network. By implementation of the outcomes of this study, the probability of detection of downed conductors is increased by the utilization of existing schemes (i.e., Directional Sensitive Earth Fault Protection).Keywords: sensitive earth fault, zero sequence current, grounded system, resistive fault detection, healthy feeder
Procedia PDF Downloads 11920247 High-Dose-Rate Brachytherapy for Cervical Cancer: The Effect of Total Reference Air Kerma on the Results of Single-Channel and Tri-Channel Applicators
Authors: Hossain A., Miah S., Ray P. K.
Abstract:
Introduction: Single channel and tri-channel applicators are used in the traditional treatment of cervical cancer. Total reference air kerma (TRAK) and treatment outcomes in high-dose-rate brachytherapy for cervical cancer using single-channel and tri-channel applicators were the main objectives of this retrospective study. Material and Methods: Patients in the radiotherapy division who received brachytherapy, chemotherapy, and external radiotherapy (EBRT) using single and tri-channel applicators were the subjects of a retrospective cohort study from 2016 to 2020. All brachytherapy parameters, including TRAK, were calculated in accordance with the international protocol. The Kaplan Meier method was used to analyze survival rates using a log-rank test. Results and Discussions: Based on treatment times of 15.34 (10-20) days and 21.35 (6.5-28) days, the TRAK for the tri-channel applicator was 0.52 cGy.m² and for the single-channel applicator was 0.34 cGy.m². Based on TRAK, the rectum, bladder, and tumor had respective Pearson correlations of 0.082, 0.009, and 0.032. The 1-specificity and sensitivity were 0.70 and 0.30, respectively. At that time, AUC was 0.71. The log-rank test showed that tri-channel applicators had a survival rate of 95% and single-channel applicators had a survival rate of 85% (p=0.565). Conclusions: The relationship between TRAK and treatment duration and Pearson correlation for the tumor, rectum, and bladder suggests that TRAK should be taken into account for the proper operation of single channel and tri-channel applicators.Keywords: single-channel, tri-channel, high dose rate brachytherapy, cervical cancer
Procedia PDF Downloads 10420246 A Comparison of Neural Network and DOE-Regression Analysis for Predicting Resource Consumption of Manufacturing Processes
Authors: Frank Kuebler, Rolf Steinhilper
Abstract:
Artificial neural networks (ANN) as well as Design of Experiments (DOE) based regression analysis (RA) are mainly used for modeling of complex systems. Both methodologies are commonly applied in process and quality control of manufacturing processes. Due to the fact that resource efficiency has become a critical concern for manufacturing companies, these models needs to be extended to predict resource-consumption of manufacturing processes. This paper describes an approach to use neural networks as well as DOE based regression analysis for predicting resource consumption of manufacturing processes and gives a comparison of the achievable results based on an industrial case study of a turning process.Keywords: artificial neural network, design of experiments, regression analysis, resource efficiency, manufacturing process
Procedia PDF Downloads 53020245 Improving Fingerprinting-Based Localization System Using Generative AI
Authors: Getaneh Berie Tarekegn
Abstract:
A precise localization system is crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarming, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. The most common method for providing continuous positioning services in outdoor environments is by using a global navigation satellite system (GNSS). Due to nonline-of-sight, multipath, and weather conditions, GNSS systems do not perform well in dense urban, urban, and suburban areas.This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. It also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 0.39 m, and more than 90% of the errors are less than 0.82 m. According to numerical results, SRCLoc improves positioning performance and reduces radio map construction costs significantly compared to traditional methods.Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine
Procedia PDF Downloads 6420244 Analysis of Dynamics Underlying the Observation Time Series by Using a Singular Spectrum Approach
Authors: O. Delage, H. Bencherif, T. Portafaix, A. Bourdier
Abstract:
The main purpose of time series analysis is to learn about the dynamics behind some time ordered measurement data. Two approaches are used in the literature to get a better knowledge of the dynamics contained in observation data sequences. The first of these approaches concerns time series decomposition, which is an important analysis step allowing patterns and behaviors to be extracted as components providing insight into the mechanisms producing the time series. As in many cases, time series are short, noisy, and non-stationary. To provide components which are physically meaningful, methods such as Empirical Mode Decomposition (EMD), Empirical Wavelet Transform (EWT) or, more recently, Empirical Adaptive Wavelet Decomposition (EAWD) have been proposed. The second approach is to reconstruct the dynamics underlying the time series as a trajectory in state space by mapping a time series into a set of Rᵐ lag vectors by using the method of delays (MOD). Takens has proved that the trajectory obtained with the MOD technic is equivalent to the trajectory representing the dynamics behind the original time series. This work introduces the singular spectrum decomposition (SSD), which is a new adaptive method for decomposing non-linear and non-stationary time series in narrow-banded components. This method takes its origin from singular spectrum analysis (SSA), a nonparametric spectral estimation method used for the analysis and prediction of time series. As the first step of SSD is to constitute a trajectory matrix by embedding a one-dimensional time series into a set of lagged vectors, SSD can also be seen as a reconstruction method like MOD. We will first give a brief overview of the existing decomposition methods (EMD-EWT-EAWD). The SSD method will then be described in detail and applied to experimental time series of observations resulting from total columns of ozone measurements. The results obtained will be compared with those provided by the previously mentioned decomposition methods. We will also compare the reconstruction qualities of the observed dynamics obtained from the SSD and MOD methods.Keywords: time series analysis, adaptive time series decomposition, wavelet, phase space reconstruction, singular spectrum analysis
Procedia PDF Downloads 10920243 Prioritized Processor-Sharing with a Maximum Permissible Sojourn Time
Authors: Yoshiaki Shikata
Abstract:
A prioritized processor-sharing (PS) system with a maximum permissible sojourn time (MPST) is proposed. In this PS system, a higher-priority request is allocated a larger service ratio than a lower-priority request. Moreover, each request receiving service is guaranteed the maximum permissible sojourn time determined by each priority class, regardless of its service time. Arriving requests that cannot receive service due to this guarantee are rejected. We further propose a guarantee method for implementing such a system, and discuss performance evaluation procedures for the resulting system. Practical performance measures, such as the relationships between the loss probability or mean sojourn time of each class request and the maximum permissible sojourn time are evaluated via simulation. At the arrival of each class request, its acceptance or rejection is judged using extended sojourn times of all requests receiving service in the server. As the MPST increases, the mean sojourn time increases almost linearly. However, the logarithm of the loss probability decreases almost linearly. Moreover with an MPST, the difference in the mean sojourn time for different MPSTs increases with the traffic rate. Conversely, the difference in the loss probability for different MPSTs decreases as the traffic rate increases.Keywords: prioritized processor sharing, priority ratio, permissible sojourn time, loss probability, mean sojourn time, simulation
Procedia PDF Downloads 19620242 Anticipation of Bending Reinforcement Based on Iranian Concrete Code Using Meta-Heuristic Tools
Authors: Seyed Sadegh Naseralavi, Najmeh Bemani
Abstract:
In this paper, different concrete codes including America, New Zealand, Mexico, Italy, India, Canada, Hong Kong, Euro Code and Britain are compared with the Iranian concrete design code. First, by using Adaptive Neuro Fuzzy Inference System (ANFIS), the codes having the most correlation with the Iranian ninth issue of the national regulation are determined. Consequently, two anticipated methods are used for comparing the codes: Artificial Neural Network (ANN) and Multi-variable regression. The results show that ANN performs better. Predicting is done by using only tensile steel ratio and with ignoring the compression steel ratio.Keywords: adaptive neuro fuzzy inference system, anticipate method, artificial neural network, concrete design code, multi-variable regression
Procedia PDF Downloads 28820241 A Hybrid Genetic Algorithm and Neural Network for Wind Profile Estimation
Authors: M. Saiful Islam, M. Mohandes, S. Rehman, S. Badran
Abstract:
Increasing necessity of wind power is directing us to have precise knowledge on wind resources. Methodical investigation of potential locations is required for wind power deployment. High penetration of wind energy to the grid is leading multi megawatt installations with huge investment cost. This fact appeals to determine appropriate places for wind farm operation. For accurate assessment, detailed examination of wind speed profile, relative humidity, temperature and other geological or atmospheric parameters are required. Among all of these uncertainty factors influencing wind power estimation, vertical extrapolation of wind speed is perhaps the most difficult and critical one. Different approaches have been used for the extrapolation of wind speed to hub height which are mainly based on Log law, Power law and various modifications of the two. This paper proposes a Artificial Neural Network (ANN) and Genetic Algorithm (GA) based hybrid model, namely GA-NN for vertical extrapolation of wind speed. This model is very simple in a sense that it does not require any parametric estimations like wind shear coefficient, roughness length or atmospheric stability and also reliable compared to other methods. This model uses available measured wind speeds at 10m, 20m and 30m heights to estimate wind speeds up to 100m. A good comparison is found between measured and estimated wind speeds at 30m and 40m with approximately 3% mean absolute percentage error. Comparisons with ANN and power law, further prove the feasibility of the proposed method.Keywords: wind profile, vertical extrapolation of wind, genetic algorithm, artificial neural network, hybrid machine learning
Procedia PDF Downloads 49420240 Wireless Information Transfer Management and Case Study of a Fire Alarm System in a Residential Building
Authors: Mohsen Azarmjoo, Mehdi Mehdizadeh Koupaei, Maryam Mehdizadeh Koupaei, Asghar Mahdlouei Azar
Abstract:
The increasing prevalence of wireless networks in our daily lives has made them indispensable. The aim of this research is to investigate the management of information transfer in wireless networks and the integration of renewable solar energy resources in a residential building. The focus is on the transmission of electricity and information through wireless networks, as well as the utilization of sensors and wireless fire alarm systems. The research employs a descriptive approach to examine the transmission of electricity and information on a wireless network with electric and optical telephone lines. It also investigates the transmission of signals from sensors and wireless fire alarm systems via radio waves. The methodology includes a detailed analysis of security, comfort conditions, and costs related to the utilization of wireless networks and renewable solar energy resources. The study reveals that it is feasible to transmit electricity on a network cable using two pairs of network cables without the need for separate power cabling. Additionally, the integration of renewable solar energy systems in residential buildings can reduce dependence on traditional energy carriers. The use of sensors and wireless remote information processing can enhance the safety and efficiency of energy usage in buildings and the surrounding spaces.Keywords: renewable energy, intelligentization, wireless sensors, fire alarm system
Procedia PDF Downloads 6120239 Cellulose Enhancement in Wood Used in Pulp Production by Overexpression of Korrigan and Sucrose Synthase Genes
Authors: Anil Kumar, Diwakar Aggarwal, M. Sudhakara Reddy
Abstract:
The wood of Eucalyptus, Populus and bamboos are some important species used as raw material for the manufacture of pulp. However, higher levels of lignin pose a problem during Kraft pulping and yield of pulp is also lower. In order to increase the yield of pulp per unit wood and reduce the use of chemicals during kraft pulping it is important to reduce the lignin content and/or increase cellulose content in wood. Cellulose biosynthesis in wood takes place by the coordinated action of many enzymes. The two important enzymes are KORRIGAN and SUCROSE SYNTHASE. KORRIGAN (Endo-1,4--glucanase) is implicated in the process of editing growing cellulose chains and improvement of the crystallinity of produced cellulose, whereas SUCROSE SYNTHASE is involved in providing substrate (UDP-glucose) for growing cellulose chains. The present study was aimed at the cloning, characterization and overexpression of these genes in Eucalyptus and Populus. An efficient shoot organogenesis protocol from leaf explants taken from micro shoots of the species has been developed. Agrobacterium mediated genetic transformation using Agrobacterium tumefaciens strain EHA105 and LBA4404 harboring binary vector pBI121 was achieved. Both the genes were cloned from cDNA library of Populus deltoides. These were subsequently characterized using various bioinformatics tools. The cloned genes were then inserted into pBI121 under the CaMV35S promotors replacing GUS gene. The constructs were then mobilized into above strains of Agrobacterium and used for the transformation work. Subsequently, genetic transformation of these clones with target genes following already developed protocol is in progress. Four transgenic lines of Eucalyptus tereticornis overexpressing Korrigan gene under the strong constitutive promoters CaMV35S have been developed, which are being further evaluated. Work on development of more transgenic lines overexpressing these genes in Populus and Eucalyptus is also in progress. This presentation will focus on important developments in this direction.Keywords: Eucalyptus tereticornis, genetic transformation, Kraft pulping Populus deltoides
Procedia PDF Downloads 14420238 Cryptography and Cryptosystem a Panacea to Security Risk in Wireless Networking
Authors: Modesta E. Ezema, Chikwendu V. Alabekee, Victoria N. Ishiwu, Ifeyinwa NwosuArize, Chinedu I. Nwoye
Abstract:
The advent of wireless networking in computing technology cannot be overemphasized, it opened up easy accessibility to information resources, networking made easier and brought internet accessibility to our doorsteps, but despite all these, some mishap came in with it that is causing mayhem in today ‘s overall information security. The cyber criminals will always compromise the integrity of a message that is not encrypted or that is encrypted with a weak algorithm.In other to correct the mayhem, this study focuses on cryptosystem and cryptography. This ensures end to end crypt messaging. The study of various cryptographic algorithms, as well as the techniques and applications of the cryptography for efficiency, were all considered in the work., present and future applications of cryptography were dealt with as well as Quantum Cryptography was exposed as the current and the future area in the development of cryptography. An empirical study was conducted to collect data from network users.Keywords: algorithm, cryptography, cryptosystem, network
Procedia PDF Downloads 35820237 Viability of Eggshells Ash Affecting the Setting Time of Cement
Authors: Fazeera Ujin, Kamran Shavarebi Ali, Zarina Yasmin Hanur Harith
Abstract:
This research paper reports on the feasibility and viability of eggshells ash and its effects on the water content and setting time of cement. An experiment was carried out to determine the quantity of water required in order to follow standard cement paste of normal consistency in accordance with MS EN 196-3:2007. The eggshells ash passing the 90µm sieve was used in the investigation. Eggshells ash with percentage of 0%, 0.1%, 0.5%, 1.0%, 1.5% and 2.0% were constituted to replace the cement. Chemical properties of both eggshells ash and cement are compared. From the results obtained, both eggshells ash and cement have the same chemical composition and primary composition which is the calcium compounds. Results from the setting time show that by adding the eggshells ash to the cement, the setting time of the cement decreases. In short, the higher amount of eggshells ash, the faster the rate of setting and apply to all percentage of eggshells ash that were used in this investigation. Both initial and final setting times fulfill the setting time requirements by Malaysian Standard. Hence, it is suggested that eggshells ash can be used as an admixture in concrete mix.Keywords: construction materials, eggshells ash, solid waste, setting time
Procedia PDF Downloads 39620236 The Iraqi Fibre-to-the-Home Networks, Problems, Challenges, and Solutions along with Less Expense
Authors: Hasanein Hasan, Mohammed Al-Taie, Basil Shanshool, Khalaf Abd-Ali
Abstract:
This approach aims to deal with establishing and operating Iraqi Fibre-To-The-Home (FTTH) projects. The problems they suffer from are organized sabotage, vandalism, accidental damage and poor planning. It provides practical solutions that deal with the aforementioned problems. These solutions consist of both technical and financial clarifications that ensure the achievement of the FTTH network’s stability for the purpose of equipping citizens, private sector companies, and governmental institutions with services, data transmission, the Internet, and other services. They aim to solve problems and obstacles accompanying the operation and maintenance of FTTH projects implemented by the Informatics and Telecommunications Public Company (ITPC)/ Iraqi Ministry of Communications (MoC). This approach takes the FTTH network of AlMaalif-AlMuaslat districts/ Baghdad-Iraq as a case study.Keywords: CCTV, FTTH, ITPC, MoC, NVR, PTZ
Procedia PDF Downloads 8820235 Neuropsychological Assessment and Rehabilitation Settings for Developmental Dyslexia in Children in Greece: The Use of Music at Intervention Protocols
Authors: Argyris B. Karapetsas, Rozi M. Laskaraki, Aikaterini A. Karapetsa, Maria Bampou, Valentini N. Vamvaka
Abstract:
The main aim of the current protocol is the contribution of neuropsychology in both assessment and rehabilitation settings for children with dyslexia. Objectives: The purpose of this study was to evaluate the significant role of neuropsychological assessment including both Psychometric and electrophysiological tests as well as to investigate the effectiveness of an Auditory Training program, designed via Music designed for children with Developmental Dyslexia (DD). Materials: In our study, participated 45 third-, and fourth-grade students with DD and a matched control group (n=45). Method: At the first phase of the protocol, children underwent a clinical assessment, including both electrophysiological, i.e. Event Related Potentials (ERPs) esp. P300 waveform, and psychometric tests, being conducted in Laboratory of Neuropsychology, at University of Thessaly, in Volos, Greece. Assessment’s results confirmed statistically significant lower performance for children with DD for all tests, compared to the typical readers of the control group. After evaluation, a subgroup of children with DD participated in a Rehabilitation Program including digitized musical auditory training activities. Results: The electrophysiological recordings after the intervention revealed shorter, almost similar, P300 latency values for children with DD to those of the control group, indicating the beneficial effects of the Intervention, thus enabling children develop reading skills and become successful readers. Discussion: Similar research data confirm the crucial role of neuropsychology in both diagnosis and treatment of common disorders, observed in children. Indeed, as for DD, there is growing evidence that brain activity dysfunction does occur, as it is confirmed by neuropsychological assessment and also musical auditory training may have remedial effects. Conclusions: The outcomes of the current study suggest that due to the neurobiological origin of DD, neuropsychology may give the means in both neuropsychological assessment and rehabilitation, enabling professionals to cope with cerebral dysfunction and recovery more efficiently.Keywords: diagnosis, dyslexia, ERPs, Music, neuropsychology, rehabilitation
Procedia PDF Downloads 137