Search results for: structured parity equations
4542 Assessment of Predictive Confounders for the Prevalence of Breast Cancer among Iraqi Population: A Retrospective Study from Baghdad, Iraq
Authors: Nadia H. Mohammed, Anmar Al-Taie, Fadia H. Al-Sultany
Abstract:
Although breast cancer prevalence continues to increase, mortality has been decreasing as a result of early detection and improvement in adjuvant systemic therapy. Nevertheless, this disease required further efforts to understand and identify the associated potential risk factors that could play a role in the prevalence of this malignancy among Iraqi women. The objective of this study was to assess the perception of certain predictive risk factors on the prevalence of breast cancer types among a sample of Iraqi women diagnosed with breast cancer. This was a retrospective observational study carried out at National Cancer Research Center in College of Medicine, Baghdad University from November 2017 to January 2018. Data of 100 patients with breast cancer whose biopsies examined in the National Cancer Research Center were included in this study. Data were collected to structure a detailed assessment regarding the patients’ demographic, medical and cancer records. The majority of study participants (94%) suffered from ductal breast cancer with mean age 49.57 years. Among those women, 48.9% were obese with body mass index (BMI) 35 kg/m2. 68.1% of them had positive family history of breast cancer and 66% had low parity. 40.4% had stage II ductal breast cancer followed by 25.5% with stage III. It was found that 59.6% and 68.1% had positive oestrogen receptor sensitivity and positive human epidermal growth factor (HER2/neu) receptor sensitivity respectively. In regard to the impact of prediction of certain variables on the incidence of ductal breast cancer, positive family history of breast cancer (P < 0.0001), low parity (P< 0.0001), stage I and II breast cancer (P = 0.02) and positive HER2/neu status (P < 0.0001) were significant predictive factors among the study participants. The results from this study provide relevant evidence for a significant positive and potential association between certain risk factors and the prevalence of breast cancer among Iraqi women.Keywords: Ductal Breast Cancer, Hormone Sensitivity, Iraq, Risk Factors
Procedia PDF Downloads 1284541 Measure-Valued Solutions to a Class of Nonlinear Parabolic Equations with Degenerate Coercivity and Singular Initial Data
Authors: Flavia Smarrazzo
Abstract:
Initial-boundary value problems for nonlinear parabolic equations having a Radon measure as initial data have been widely investigated, looking for solutions which for positive times take values in some function space. On the other hand, if the diffusivity degenerates too fast at infinity, it is well known that function-valued solutions may not exist, singularities may persist, and it looks very natural to consider solutions which, roughly speaking, for positive times describe an orbit in the space of the finite Radon measures. In this general framework, our purpose is to introduce a concept of measure-valued solution which is consistent with respect to regularizing and smoothing approximations, in order to develop an existence theory which does not depend neither on the level of degeneracy of diffusivity at infinity nor on the choice of the initial measures. In more detail, we prove existence of suitably defined measure-valued solutions to the homogeneous Dirichlet initial-boundary value problem for a class of nonlinear parabolic equations without strong coerciveness. Moreover, we also discuss some qualitative properties of the constructed solutions concerning the evolution of their singular part, including conditions (depending both on the initial data and on the strength of degeneracy) under which the constructed solutions are in fact unction-valued or not.Keywords: degenerate parabolic equations, measure-valued solutions, Radon measures, young measures
Procedia PDF Downloads 2814540 The Origin, Diffusion and a Comparison of Ordinary Differential Equations Numerical Solutions Used by SIR Model in Order to Predict SARS-CoV-2 in Nordic Countries
Authors: Gleda Kutrolli, Maksi Kutrolli, Etjon Meco
Abstract:
SARS-CoV-2 virus is currently one of the most infectious pathogens for humans. It started in China at the end of 2019 and now it is spread in all over the world. The origin and diffusion of the SARS-CoV-2 epidemic, is analysed based on the discussion of viral phylogeny theory. With the aim of understanding the spread of infection in the affected countries, it is crucial to modelize the spread of the virus and simulate its activity. In this paper, the prediction of coronavirus outbreak is done by using SIR model without vital dynamics, applying different numerical technique solving ordinary differential equations (ODEs). We find out that ABM and MRT methods perform better than other techniques and that the activity of the virus will decrease in April but it never cease (for some time the activity will remain low) and the next cycle will start in the middle July 2020 for Norway and Denmark, and October 2020 for Sweden, and September for Finland.Keywords: forecasting, ordinary differential equations, SARS-COV-2 epidemic, SIR model
Procedia PDF Downloads 1524539 B Spline Finite Element Method for Drifted Space Fractional Tempered Diffusion Equation
Authors: Ayan Chakraborty, BV. Rathish Kumar
Abstract:
Off-late many models in viscoelasticity, signal processing or anomalous diffusion equations are formulated in fractional calculus. Tempered fractional calculus is the generalization of fractional calculus and in the last few years several important partial differential equations occurring in the different field of science have been reconsidered in this term like diffusion wave equations, Schr$\ddot{o}$dinger equation and so on. In the present paper, a time-dependent tempered fractional diffusion equation of order $\gamma \in (0,1)$ with forcing function is considered. Existence, uniqueness, stability, and regularity of the solution has been proved. Crank-Nicolson discretization is used in the time direction. B spline finite element approximation is implemented. Generally, B-splines basis are useful for representing the geometry of a finite element model, interfacing a finite element analysis program. By utilizing this technique a priori space-time estimate in finite element analysis has been derived and we proved that the convergent order is $\mathcal{O}(h²+T²)$ where $h$ is the space step size and $T$ is the time. A couple of numerical examples have been presented to confirm the accuracy of theoretical results. Finally, we conclude that the studied method is useful for solving tempered fractional diffusion equations.Keywords: B-spline finite element, error estimates, Gronwall's lemma, stability, tempered fractional
Procedia PDF Downloads 1924538 Investigating the Dynamics of Knowledge Acquisition in Undergraduate Mathematics Students Using Differential Equations
Authors: Gilbert Makanda
Abstract:
The problem of the teaching of mathematics is studied using differential equations. A mathematical model for knowledge acquisition in mathematics is developed. In this study we adopt the mathematical model that is normally used for disease modelling in the teaching of mathematics. It is assumed that teaching is 'infecting' students with knowledge thereby spreading this knowledge to the students. It is also assumed that students who gain this knowledge spread it to other students making disease model appropriate to adopt for this problem. The results of this study show that increasing recruitment rates, learning contact with teachers and learning materials improves the number of knowledgeable students. High dropout rates and forgetting taught concepts also negatively affect the number of knowledgeable students. The developed model is then solved using Matlab ODE45 and \verb"lsqnonlin" to estimate parameters for the actual data.Keywords: differential equations, knowledge acquisition, least squares, dynamical systems
Procedia PDF Downloads 4234537 An Approach to Solving Some Inverse Problems for Parabolic Equations
Authors: Bolatbek Rysbaiuly, Aliya S. Azhibekova
Abstract:
Problems concerning the interpretation of the well testing results belong to the class of inverse problems of subsurface hydromechanics. The distinctive feature of such problems is that additional information is depending on the capabilities of oilfield experiments. Another factor that should not be overlooked is the existence of errors in the test data. To determine reservoir properties, some inverse problems for parabolic equations were investigated. An approach to solving the inverse problems based on the method of regularization is proposed.Keywords: iterative approach, inverse problem, parabolic equation, reservoir properties
Procedia PDF Downloads 4284536 Frequency Transformation with Pascal Matrix Equations
Authors: Phuoc Si Nguyen
Abstract:
Frequency transformation with Pascal matrix equations is a method for transforming an electronic filter (analogue or digital) into another filter. The technique is based on frequency transformation in the s-domain, bilinear z-transform with pre-warping frequency, inverse bilinear transformation and a very useful application of the Pascal’s triangle that simplifies computing and enables calculation by hand when transforming from one filter to another. This paper will introduce two methods to transform a filter into a digital filter: frequency transformation from the s-domain into the z-domain; and frequency transformation in the z-domain. Further, two Pascal matrix equations are derived: an analogue to digital filter Pascal matrix equation and a digital to digital filter Pascal matrix equation. These are used to design a desired digital filter from a given filter.Keywords: frequency transformation, bilinear z-transformation, pre-warping frequency, digital filters, analog filters, pascal’s triangle
Procedia PDF Downloads 5494535 Kirchoff Type Equation Involving the p-Laplacian on the Sierpinski Gasket Using Nehari Manifold Technique
Authors: Abhilash Sahu, Amit Priyadarshi
Abstract:
In this paper, we will discuss the existence of weak solutions of the Kirchhoff type boundary value problem on the Sierpinski gasket. Where S denotes the Sierpinski gasket in R² and S₀ is the intrinsic boundary of the Sierpinski gasket. M: R → R is a positive function and h: S × R → R is a suitable function which is a part of our main equation. ∆p denotes the p-Laplacian, where p > 1. First of all, we will define a weak solution for our problem and then we will show the existence of at least two solutions for the above problem under suitable conditions. There is no well-known concept of a generalized derivative of a function on a fractal domain. Recently, the notion of differential operators such as the Laplacian and the p-Laplacian on fractal domains has been defined. We recall the result first then we will address the above problem. In view of literature, Laplacian and p-Laplacian equations are studied extensively on regular domains (open connected domains) in contrast to fractal domains. In fractal domains, people have studied Laplacian equations more than p-Laplacian probably because in that case, the corresponding function space is reflexive and many minimax theorems which work for regular domains is applicable there which is not the case for the p-Laplacian. This motivates us to study equations involving p-Laplacian on the Sierpinski gasket. Problems on fractal domains lead to nonlinear models such as reaction-diffusion equations on fractals, problems on elastic fractal media and fluid flow through fractal regions etc. We have studied the above p-Laplacian equations on the Sierpinski gasket using fibering map technique on the Nehari manifold. Many authors have studied the Laplacian and p-Laplacian equations on regular domains using this Nehari manifold technique. In general Euler functional associated with such a problem is Frechet or Gateaux differentiable. So, a critical point becomes a solution to the problem. Also, the function space they consider is reflexive and hence we can extract a weakly convergent subsequence from a bounded sequence. But in our case neither the Euler functional is differentiable nor the function space is known to be reflexive. Overcoming these issues we are still able to prove the existence of at least two solutions of the given equation.Keywords: Euler functional, p-Laplacian, p-energy, Sierpinski gasket, weak solution
Procedia PDF Downloads 2344534 An Approximate Formula for Calculating the Fundamental Mode Period of Vibration of Practical Building
Authors: Abdul Hakim Chikho
Abstract:
Most international codes allow the use of an equivalent lateral load method for designing practical buildings to withstand earthquake actions. This method requires calculating an approximation to the fundamental mode period of vibrations of these buildings. Several empirical equations have been suggested to calculate approximations to the fundamental periods of different types of structures. Most of these equations are knowing to provide an only crude approximation to the required fundamental periods and repeating the calculation utilizing a more accurate formula is usually required. In this paper, a new formula to calculate a satisfactory approximation of the fundamental period of a practical building is proposed. This formula takes into account the mass and the stiffness of the building therefore, it is more logical than the conventional empirical equations. In order to verify the accuracy of the proposed formula, several examples have been solved. In these examples, calculating the fundamental mode periods of several farmed buildings utilizing the proposed formula and the conventional empirical equations has been accomplished. Comparing the obtained results with those obtained from a dynamic computer has shown that the proposed formula provides a more accurate estimation of the fundamental periods of practical buildings. Since the proposed method is still simple to use and requires only a minimum computing effort, it is believed to be ideally suited for design purposes.Keywords: earthquake, fundamental mode period, design, building
Procedia PDF Downloads 2844533 A Comparative Evaluation of Finite Difference Methods for the Extended Boussinesq Equations and Application to Tsunamis Modelling
Authors: Aurore Cauquis, Philippe Heinrich, Mario Ricchiuto, Audrey Gailler
Abstract:
In this talk, we look for an accurate time scheme to model the propagation of waves. Several numerical schemes have been developed to solve the extended weakly nonlinear weakly dispersive Boussinesq Equations. The temporal schemes used are two Lax-Wendroff schemes, second or third order accurate, two Runge-Kutta schemes of second and third order and a simplified third order accurate Lax-Wendroff scheme. Spatial derivatives are evaluated with fourth order accuracy. The numerical model is applied to two monodimensional benchmarks on a flat bottom. It is also applied to the simulation of the Algerian tsunami generated by a Mw=6 seism on the 18th March 2021. The tsunami propagation was highly dispersive and propagated across the Mediterranean Sea. We study here the effects of the order of temporal discretization on the accuracy of the results and on the time of computation.Keywords: numerical analysis, tsunami propagation, water wave, boussinesq equations
Procedia PDF Downloads 2404532 Semi Empirical Equations for Peak Shear Strength of Rectangular Reinforced Concrete Walls
Authors: Ali Kezmane, Said Boukais, Mohand Hamizi
Abstract:
This paper presents an analytical study on the behavior of reinforced concrete walls with rectangular cross section. Several experiments on such walls have been selected to be studied. Database from various experiments were collected and nominal shear wall strengths have been calculated using formulas, such as those of the ACI (American), NZS (New Zealand), Mexican (NTCC), and Wood and Barda equations. Subsequently, nominal shear wall strengths from the formulas were compared with the ultimate shear wall strengths from the database. These formulas vary substantially in functional form and do not account for all variables that affect the response of walls. There is substantial scatter in the predicted values of ultimate shear strength. Two new semi empirical equations are developed using data from tests of 57 walls for transitions walls and 27 for slender walls with the objective of improving the prediction of peak strength of walls with the most possible accurate.Keywords: shear strength, reinforced concrete walls, rectangular walls, shear walls, models
Procedia PDF Downloads 3434531 Bernstein Type Polynomials for Solving Differential Equations and Their Applications
Authors: Yilmaz Simsek
Abstract:
In this paper, we study the Bernstein-type basis functions with their generating functions. We give various properties of these polynomials with the aid of their generating functions. These polynomials and generating functions have many valuable applications in mathematics, in probability, in statistics and also in mathematical physics. By using the Bernstein-Galerkin and the Bernstein-Petrov-Galerkin methods, we give some applications of the Bernstein-type polynomials for solving high even-order differential equations with their numerical computations. We also give Bezier-type curves related to the Bernstein-type basis functions. We investigate fundamental properties of these curves. These curves have many applications in mathematics, in computer geometric design and other related areas. Moreover, we simulate these polynomials with their plots for some selected numerical values.Keywords: generating functions, Bernstein basis functions, Bernstein polynomials, Bezier curves, differential equations
Procedia PDF Downloads 2744530 An Inquiry on 2-Mass and Wheeled Mobile Robot Dynamics
Authors: Boguslaw Schreyer
Abstract:
In this paper, a general dynamical model is derived using the Lagrange formalism. The two masses: sprang and unsprang are included in a six-degree of freedom model for a sprung mass. The unsprung mass is included and shown only in a simplified model, although its equations have also been derived by an author. The simplified equations, more suitable for the computer model of robot’s dynamics are also shown.Keywords: dynamics, mobile, robot, wheeled mobile robots
Procedia PDF Downloads 3334529 Electrohydrodynamic Study of Microwave Plasma PECVD Reactor
Authors: Keltoum Bouherine, Olivier Leroy
Abstract:
The present work is dedicated to study a three–dimensional (3D) self-consistent fluid simulation of microwave discharges of argon plasma in PECVD reactor. The model solves the Maxwell’s equations, continuity equations for charged species and the electron energy balance equation, coupled with Poisson’s equation, and Navier-Stokes equations by finite element method, using COMSOL Multiphysics software. In this study, the simulations yield the profiles of plasma components as well as the charge densities and electron temperature, the electric field, the gas velocity, and gas temperature. The results show that the microwave plasma reactor is outside of local thermodynamic equilibrium.The present work is dedicated to study a three–dimensional (3D) self-consistent fluid simulation of microwave discharges of argon plasma in PECVD reactor. The model solves the Maxwell’s equations, continuity equations for charged species and the electron energy balance equation, coupled with Poisson’s equation, and Navier-Stokes equations by finite element method, using COMSOL Multiphysics software. In this study, the simulations yield the profiles of plasma components as well as the charge densities and electron temperature, the electric field, the gas velocity, and gas temperature. The results show that the microwave plasma reactor is outside of local thermodynamic equilibrium.Keywords: electron density, electric field, microwave plasma reactor, gas velocity, non-equilibrium plasma
Procedia PDF Downloads 3304528 A Semi-Implicit Phase Field Model for Droplet Evolution
Authors: M. H. Kazemi, D. Salac
Abstract:
A semi-implicit phase field method for droplet evolution is proposed. Using the phase field Cahn-Hilliard equation, we are able to track the interface in multiphase flow. The idea of a semi-implicit finite difference scheme is reviewed and employed to solve two nonlinear equations, including the Navier-Stokes and the Cahn-Hilliard equations. The use of a semi-implicit method allows us to have larger time steps compared to explicit schemes. The governing equations are coupled and then solved by a GMRES solver (generalized minimal residual method) using modified Gram-Schmidt orthogonalization. To show the validity of the method, we apply the method to the simulation of a rising droplet, a leaky dielectric drop and the coalescence of drops. The numerical solutions to the phase field model match well with existing solutions over a defined range of variables.Keywords: coalescence, leaky dielectric, numerical method, phase field, rising droplet, semi-implicit method
Procedia PDF Downloads 4814527 Fault Tolerant and Testable Designs of Reversible Sequential Building Blocks
Authors: Vishal Pareek, Shubham Gupta, Sushil Chandra Jain
Abstract:
With increasing high-speed computation demand the power consumption, heat dissipation and chip size issues are posing challenges for logic design with conventional technologies. Recovery of bit loss and bit errors is other issues that require reversibility and fault tolerance in the computation. The reversible computing is emerging as an alternative to conventional technologies to overcome the above problems and helpful in a diverse area such as low-power design, nanotechnology, quantum computing. Bit loss issue can be solved through unique input-output mapping which require reversibility and bit error issue require the capability of fault tolerance in design. In order to incorporate reversibility a number of combinational reversible logic based circuits have been developed. However, very few sequential reversible circuits have been reported in the literature. To make the circuit fault tolerant, a number of fault model and test approaches have been proposed for reversible logic. In this paper, we have attempted to incorporate fault tolerance in sequential reversible building blocks such as D flip-flop, T flip-flop, JK flip-flop, R-S flip-flop, Master-Slave D flip-flop, and double edge triggered D flip-flop by making them parity preserving. The importance of this proposed work lies in the fact that it provides the design of reversible sequential circuits completely testable for any stuck-at fault and single bit fault. In our opinion our design of reversible building blocks is superior to existing designs in term of quantum cost, hardware complexity, constant input, garbage output, number of gates and design of online testable D flip-flop have been proposed for the first time. We hope our work can be extended for building complex reversible sequential circuits.Keywords: parity preserving gate, quantum computing, fault tolerance, flip-flop, sequential reversible logic
Procedia PDF Downloads 5454526 Solving Ill-Posed Initial Value Problems for Switched Differential Equations
Authors: Eugene Stepanov, Arcady Ponosov
Abstract:
To model gene regulatory networks one uses ordinary differential equations with switching nonlinearities, where the initial value problem is known to be well-posed if the trajectories cross the discontinuities transversally. Otherwise, the initial value problem is usually ill-posed, which lead to theoretical and numerical complications. In the presentation, it is proposed to apply the theory of hybrid dynamical systems, rather than switched ones, to regularize the problem. 'Hybridization' of the switched system means that one attaches a dynamic discrete component ('automaton'), which follows the trajectories of the original system and governs its dynamics at the points of ill-posedness of the initial value problem making it well-posed. The construction of the automaton is based on the classification of the attractors of the specially designed adjoint dynamical system. Several examples are provided in the presentation, which support the suggested analysis. The method can also be of interest in other applied fields, where differential equations contain switchings, e.g. in neural field models.Keywords: hybrid dynamical systems, ill-posed problems, singular perturbation analysis, switching nonlinearities
Procedia PDF Downloads 1844525 Improving Ride Comfort of a Bus Using Fuzzy Logic Controlled Suspension
Authors: Mujde Turkkan, Nurkan Yagiz
Abstract:
In this study an active controller is presented for vibration suppression of a full-bus model. The bus is modelled having seven degrees of freedom. Using the achieved model via Lagrange Equations the system equations of motion are derived. The suspensions of the bus model include air springs with two auxiliary chambers are used. Fuzzy logic controller is used to improve the ride comfort. The numerical results, verifies that the presented fuzzy logic controller improves the ride comfort.Keywords: ride comfort, air spring, bus, fuzzy logic controller
Procedia PDF Downloads 4304524 Solving Mean Field Problems: A Survey of Numerical Methods and Applications
Authors: Amal Machtalay
Abstract:
In this survey, we aim to review the rapidly growing literature on numerical methods to solve different forms of mean field problems, namely mean field games (MFG), mean field controls (MFC), potential MFGs, and master equations, as well as their corresponding recent applications. Here, we distinguish two families of numerical methods: iterative methods based on mesh generation and those called mesh-free, normally related to neural networking and learning frameworks.Keywords: mean-field games, numerical schemes, partial differential equations, complex systems, machine learning
Procedia PDF Downloads 1134523 Comprehensive Investigation of Solving Analytical of Nonlinear Differential Equations at Chemical Reactions to Design of Reactors by New Method “AGM”
Authors: Mohammadreza Akbari, Pooya Soleimani Besheli, Reza khalili, Sara Akbari, Davood Domiri Ganji
Abstract:
In this symposium, our aims are accuracy, capabilities and power at solving of the complicate non-linear differential at the reaction chemical in the catalyst reactor (heterogeneous reaction). Our purpose is to enhance the ability of solving the mentioned nonlinear differential equations at chemical engineering and similar issues with a simple and innovative approach which entitled ‘’Akbari-Ganji's Method’’ or ‘’AGM’’. In this paper we solve many examples of nonlinear differential equations of chemical reactions and its investigate. The chemical reactor with the energy changing (non-isotherm) in two reactors of mixed and plug are separately studied and the nonlinear differential equations obtained from the reaction behavior in these systems are solved by a new method. Practically, the reactions with the energy changing (heat or cold) have an important effect on designing and function of the reactors. This means that possibility of reaching the optimal conditions of operation for the maximum conversion depending on nonlinear nature of the reaction velocity toward temperature, results in the complexity of the operation in the reactor. In this case, the differential equation set which governs the reactors can be obtained simultaneous solution of mass equilibrium and energy and temperature changing at concentration.Keywords: new method (AGM), nonlinear differential equation, tubular and mixed reactors, catalyst bed
Procedia PDF Downloads 3824522 Segregation Patterns of Trees and Grass Based on a Modified Age-Structured Continuous-Space Forest Model
Authors: Jian Yang, Atsushi Yagi
Abstract:
Tree-grass coexistence system is of great importance for forest ecology. Mathematical models are being proposed to study the dynamics of tree-grass coexistence and the stability of the systems. However, few of the models concentrates on spatial dynamics of the tree-grass coexistence. In this study, we modified an age-structured continuous-space population model for forests, obtaining an age-structured continuous-space population model for the tree-grass competition model. In the model, for thermal competitions, adult trees can out-compete grass, and grass can out-compete seedlings. We mathematically studied the model to make sure tree-grass coexistence solutions exist. Numerical experiments demonstrated that a fraction of area that trees or grass occupies can affect whether the coexistence is stable or not. We also tried regulating the mortality of adult trees with other parameters and the fraction of area trees and grass occupies were fixed; results show that the mortality of adult trees is also a factor affecting the stability of the tree-grass coexistence in this model.Keywords: population-structured models, stabilities of ecosystems, thermal competitions, tree-grass coexistence systems
Procedia PDF Downloads 1594521 Gender and Geographical Disparity in Editorial Boards of Lithuanian Scientific Journals: An Overview of Different Science Disciplines
Authors: Andrius Suminas
Abstract:
Editors-in-chief and members of editorial boards of scientific journals play an extremely important role in the development of science and assure research integrity, as scientific publications are the major results of research. While gender parity in tenure-track hiring decisions and promotion rates has improved, female academics remain underrepresented in senior career phases, including editors-in-chief and members of editorial boards positions of scientific journals. Journal editors and members of editorial boards exert considerable power over what is published and in certain cases the direction of an academic discipline and the career advancement of authors. For this reason it is important to minimize biases extrinsic to the merit of the work impacting publication decisions. One way to achieve this is to ensure a diverse pool of editors and members of editorial boards, ensuring the widest possible coverage of different competencies. This is in line with a diversity model of editorial appointment where editorial boards are structured to dismantle wider conditions of inequality. Another possible option, a distributive model would seek an editorial board reflective of existing proportions in the field at large. Paper presents comprehensive results of Lithuanian scientific journals study. During the research process were reviewed publicly available information from all scientific journals published in Lithuania to infer the proportions of members of editorial boards by gender and country of affiliation. The results of the study revealed differences the proportions of male and female members of editorial boards in different disciplines of science, as well as clear geographical disparity in Lithianian scientific journals editorial boards.Keywords: scientific journals, editorial boards of scientific journals, gender disparity, geographical disparity, scientific communication
Procedia PDF Downloads 954520 Modified Fractional Curl Operator
Authors: Rawhy Ismail
Abstract:
Applying fractional calculus in the field of electromagnetics shows significant results. The fractionalization of the conventional curl operator leads to having additional solutions to an electromagnetic problem. This work restudies the concept of the fractional curl operator considering fractional time derivatives in Maxwell’s curl equations. In that sense, a general scheme for the wave loss term is introduced and the degree of freedom of the system is affected through imposing the new fractional parameters. The conventional case is recovered by setting all fractional derivatives to unity.Keywords: curl operator, fractional calculus, fractional curl operators, Maxwell equations
Procedia PDF Downloads 4874519 Electrokinetic Transport of Power Law Fluid through Hydrophobic Micro-Slits
Authors: Ainul Haque, Ameeye Kumar Nayak
Abstract:
Flow enhancement and species transport in a slit hydrophobic microchannel is studied for non-Newtonian fluids with the externally imposed electric field and pressure gradient. The incompressible Poisson-Nernst-Plank equations and the Navier-Stokes equations are approximated by lubrication theory to quantify the flow structure due to hydrophobic and hydrophilic surfaces. The analytical quantification of velocity and pressure of electroosmotic flow (EOF) is made with the numerical results due to the staggered grid based finite volume method for flow governing equations. The resistance force due to fluid friction and shear force along the surface are decreased by the hydrophobicity, enables the faster movement of fluid particles. The resulting flow enhancement factor Ef is increased with the low viscous fluid and provides maximum species transport. Also, the analytical comparison of EOF with pressure driven EOF justifies the flow enhancement due to hydrophobicity and shear impact on flow variation.Keywords: electroosmotic flow, hydrophobic surface, power-law fluid, shear effect
Procedia PDF Downloads 3774518 Effect of Slip Condition and Magnetic Field on Unsteady MHD Thin Film Flow of a Third Grade Fluid with Heat Transfer down an Inclined Plane
Authors: Y. M. Aiyesimi, G. T. Okedayo, O. W. Lawal
Abstract:
The analysis has been carried out to study unsteady MHD thin film flow of a third grade fluid down an inclined plane with heat transfer when the slippage between the surface of plane and the lower surface of the fluid is valid. The governing nonlinear partial differential equations involved are reduced to linear partial differential equations using regular perturbation method. The resulting equations were solved analytically using method of separation of variable and eigenfunctions expansion. The solutions obtained were examined and discussed graphically. It is interesting to find that the variation of the velocity and temperature profile with the slip and magnetic field parameter depends on time.Keywords: non-Newtonian fluid, MHD flow, thin film flow, third grade fluid, slip boundary condition, heat transfer, separation of variable, eigenfunction expansion
Procedia PDF Downloads 3834517 Simulation of Turbulent Flow in Channel Using Generalized Hydrodynamic Equations
Authors: Alex Fedoseyev
Abstract:
This study explores Generalized Hydrodynamic Equations (GHE) for the simulation of turbulent flows. The GHE was derived from the Generalized Boltzmann Equation (GBE) by Alexeev (1994). GBE was obtained by first principles from the chain of Bogolubov kinetic equations and considered particles of finite dimensions, Alexeev (1994). The GHE has new terms, temporal and spatial fluctuations compared to the Navier-Stokes equations (NSE). These new terms have a timescale multiplier τ, and the GHE becomes the NSE when τ is zero. The nondimensional τ is a product of the Reynolds number and the squared length scale ratio, τ=Re*(l/L)², where l is the apparent Kolmogorov length scale, and L is a hydrodynamic length scale. The turbulence phenomenon is not well understood and is not described by NSE. An additional one or two equations are required for the turbulence model, which may have to be tuned for specific problems. We show that, in the case of the GHE, no additional turbulence model is needed, and the turbulent velocity profile is obtained from the GHE. The 2D turbulent channel and circular pipe flows were investigated using a numerical solution of the GHE for several cases. The solutions are compared with the experimental data in the circular pipes and 2D channels by Nicuradse (1932, Prandtl Lab), Hussain and Reynolds (1975), Wei and Willmarth (1989), Van Doorne (2007), theory by Wosnik, Castillo and George (2000), and the relevant experiments on Superpipe setup at Princeton, data by Zagarola (1996) and Zagarola and Smits (1998), the Reynolds number is from Re=7200 to Re=960000. The numerical solution data compared well with the experimental data, as well as with the approximate analytical solution for turbulent flow in channel Fedoseyev (2023). The obtained results confirm that the Alexeev generalized hydrodynamic theory (GHE) is in good agreement with the experiments for turbulent flows. The proposed approach is limited to 2D and 3D axisymmetric channel geometries. Further work will extend this approach by including channels with square and rectangular cross-sections.Keywords: comparison with experimental data. generalized hydrodynamic equations, numerical solution, turbulent boundary layer, turbulent flow in channel
Procedia PDF Downloads 654516 Characteristics and Prevalence of Anaemia among Mothers and Young Children in Rural Uganda
Authors: Pamela E. Mukaire
Abstract:
Anemia and chronic energy deficiency are significant manifestations of poor nutritional health. Anaemia and nutritional status screening are practical ways for assessing the prevalence of iron deficiency anemia in the food insecure populations with large groups of childbearing women and children. The objective of the study was to assess anemia prevalence and other clinical manifestations of malnutrition among pairs of mothers and young children in rural Uganda. This community cross-sectional study used consecutive sampling to select 214 mothers and 214 children for the study. Data was generated using structured questionnaire, anthropometric measurements and on site analysis for anemia. Bivariable and multivariable analyses were used to assess the effect of different factors on anaemia. Of the 214 mothers, 54.2% were 25-34 years of age, 76.7% unmarried, 63% low income, and 55% had more than four children. Of the 214 children, 57% were female, 50% between 1 to 3 years of age and 35% under one year, and. Overall, 38% of the households had more 4 children under the age of 12. The prevalence of anemia was 48% for mothers and 72% for children; 20.6% of mothers had moderate to severe chronic energy deficiency, 39% had moderately-severe anaemia (10 to 7.1 g/dL). Among children, 53% had moderately-severe anaemia, and 18.2% had severe anaemia. Parity X2 =20, p < .037, number of children under 12 years living in a household X2 =10, p < .015, and child’s gender X2 =6.5, p < .038, had a significant relationship with maternal anaemia. There was a significant relationship between household income X2 =10, p < .005, marital status X2 =9, p < .011, owing a piece of land X2 =18, p < .000, owing home X2 =7, p < .036, and anaemia in children. The prevalence of anemia was high in both mothers and children. Income, marital status, owing a piece of land, owing home, number of children under age 12 in a household were associated with anaemia. Hence, efforts should be made for early diagnosis and management of anaemia deficiencies with special emphasis on those households with large number of children under age 12.Keywords: anemia, maternal-child, nutrition, rural population
Procedia PDF Downloads 2824515 Development of Variable Order Block Multistep Method for Solving Ordinary Differential Equations
Authors: Mohamed Suleiman, Zarina Bibi Ibrahim, Nor Ain Azeany, Khairil Iskandar Othman
Abstract:
In this paper, a class of variable order fully implicit multistep Block Backward Differentiation Formulas (VOBBDF) using uniform step size for the numerical solution of stiff ordinary differential equations (ODEs) is developed. The code will combine three multistep block methods of order four, five and six. The order selection is based on approximation of the local errors with specific tolerance. These methods are constructed to produce two approximate solutions simultaneously at each iteration in order to further increase the efficiency. The proposed VOBBDF is validated through numerical results on some standard problems found in the literature and comparisons are made with single order Block Backward Differentiation Formula (BBDF). Numerical results shows the advantage of using VOBBDF for solving ODEs.Keywords: block backward differentiation formulas, uniform step size, ordinary differential equations
Procedia PDF Downloads 4474514 Numerical Evolution Methods of Rational Form for Diffusion Equations
Authors: Said Algarni
Abstract:
The purpose of this study was to investigate selected numerical methods that demonstrate good performance in solving PDEs. We adapted alternative method that involve rational polynomials. Padé time stepping (PTS) method, which is highly stable for the purposes of the present application and is associated with lower computational costs, was applied. Furthermore, PTS was modified for our study which focused on diffusion equations. Numerical runs were conducted to obtain the optimal local error control threshold.Keywords: Padé time stepping, finite difference, reaction diffusion equation, PDEs
Procedia PDF Downloads 2984513 X-Ray Dynamical Diffraction Rocking Curves in Case of Third Order Nonlinear Renninger Effect
Authors: Minas Balyan
Abstract:
In the third-order nonlinear Takagi’s equations for monochromatic waves and in the third-order nonlinear time-dependent dynamical diffraction equations for X-ray pulses for forbidden reflections the Fourier-coefficients of the linear and the third order nonlinear susceptibilities are zero. The dynamical diffraction in the nonlinear case is related to the presence in the nonlinear equations the terms proportional to the zero order and the second order nonzero Fourier coefficients of the third order nonlinear susceptibility. Thus in the third order nonlinear Bragg diffraction case a nonlinear analogue of the well known Renninger effect takes place. In this work, the ‘third order nonlinear Renninger effect’ is considered theoretically and numerically. If the reflection exactly is forbidden the diffracted wave’s amplitude is zero both in Laue and Bragg cases since the boundary conditions and dynamical diffraction equations are compatible with zero solution. But in real crystals due to some percent of dislocations and other localized defects, the atoms are displaced with respect to their equilibrium positions. Thus in real crystals susceptibilities of forbidden reflection are by some order small than for usual not forbidden reflections but are not exactly equal to zero. The numerical calculations for susceptibilities two order less than for not forbidden reflection show that in Bragg geometry case the nonlinear reflection curve’s behavior is the same as for not forbidden reflection, but for forbidden reflection the rocking curves’ width, center and boundaries are two order sensitive on the input intensity value. This gives an opportunity to investigate third order nonlinear X-ray dynamical diffraction for not intense beams – 0.001 in the units of critical intensity.Keywords: third order nonlinearity, Bragg diffraction, nonlinear Renninger effect, rocking curves
Procedia PDF Downloads 406