Search results for: scalable multi-qubit teleportation
Commenced in January 2007
Frequency: Monthly
Edition: International

Search results for: scalable multi-qubit teleportation

Transformer-Driven Multi-Category Classification for an Automated Academic Strand Recommendation Framework

Authors: Ma Cecilia Siva

Abstract:

This study introduces a Bidirectional Encoder Representations from Transformers (BERT)-based machine learning model aimed at improving educational counseling by automating the process of recommending academic strands for students. The framework is designed to streamline and enhance the strand selection process by analyzing students' profiles and suggesting suitable academic paths based on their interests, strengths, and goals. Data was gathered from a sample of 200 grade 10 students, which included personal essays and survey responses relevant to strand alignment. After thorough preprocessing, the text data was tokenized, label-encoded, and input into a fine-tuned BERT model set up for multi-label classification. The model was optimized for balanced accuracy and computational efficiency, featuring a multi-category classification layer with sigmoid activation for independent strand predictions. Performance metrics showed an F1 score of 88%, indicating a well-balanced model with precision at 80% and recall at 100%, demonstrating its effectiveness in providing reliable recommendations while reducing irrelevant strand suggestions. To facilitate practical use, the final deployment phase created a recommendation framework that processes new student data through the trained model and generates personalized academic strand suggestions. This automated recommendation system presents a scalable solution for academic guidance, potentially enhancing student satisfaction and alignment with educational objectives. The study's findings indicate that expanding the data set, integrating additional features, and refining the model iteratively could improve the framework's accuracy and broaden its applicability in various educational contexts.

Keywords: tokenized, sigmoid activation, transformer, multi category classification

Procedia PDF Downloads 16
Two-Dimensional Van-Der Waals Heterostructure for Highly Energy-Efficient Field-Free Deterministic Spin-Orbit Torque Switching at Room Temperature

Authors: Pradeep Raj Sharma, Bogeun Jang, Jongill Hong

Abstract:

Spin-orbit torque (SOT) is an efficient approach for manipulating the magnetization of ferromagnetic materials (FMs), providing improved device performance, better compatibility, and ultra-fast switching with lower power consumption compared to spin-transfer torque (STT). Among the various materials and structural designs, two-dimensional (2D) van-der Waals (vdW) layered materials and their heterostructures have been demonstrated as highly scalable and promising device architecture for SOT. In particular, a bilayer heterostructure consisting of fully 2D-vdW-FM, non-magnetic material (NM) offers a potential platform for controlling the magnetization using SOT because of the advantages of being easy to scale and less energy to switch. Here, we report filed-free deterministic switching driven by SOT at room temperature, integrating perpendicularly magnetized 2D-vdW material Fe₃GaTe₂ (FGaT) and NM WTe₂. Pulse current-induced magnetization switching with an ultra-low current density of about 6.5×10⁵ A/cm², yielding a SOT efficiency close to double-digits at 300 K, is reported. These values are two orders of magnitude higher than those observed in conventional heavy metal (HM) based SOT and exceed those reported with 2D-vdW layered materials. WTe₂, a topological semimetal possessing strong SOC and high spin Hall angle, can induce significant spin accumulation with negligible spin loss across the transparent 2D bilayer heterointerface. This promising device architecture enables highly compatible, energy-efficient, non-volatile memory and lays the foundation for designing efficient, flexible, and miniaturized spintronic devices.

Keywords: spintronics, spin-orbit torque, spin Hall effect, spin Hall angle, topological semimetal, perpendicular magnetic anisotropy

Procedia PDF Downloads 20
Passively Q-Switched 914 nm Microchip Laser for LIDAR Systems

Authors: Marco Naegele, Klaus Stoppel, Thomas Dekorsy

Abstract:

Passively Q-switched microchip lasers enable the great potential for sophisticated LiDAR systems due to their compact overall system design, excellent beam quality, and scalable pulse energies. However, many near-infrared solid-state lasers show emitting wavelengths > 1000 nm, which are not compatible with state-of-the-art silicon detectors. Here we demonstrate a passively Q-switched microchip laser operating at 914 nm. The microchip laser consists of a 3 mm long Nd:YVO₄ crystal as a gain medium, while Cr⁴⁺:YAG with an initial transmission of 98% is used as a saturable absorber. Quasi-continuous pumping enables single pulse operation, and low duty cycles ensure low overall heat generation and power consumption. Thus, thermally induced instabilities are minimized, and operation without active cooling is possible while ambient temperature changes are compensated by adjustment of the pump laser current only. Single-emitter diode pumping at 808 nm leads to a compact overall system design and robust setup. Utilization of a microchip cavity approach ensures single-longitudinal mode operation with spectral bandwidths in the picometer regime and results in short laser pulses with pulse durations below 10 ns. Beam quality measurements reveal an almost diffraction-limited beam and enable conclusions concerning the thermal lens, which is essential to stabilize the plane-plane resonator. A 7% output coupler transmissivity is used to generate pulses with energies in the microjoule regime and peak powers of more than 600 W. Long-term pulse duration, pulse energy, central wavelength, and spectral bandwidth measurements emphasize the excellent system stability and facilitate the utilization of this laser in the context of a LiDAR system.

Keywords: diode-pumping, LiDAR system, microchip laser, Nd:YVO4 laser, passively Q-switched

Procedia PDF Downloads 134
NiFe-Type Catalysts for Anion Exchange Membrane (AEM) Electrolyzers

Authors: Boldin Roman, Liliana Analía Diaz

Abstract:

As the hydrogen economy continues to expand, reducing energy consumption and emissions while stimulating economic growth, the development of efficient and cost-effective hydrogen production technologies is critical. Among various methods, anion exchange membrane (AEM) water electrolysis stands out due to its potential for using non-noble metal catalysts. The exploration and enhancement of non-noble metal catalysts, such as NiFe-type catalysts, are pivotal for the advancement of AEM technology, ensuring its commercial viability and environmental sustainability. NiFe-type catalysts were synthesized through electrodeposition and characterized both electrochemically and physico-chemically. Various supports, including Ni foam and Ni mesh, were used as porous transport layers (PTLs) to evaluate the effective catalyst thickness and the influence of the PTL in a 5 cm² AEM electrolyzer. This methodological approach allows for a detailed assessment of catalyst performance under operational conditions typical of industrial hydrogen production. The study revealed that electrodeposited non-noble multi-metallic catalysts maintain stable performance as anodes in AEM water electrolysis. NiFe-type catalysts demonstrated superior activity, with the NiFeCoP alloy outperforming others by delivering the lowest overpotential and the highest current density. Furthermore, the use of different PTLs showed significant effects on the electrochemical behavior of the catalysts, indicating that PTL selection is crucial for optimizing performance and efficiency in AEM electrolyzers. Conclusion: The research underscores the potential of non-noble metal catalysts in enhancing efficiency and reducing the costs of AEM electrolysers. The findings highlight the importance of catalyst and PTL optimization in developing scalable and economically viable hydrogen production technologies. Continued innovation in this area is essential for supporting the growth of the hydrogen economy and achieving sustainable energy solutions.

Keywords: AEMWE, electrocatalyst, hydrogen production, water electrolysis.

Procedia PDF Downloads 39
The Use of Correlation Difference for the Prediction of Leakage in Pipeline Networks

Authors: Mabel Usunobun Olanipekun, Henry Ogbemudia Omoregbee

Abstract:

Anomalies such as water pipeline and hydraulic or petrochemical pipeline network leakages and bursts have significant implications for economic conditions and the environment. In order to ensure pipeline systems are reliable, they must be efficiently controlled. Wireless Sensor Networks (WSNs) have become a powerful network with critical infrastructure monitoring systems for water, oil and gas pipelines. The loss of water, oil and gas is inevitable and is strongly linked to financial costs and environmental problems, and its avoidance often leads to saving of economic resources. Substantial repair costs and the loss of precious natural resources are part of the financial impact of leaking pipes. Pipeline systems experts have implemented various methodologies in recent decades to identify and locate leakages in water, oil and gas supply networks. These methodologies include, among others, the use of acoustic sensors, measurements, abrupt statistical analysis etc. The issue of leak quantification is to estimate, given some observations about that network, the size and location of one or more leaks in a water pipeline network. In detecting background leakage, however, there is a greater uncertainty in using these methodologies since their output is not so reliable. In this work, we are presenting a scalable concept and simulation where a pressure-driven model (PDM) was used to determine water pipeline leakage in a system network. These pressure data were collected with the use of acoustic sensors located at various node points after a predetermined distance apart. We were able to determine with the use of correlation difference to determine the leakage point locally introduced at a predetermined point between two consecutive nodes, causing a substantial pressure difference between in a pipeline network. After de-noising the signal from the sensors at the nodes, we successfully obtained the exact point where we introduced the local leakage using the correlation difference model we developed.

Keywords: leakage detection, acoustic signals, pipeline network, correlation, wireless sensor networks (WSNs)

Procedia PDF Downloads 119
Motor Control Recovery Minigame

Authors: Taha Enes Kon, Vanshika Reddy

Abstract:

This project focuses on developing a gamified mobile application to aid in stroke rehabilitation by enhancing motor skills through interactive activities. The primary goal was to design a companion app for a passive haptic rehab glove, incorporating Google MediaPipe for gesture tracking and vibrotactile feedback. The app simulates farming activities, offering a fun and engaging experience while addressing the monotony of traditional rehabilitation methods. The prototype focuses on a single minigame, Flower Picking, which uses gesture recognition to interact with virtual elements, encouraging users to perform exercises that improve hand dexterity. The development process involved creating accessible and user-centered designs using Figma, integrating gesture recognition algorithms, and implementing unity-based game mechanics. Real-time feedback and progressive difficulty levels ensured a personalized experience, motivating users to adhere to rehabilitation routines. The prototype achieved a gesture detection precision of 90%, effectively recognizing predefined gestures such as the Fist and OK symbols. Quantitative analysis highlighted a 40% increase in average session duration compared to traditional exercises, while qualitative feedback praised the app’s immersive design and ease of use. Despite its success, challenges included rigidity in gesture recognition, requiring precise hand orientations, and limited gesture support. Future improvements include expanding gesture adaptability and incorporating additional minigames to target a broader range of exercises. The project demonstrates the potential of gamification in stroke rehabilitation, offering a scalable and accessible solution that complements clinical treatments, making recovery engaging and effective for users.

Keywords: stroke rehabilitation, haptic feedback, gamification, MediaPipe, motor control

Procedia PDF Downloads 12
Eco-Products in Day-to-Day Life: A Catalyst for Achieving Sustainability

Authors: Rani Fernandez

Abstract:

As global concerns regarding environmental degradation and climate change intensify, the imperative for sustainable living has never been more critical. This research delves into the role of eco-products in everyday life as a pivotal strategy for achieving sustainability. The study investigates the awareness, adoption, and impact of eco-friendly products on individual and community levels. The research employs a mixed-methods approach, combining surveys, interviews, and case studies to explore consumer perceptions, behaviours, and motivations surrounding the use of eco-products. Additionally, life cycle assessments are conducted to evaluate the environmental footprint of selected eco-products, shedding light on their tangible contributions to sustainability. The findings reveal the diverse range of eco-products available in the market, from biodegradable packaging to energy-efficient appliances, and the extent to which consumers integrate these products into their daily routines. Moreover, the research examines the challenges and opportunities associated with widespread adoption, considering factors such as cost, accessibility, and efficacy. In addition to individual consumption patterns, the study investigates the broader societal impact of eco-product integration. It explores the potential for eco-products to drive systemic change by influencing supply chains, corporate practices, and government policies. The research highlights successful case studies of communities or businesses that have effectively incorporated eco-products, providing valuable insights into scalable models for sustainability. Ultimately, this research contributes to the discourse on sustainable living by elucidating the pivotal role of eco-products in shaping environmentally conscious behaviours. By understanding the dynamics of eco-product adoption, policymakers, businesses, and individuals can collaboratively work towards a more sustainable future. The implications of this study extend beyond academia, informing practical strategies for fostering a global shift towards sustainable consumption and production.

Keywords: eco-friendly, sustainablity, environment, climate change

Procedia PDF Downloads 44
Analysis of Biomarkers Intractable Epileptogenic Brain Networks with Independent Component Analysis and Deep Learning Algorithms: A Comprehensive Framework for Scalable Seizure Prediction with Unimodal Neuroimaging Data in Pediatric Patients

Authors: Bliss Singhal

Abstract:

Epilepsy is a prevalent neurological disorder affecting approximately 50 million individuals worldwide and 1.2 million Americans. There exist millions of pediatric patients with intractable epilepsy, a condition in which seizures fail to come under control. The occurrence of seizures can result in physical injury, disorientation, unconsciousness, and additional symptoms that could impede children's ability to participate in everyday tasks. Predicting seizures can help parents and healthcare providers take precautions, prevent risky situations, and mentally prepare children to minimize anxiety and nervousness associated with the uncertainty of a seizure. This research proposes a comprehensive framework to predict seizures in pediatric patients by evaluating machine learning algorithms on unimodal neuroimaging data consisting of electroencephalogram signals. The bandpass filtering and independent component analysis proved to be effective in reducing the noise and artifacts from the dataset. Various machine learning algorithms’ performance is evaluated on important metrics such as accuracy, precision, specificity, sensitivity, F1 score and MCC. The results show that the deep learning algorithms are more successful in predicting seizures than logistic Regression, and k nearest neighbors. The recurrent neural network (RNN) gave the highest precision and F1 Score, long short-term memory (LSTM) outperformed RNN in accuracy and convolutional neural network (CNN) resulted in the highest Specificity. This research has significant implications for healthcare providers in proactively managing seizure occurrence in pediatric patients, potentially transforming clinical practices, and improving pediatric care.

Keywords: intractable epilepsy, seizure, deep learning, prediction, electroencephalogram channels

Procedia PDF Downloads 89
Formulation of Hybrid Nanopowder-Molecular Ink for Fabricating Critical Material-Free Cu₂ZnSnS₄ Thin Film Solar Absorber

Authors: Anies Mutiari, Neha Bansal, Martin Artner, Veronika Mayer, Juergen Roth, Mathias Weil, Rachmat Adhi Wibowo

Abstract:

Cu₂ZnSnS₄ (CZTS) compound (mineral name kesterite) has attracted considerable interests for photovoltaic application owing to its optoelectrical properties. Moreover, its elemental abundance in Earth’s crust offers a comparative advantage for envisaged large-scale photovoltaic deployment without any material shortage issues. In this contribution, we present an innovative route to prepare CZTS solar absorber layer for photovoltaic application from low-cost and up-scalable process. CZTS layers were spin coated on the Molybdenum-coated glass from two inks composed of different solvents; dimethylsulfoxide (DMSO) and ultrapure water. Into each solvent; 0.57M CuCl₂, 0.39M ZnCl₂, 0.53M SnCl₂, and 1.85M Thiourea or Na₂S₂O₃, as well as pre-synthesized CZTS nanopowder, were added as sources of Cu, Zn, Sn and S in the ink. The crystallisation of ink into CZTS dense layers was carried out by firstly annealing the as-deposited CZTS layer in open air at 300°C for 1 minute, followed by sulfurisation at 560–620°C under atmospheric pressure for 120 minutes. Complementary electron microscopy, grazing incidence X-ray diffraction and Raman spectroscopy investigations suggest that both solvents can be used for preparing high quality and device relevant CZTS solar absorber layers. The sulphurisation crystallizes the as-deposited CZTS into highly polycrystalline CZTS layer with tetragonal structure demonstrated by the presence of tetrahedrally-shaped grains with the size of 1 µm. An advancement of the CZTS layer preparation was made by gradual substitution of volatile organic compound solvent of DMSO with ultrapure water. It is revealed that by using similar air annealing and sulphurisation process, dense and compact CZTS layers can also be fabricated from an ink with reduced volatile organic compound content.

Keywords: kesterite, solar ink, spin coating, photovoltaics

Procedia PDF Downloads 175
Spatiotemporal Variability of Snow Cover and Snow Water Equivalent over Eurasia

Authors: Yinsheng Zhang

Abstract:

Changes in the extent and amount of snow cover in Eurasia are of great interest because of their vital impacts on the global climate system and regional water resource management. This study investigated the spatial and temporal variability of the snow cover extent (SCE) and snow water equivalent (SWE) of continental Eurasia using the Northern Hemisphere Equal-Area Scalable Earth Grid (EASE-Grid) Weekly SCE data for 1972–2006 and the Global Monthly EASE-Grid SWE data for 1979–2004. The results indicated that, in general, the spatial extent of snow cover significantly decreased during spring and summer, but varied little during autumn and winter over Eurasia in the study period. The date at which snow cover began to disappear in spring has significantly advanced, whereas the timing of snow cover onset in autumn did not vary significantly during 1972–2006. The snow cover persistence period declined significantly in the western Tibetan Plateau as well as the partial area of Central Asia and northwestern Russia but varied little in other parts of Eurasia. ‘Snow-free breaks’ (SFBs) with intermittent snow cover in the cold season were mainly observed in the Tibetan Plateau and Central Asia, causing a low sensitivity of snow cover persistence period to the timings of snow cover onset and disappearance over the areas with shallow snow. The averaged SFBs were 1–14 weeks in the Tibetan Plateau during 1972–2006 and the maximum intermittence could reach 25 weeks in some extreme years. At a seasonal scale, the SWE usually peaked in February or March but fell gradually since April across Eurasia. Both annual mean and annual maximum SWE decreased significantly during 1979–2004 in most parts of Eurasia except for eastern Siberia as well as northwestern and northeastern China.

Keywords: Eurasia, snow cover extent, snow cover persistence period, snow-free breaks, onset and disappearance timings, snow water equivalent

Procedia PDF Downloads 150
Fostering Social Challenges Within Entrepreneur University Systems: The Case of UPV

Authors: Cristobal Miralles Insa

Abstract:

The network of chairs of the "Valencian Public System of Social Services" (VPSSS) is sponsored by the Valencian Institute of Training, Research, and Quality in Social Services and aims to promote research, dissemination, and evaluation of the needs that arise in the field of the public system of social services. It also seeks to transfer knowledge to foster the development of public policies in this field. Given that it is an Interuniversity Chair among the five public universities in Valencia, there is coordination of complementary themes and roles for this objective, with Universitat Politènica de València focusing primarily on promoting innovation and social entrepreneurship to address multiple social challenges through its platform INSSPIRA. This approach is aimed at the entire university community and its various interest groups, carrying out research, teaching, and dissemination activities that promote social inclusion, personal development, and autonomy for groups in situations of vulnerability, lack of protection, dependence, or social urgency. Although it focuses on the Valencian context, both the issues in this context and the tools in process to address them, often have a universal and scalable character and has been inspiring for the innovation system of UPV. This entrepreneurial incubator goes along from early stages of students on the campus until the so-called “StartUPV” system, where students are challenged with social problems that require creative solutions. Therefore, the Chair is conceived with a holistic spirit and an inspiring vocation that engages the whole university community. In this communication, it is described the entities and individuals participating in this UPV Chair of VPSSS, followed by the presentation of different work lines and objectives for the chair. Subsequently, a description of various activities undertaken to promote innovation in social services are described, where support to teaching and extracurricular activities in this field are exposed. It must be noted that some awareness and dissemination of activities are carried out in a transversal mode as they contribute to different objectives simultaneously; with special focus on Learning-Service approaches that achieved very good results which are also summarized.

Keywords: social innovation, entrepeneurship, university, vulnerable sectors

Procedia PDF Downloads 61
Feature Engineering Based Detection of Buffer Overflow Vulnerability in Source Code Using Deep Neural Networks

Authors: Mst Shapna Akter, Hossain Shahriar

Abstract:

One of the most important challenges in the field of software code audit is the presence of vulnerabilities in software source code. Every year, more and more software flaws are found, either internally in proprietary code or revealed publicly. These flaws are highly likely exploited and lead to system compromise, data leakage, or denial of service. C and C++ open-source code are now available in order to create a largescale, machine-learning system for function-level vulnerability identification. We assembled a sizable dataset of millions of opensource functions that point to potential exploits. We developed an efficient and scalable vulnerability detection method based on deep neural network models that learn features extracted from the source codes. The source code is first converted into a minimal intermediate representation to remove the pointless components and shorten the dependency. Moreover, we keep the semantic and syntactic information using state-of-the-art word embedding algorithms such as glove and fastText. The embedded vectors are subsequently fed into deep learning networks such as LSTM, BilSTM, LSTM-Autoencoder, word2vec, BERT, and GPT-2 to classify the possible vulnerabilities. Furthermore, we proposed a neural network model which can overcome issues associated with traditional neural networks. Evaluation metrics such as f1 score, precision, recall, accuracy, and total execution time have been used to measure the performance. We made a comparative analysis between results derived from features containing a minimal text representation and semantic and syntactic information. We found that all of the deep learning models provide comparatively higher accuracy when we use semantic and syntactic information as the features but require higher execution time as the word embedding the algorithm puts on a bit of complexity to the overall system.

Keywords: cyber security, vulnerability detection, neural networks, feature extraction

Procedia PDF Downloads 94
NanoSat MO Framework: Simulating a Constellation of Satellites with Docker Containers

Authors: César Coelho, Nikolai Wiegand

Abstract:

The advancement of nanosatellite technology has opened new avenues for cost-effective and faster space missions. The NanoSat MO Framework (NMF) from the European Space Agency (ESA) provides a modular and simpler approach to the development of flight software and operations of small satellites. This paper presents a methodology using the NMF together with Docker for simulating constellations of satellites. By leveraging Docker containers, the software environment of individual satellites can be easily replicated within a simulated constellation. This containerized approach allows for rapid deployment, isolation, and management of satellite instances, facilitating comprehensive testing and development in a controlled setting. By integrating the NMF lightweight simulator in the container, a comprehensive simulation environment was achieved. A significant advantage of using Docker containers is their inherent scalability, enabling the simulation of hundreds or even thousands of satellites with minimal overhead. Docker's lightweight nature ensures efficient resource utilization, allowing for deployment on a single host or across a cluster of hosts. This capability is crucial for large-scale simulations, such as in the case of mega-constellations, where multiple traditional virtual machines would be impractical due to their higher resource demands. This ability for easy horizontal scaling based on the number of simulated satellites provides tremendous flexibility to different mission scenarios. Our results demonstrate that leveraging Docker containers with the NanoSat MO Framework provides a highly efficient and scalable solution for simulating satellite constellations, offering not only significant benefits in terms of resource utilization and operational flexibility but also enabling testing and validation of ground software for constellations. The findings underscore the importance of taking advantage of already existing technologies in computer science to create new solutions for future satellite constellations in space.

Keywords: containerization, docker containers, NanoSat MO framework, satellite constellation simulation, scalability, small satellites

Procedia PDF Downloads 54
Healthcare-SignNet: Advanced Video Classification for Medical Sign Language Recognition Using CNN and RNN Models

Authors: Chithra A. V., Somoshree Datta, Sandeep Nithyanandan

Abstract:

Sign Language Recognition (SLR) is the process of interpreting and translating sign language into spoken or written language using technological systems. It involves recognizing hand gestures, facial expressions, and body movements that makeup sign language communication. The primary goal of SLR is to facilitate communication between hearing- and speech-impaired communities and those who do not understand sign language. Due to the increased awareness and greater recognition of the rights and needs of the hearing- and speech-impaired community, sign language recognition has gained significant importance over the past 10 years. Technological advancements in the fields of Artificial Intelligence and Machine Learning have made it more practical and feasible to create accurate SLR systems. This paper presents a distinct approach to SLR by framing it as a video classification problem using Deep Learning (DL), whereby a combination of Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) has been used. This research targets the integration of sign language recognition into healthcare settings, aiming to improve communication between medical professionals and patients with hearing impairments. The spatial features from each video frame are extracted using a CNN, which captures essential elements such as hand shapes, movements, and facial expressions. These features are then fed into an RNN network that learns the temporal dependencies and patterns inherent in sign language sequences. The INCLUDE dataset has been enhanced with more videos from the healthcare domain and the model is evaluated on the same. Our model achieves 91% accuracy, representing state-of-the-art performance in this domain. The results highlight the effectiveness of treating SLR as a video classification task with the CNN-RNN architecture. This approach not only improves recognition accuracy but also offers a scalable solution for real-time SLR applications, significantly advancing the field of accessible communication technologies.

Keywords: sign language recognition, deep learning, convolution neural network, recurrent neural network

Procedia PDF Downloads 36
AI-Powered Prediction of Email Spoofing Using Deep Learning Approach

Authors: N. Kannaiya Raja, Himay Mehta, Jay Garg, Anurag Kumar Singh, Aryan Tiwari, Daksha Thorecha

Abstract:

Email spoofing poses a significant threat to cybersecurity, as it exploits vulnerabilities in email systems to mislead individuals and organizations, leading to data breaches, financial losses, and compromised systems. To tackle this issue, this research presents an AI-powered framework that leverages deep learning techniques to detect spoofed emails with high accuracy. The framework analyzes various factors, including email content, metadata, and sender authenticity, to identify fraudulent messages effectively. Furthermore, the study evaluates machine learning approaches for phishing detection using a balanced dataset of legitimate and phishing emails. Among seven tested algorithms, Gradient Boosting demonstrated superior performance, achieving an accuracy of 96.1% and an AUC score of 97.9%. These findings highlight the advantages of ensemble and neural-based models in capturing intricate phishing patterns. However, challenges such as dependence on specific datasets and the difficulty of detecting deceptive emails that mimic legitimate ones underscore the need for further advancements. The deep learning model, trained on diverse datasets that include linguistic and header information, showed robust results with high accuracy and minimal false positives. This research highlights the crucial role of automation in improving detection systems and strengthening email security. By providing a scalable and efficient solution, it strengthens efforts to combat email spoofing and phishing. Integrating such AI-driven tools into existing email platforms can proactively mitigate these threats, fostering a more secure digital communication environment.

Keywords: neural networks (NN), gradient boosting (GB), decision forest (DF), support vector machine (SVM), false positives and negatives (FPFN), adaptive detection models (ADM)

Procedia PDF Downloads 9
Utilizing Dowel-Laminated Mass Timber Components in Residential Multifamily Structures: A Case Study

Authors: Theodore Panton

Abstract:

As cities in the United States experience critical housing shortages, mass timber presents the opportunity to address this crisis in housing supply while taking advantage of the carbon-positive benefits of sustainably forested wood fiber. Mass timber, however, currently has a low level of adoption in residential multifamily structures due to the risk-averse nature of change within the construction financing, Architecture / Engineering / Contracting (AEC) communities, as well as various agency approval challenges. This study demonstrates how mass timber can be used within the cost and feasibility parameters of a typical multistory residential structure and ultimately address the need for dense urban housing. This study will utilize The Garden District, a mixed-use market-rate housing project in Woodinville, Washington, as a case study to illuminate the potential of mass timber in this application. The Garden District is currently in final stages of permit approval and will commence construction in 2023. It will be the tallest dowel-laminated timber (DLT) residential structure in the United States when completed. This case study includes economic, technical, and design reference points to demonstrate the relevance of the use of this system and its ability to deliver “triple bottom line” results. In terms of results, the study establishes scalable and repeatable approaches to project design and delivery of mass timber in multifamily residential uses and includes economic data, technical solutions, and a summary of end-user advantages. This study discusses the third party tested systems for satisfying acoustical requirements within dwelling units, a key to resolving the use of mass timber within multistory residential use. Lastly, the study will also compare the mass timber solution with a comparable cold formed steel (CFS) system with a similar program, which indicates a net carbon savings of over three million tons over the life cycle of the building.

Keywords: DLT, dowell laminated timber, mass timber, market rate multifamily

Procedia PDF Downloads 127
Enhancing Healthcare Delivery in Low-Income Markets: An Exploration of Wireless Sensor Network Applications

Authors: Innocent Uzougbo Onwuegbuzie

Abstract:

Healthcare delivery in low-income markets is fraught with numerous challenges, including limited access to essential medical resources, inadequate healthcare infrastructure, and a significant shortage of trained healthcare professionals. These constraints lead to suboptimal health outcomes and a higher incidence of preventable diseases. This paper explores the application of Wireless Sensor Networks (WSNs) as a transformative solution to enhance healthcare delivery in these underserved regions. WSNs, comprising spatially distributed sensor nodes that collect and transmit health-related data, present opportunities to address critical healthcare needs. Leveraging WSN technology facilitates real-time health monitoring and remote diagnostics, enabling continuous patient observation and early detection of medical issues, especially in areas with limited healthcare facilities and professionals. The implementation of WSNs can enhance the overall efficiency of healthcare systems by enabling timely interventions, reducing the strain on healthcare facilities, and optimizing resource allocation. This paper highlights the potential benefits of WSNs in low-income markets, such as cost-effectiveness, increased accessibility, and data-driven decision-making. However, deploying WSNs involves significant challenges, including technical barriers like limited internet connectivity and power supply, alongside concerns about data privacy and security. Moreover, robust infrastructure and adequate training for local healthcare providers are essential for successful implementation. It further examines future directions for WSNs, emphasizing innovation, scalable solutions, and public-private partnerships. By addressing these challenges and harnessing the potential of WSNs, it is possible to revolutionize healthcare delivery and improve health outcomes in low-income markets.

Keywords: wireless sensor networks (WSNs), healthcare delivery, low-Income markets, remote patient monitoring, health data security

Procedia PDF Downloads 42
Design and Development of an Autonomous Beach Cleaning Vehicle

Authors: Mahdi Allaoua Seklab, Süleyman BaşTürk

Abstract:

In the quest to enhance coastal environmental health, this study introduces a fully autonomous beach cleaning machine, a breakthrough in leveraging green energy and advanced artificial intelligence for ecological preservation. Designed to operate independently, the machine is propelled by a solar-powered system, underscoring a commitment to sustainability and the use of renewable energy in autonomous robotics. The vehicle's autonomous navigation is achieved through a sophisticated integration of LIDAR and a camera system, utilizing an SSD MobileNet V2 object detection model for accurate and real-time trash identification. The SSD framework, renowned for its efficiency in detecting objects in various scenarios, is coupled with the lightweight and precise highly MobileNet V2 architecture, making it particularly suited for the computational constraints of on-board processing in mobile robotics. Training of the SSD MobileNet V2 model was conducted on Google Colab, harnessing cloud-based GPU resources to facilitate a rapid and cost-effective learning process. The model was refined with an extensive dataset of annotated beach debris, optimizing the parameters using the Adam optimizer and a cross-entropy loss function to achieve high-precision trash detection. This capability allows the machine to intelligently categorize and target waste, leading to more effective cleaning operations. This paper details the design and functionality of the beach cleaning machine, emphasizing its autonomous operational capabilities and the novel application of AI in environmental robotics. The results showcase the potential of such technology to fill existing gaps in beach maintenance, offering a scalable and eco-friendly solution to the growing problem of coastal pollution. The deployment of this machine represents a significant advancement in the field, setting a new standard for the integration of autonomous systems in the service of environmental stewardship.

Keywords: autonomous beach cleaning machine, renewable energy systems, coastal management, environmental robotics

Procedia PDF Downloads 38
Enhancing Sell-In and Sell-Out Forecasting Using Ensemble Machine Learning Method

Authors: Vishal Das, Tianyi Mao, Zhicheng Geng, Carmen Flores, Diego Pelloso, Fang Wang

Abstract:

Accurate sell-in and sell-out forecasting is a ubiquitous problem in the retail industry. It is an important element of any demand planning activity. As a global food and beverage company, Nestlé has hundreds of products in each geographical location that they operate in. Each product has its sell-in and sell-out time series data, which are forecasted on a weekly and monthly scale for demand and financial planning. To address this challenge, Nestlé Chilein collaboration with Amazon Machine Learning Solutions Labhas developed their in-house solution of using machine learning models for forecasting. Similar products are combined together such that there is one model for each product category. In this way, the models learn from a larger set of data, and there are fewer models to maintain. The solution is scalable to all product categories and is developed to be flexible enough to include any new product or eliminate any existing product in a product category based on requirements. We show how we can use the machine learning development environment on Amazon Web Services (AWS) to explore a set of forecasting models and create business intelligence dashboards that can be used with the existing demand planning tools in Nestlé. We explored recent deep learning networks (DNN), which show promising results for a variety of time series forecasting problems. Specifically, we used a DeepAR autoregressive model that can group similar time series together and provide robust predictions. To further enhance the accuracy of the predictions and include domain-specific knowledge, we designed an ensemble approach using DeepAR and XGBoost regression model. As part of the ensemble approach, we interlinked the sell-out and sell-in information to ensure that a future sell-out influences the current sell-in predictions. Our approach outperforms the benchmark statistical models by more than 50%. The machine learning (ML) pipeline implemented in the cloud is currently being extended for other product categories and is getting adopted by other geomarkets.

Keywords: sell-in and sell-out forecasting, demand planning, DeepAR, retail, ensemble machine learning, time-series

Procedia PDF Downloads 279
Improving the Effectiveness of Solidified Methane Storage: Developing Two Biosurfactants for Methane Hydrate Formation

Authors: Elaheh Sadeh, Abdolreza Farhadian, Matvei E. Semenov, Ulukbek Zh. Mirzakimov

Abstract:

Recent advancements in solidified gas technology have demonstrated substantial potential for applications in carbon capture, storage, and natural gas transportation. The key factor limiting the industrial adoption of hydrates lies in the necessity for efficient and environmentally friendly promoters. This study aims to address this issue by synthesizing two biosurfactants – sodium oleate (SO) and hydroxylated sodium oleate (HSO) – as promoters for methane hydrate formation. The unique properties of these green, bio-based surfactants can potentially optimize solidified methane storage with wide-ranging applications in energy storage and transportation. The synthesis process of these promoters is simple and easily scalable for industrial production. The utilization of water as a solvent in the process helps to mitigate environmental impacts and simplifies the scale-up procedure. High-pressure autoclave experiments revealed a significant acceleration in methane hydrate formation kinetics with minute concentrations of the biosurfactants. Remarkably, just 5 ppm of SO and HSO facilitated a maximum water-to-hydrate conversion of 90%, equating to a storage capacity of 156 v/v in distilled water. Furthermore, SO and HSO demonstrated impressive biodegradability, exceeding 60% within 28 days. Toxicity assessments confirmed the biocompatibility of these biosurfactants, with cell viability above 70% for skin and lung cells at concentrations up to 180 and 90 µg/mL, respectively. These results indicate that SO and HSO could serve as an environmentally friendly alternative to synthetic surfactants, such as SDS, for methane storage. The findings of this study have far-reaching implications for various industries and applications. These biosurfactants' efficiency in methane hydrate formation may contribute to improved seawater desalination processes and more effective carbon capture techniques, ultimately reducing greenhouse gas emissions. Moreover, their application in gas storage could revolutionize the way natural gas is transported and stored. The synthesis of effective biosurfactants like SO and HSO opens up a world of possibilities in environmental sustainability, energy efficiency, and industrial innovation.

Keywords: methane storage, solidified methane, gas hydrate, biosurfactant

Procedia PDF Downloads 18
Solar-Powered Smart Irrigation System as an Adaptation Strategy under Climate Change: A Case Study to Develop Medicinal Security Based on Ancestral Knowledge

Authors: Luisa Cabezas, Karol Leal, Harold Mendoza, Fabio Trochez, Angel Lozada

Abstract:

According to the 2030 Agenda for Sustainable Development Goals (SDG) in which equal importance is given to economic, social, and environmental dimensions where the equality and dignity of each human person is placed at the center of discussion, changing the development concept for one with more responsibility with the environment. It can be found that the energy and food systems are deeply entangled, and they are transversal to the 17 proposed SDG. In this order of ideas, a research project is carried out at Unidad Central del Valle del Cauca (UCEVA) with these two systems in mind, on one hand the energy transition and, on the other hand the transformation of agri-food systems. This project it could be achieved by automation and control irrigation system of medicinal, aromatic, and condimentary plants (MACP) area within the UCEVA Agroecological Farm and located in rural area of Tulua municipality (Valle del Cauca Department, Colombia). This system have allowed to stablish a remote monitoring of MACP area, including MACP moisture measurement, and execute the required system actions. In addition, the electrical system of irrigation control system is powered by a scalable photovoltaic solar energy system based on its specifications. Thus, the developed system automates and control de irrigation system, which is energetically self-sustainable and allows to satisfy the MACP area requirements. Is important to highlight that at MACP area, several medicinal, aromatic, and condimentary plants species are preserved to become primary sources for the pharmaceutical industry and, in many occasions, the only medicines for many communities. Therefore, preserve medicinal plants area would generates medicinal security and preserve cultural heritage as these plants are part of ancestral knowledge that penetrate academic and research communities at UCEVA campus to other society sectors.

Keywords: ancestral knowledge, climate change, medicinal plants, solar energy

Procedia PDF Downloads 242
A Comprehensive Survey on Machine Learning Techniques and User Authentication Approaches for Credit Card Fraud Detection

Authors: Niloofar Yousefi, Marie Alaghband, Ivan Garibay

Abstract:

With the increase of credit card usage, the volume of credit card misuse also has significantly increased, which may cause appreciable financial losses for both credit card holders and financial organizations issuing credit cards. As a result, financial organizations are working hard on developing and deploying credit card fraud detection methods, in order to adapt to ever-evolving, increasingly sophisticated defrauding strategies and identifying illicit transactions as quickly as possible to protect themselves and their customers. Compounding on the complex nature of such adverse strategies, credit card fraudulent activities are rare events compared to the number of legitimate transactions. Hence, the challenge to develop fraud detection that are accurate and efficient is substantially intensified and, as a consequence, credit card fraud detection has lately become a very active area of research. In this work, we provide a survey of current techniques most relevant to the problem of credit card fraud detection. We carry out our survey in two main parts. In the first part, we focus on studies utilizing classical machine learning models, which mostly employ traditional transnational features to make fraud predictions. These models typically rely on some static physical characteristics, such as what the user knows (knowledge-based method), or what he/she has access to (object-based method). In the second part of our survey, we review more advanced techniques of user authentication, which use behavioral biometrics to identify an individual based on his/her unique behavior while he/she is interacting with his/her electronic devices. These approaches rely on how people behave (instead of what they do), which cannot be easily forged. By providing an overview of current approaches and the results reported in the literature, this survey aims to drive the future research agenda for the community in order to develop more accurate, reliable and scalable models of credit card fraud detection.

Keywords: Credit Card Fraud Detection, User Authentication, Behavioral Biometrics, Machine Learning, Literature Survey

Procedia PDF Downloads 126
Introduction of an Approach of Complex Virtual Devices to Achieve Device Interoperability in Smart Building Systems

Authors: Thomas Meier

Abstract:

One of the major challenges for sustainable smart building systems is to support device interoperability, i.e. connecting sensor or actuator devices from different vendors, and present their functionality to the external applications. Furthermore, smart building systems are supposed to connect with devices that are not available yet, i.e. devices that become available on the market sometime later. It is of vital importance that a sustainable smart building platform provides an appropriate external interface that can be leveraged by external applications and smart services. An external platform interface must be stable and independent of specific devices and should support flexible and scalable usage scenarios. A typical approach applied in smart home systems is based on a generic device interface used within the smart building platform. Device functions, even of rather complex devices, are mapped to that generic base type interface by means of specific device drivers. Our new approach, presented in this work, extends that approach by using the smart building system’s rule engine to create complex virtual devices that can represent the most diverse properties of real devices. We examined and evaluated both approaches by means of a practical case study using a smart building system that we have developed. We show that the solution we present allows the highest degree of flexibility without affecting external application interface stability and scalability. In contrast to other systems our approach supports complex virtual device configuration on application layer (e.g. by administration users) instead of device configuration at platform layer (e.g. platform operators). Based on our work, we can show that our approach supports almost arbitrarily flexible use case scenarios without affecting the external application interface stability. However, the cost of this approach is additional appropriate configuration overhead and additional resource consumption at the IoT platform level that must be considered by platform operators. We conclude that the concept of complex virtual devices presented in this work can be applied to improve the usability and device interoperability of sustainable intelligent building systems significantly.

Keywords: Internet of Things, smart building, device interoperability, device integration, smart home

Procedia PDF Downloads 274
The Development of a Digitally Connected Factory Architecture to Enable Product Lifecycle Management for the Assembly of Aerostructures

Authors: Nicky Wilson, Graeme Ralph

Abstract:

Legacy aerostructure assembly is defined by large components, low build rates, and manual assembly methods. With an increasing demand for commercial aircraft and emerging markets such as the eVTOL (electric vertical take-off and landing) market, current methods of manufacturing are not capable of efficiently hitting these higher-rate demands. This project will look at how legacy manufacturing processes can be rate enabled by taking a holistic view of data usage, focusing on how data can be collected to enable fully integrated digital factories and supply chains. The study will focus on how data is flowed both up and down the supply chain to create a digital thread specific to each part and assembly while enabling machine learning through real-time, closed-loop feedback systems. The study will also develop a bespoke architecture to enable connectivity both within the factory and the wider PLM (product lifecycle management) system, moving away from traditional point-to-point systems used to connect IO devices to a hub and spoke architecture that will exploit report-by-exception principles. This paper outlines the key issues facing legacy aircraft manufacturers, focusing on what future manufacturing will look like from adopting Industry 4 principles. The research also defines the data architecture of a PLM system to enable the transfer and control of a digital thread within the supply chain and proposes a standardised communications protocol to enable a scalable solution to connect IO devices within a production environment. This research comes at a critical time for aerospace manufacturers, who are seeing a shift towards the integration of digital technologies within legacy production environments, while also seeing build rates continue to grow. It is vital that manufacturing processes become more efficient in order to meet these demands while also securing future work for many manufacturers.

Keywords: Industry 4, digital transformation, IoT, PLM, automated assembly, connected factories

Procedia PDF Downloads 82
SynKit: A Event-Driven and Scalable Microservices-Based Kitting System

Authors: Bruno Nascimento, Cristina Wanzeller, Jorge Silva, João A. Dias, André Barbosa, José Ribeiro

Abstract:

The increasing complexity of logistics operations stems from evolving business needs, such as the shift from mass production to mass customization, which demands greater efficiency and flexibility. In response, Industry 4.0 and 5.0 technologies provide improved solutions to enhance operational agility and better meet market demands. The management of kitting zones, combined with the use of Autonomous Mobile Robots, faces challenges related to coordination, resource optimization, and rapid response to customer demand fluctuations. Additionally, implementing lean manufacturing practices in this context must be carefully orchestrated by intelligent systems and human operators to maximize efficiency without sacrificing the agility required in an advanced production environment. This paper proposes and implements a microservices-based architecture integrating principles from Industry 4.0 and 5.0 with lean manufacturing practices. The architecture enhances communication and coordination between autonomous vehicles and kitting management systems, allowing more efficient resource utilization and increased scalability. The proposed architecture focuses on the modularity and flexibility of operations, enabling seamless flexibility to change demands and the efficient allocation of resources in realtime. Conducting this approach is expected to significantly improve logistics operations’ efficiency and scalability by reducing waste and optimizing resource use while improving responsiveness to demand changes. The implementation of this architecture provides a robust foundation for the continuous evolution of kitting management and process optimization. It is designed to adapt to dynamic environments marked by rapid shifts in production demands and real-time decision-making. It also ensures seamless integration with automated systems, aligning with Industry 4.0 and 5.0 needs while reinforcing Lean Manufacturing principles.

Keywords: microservices, event-driven, kitting, AMR, lean manufacturing, industry 4.0, industry 5.0

Procedia PDF Downloads 35
Real-Time Data Stream Partitioning over a Sliding Window in Real-Time Spatial Big Data

Authors: Sana Hamdi, Emna Bouazizi, Sami Faiz

Abstract:

In recent years, real-time spatial applications, like location-aware services and traffic monitoring, have become more and more important. Such applications result dynamic environments where data as well as queries are continuously moving. As a result, there is a tremendous amount of real-time spatial data generated every day. The growth of the data volume seems to outspeed the advance of our computing infrastructure. For instance, in real-time spatial Big Data, users expect to receive the results of each query within a short time period without holding in account the load of the system. But with a huge amount of real-time spatial data generated, the system performance degrades rapidly especially in overload situations. To solve this problem, we propose the use of data partitioning as an optimization technique. Traditional horizontal and vertical partitioning can increase the performance of the system and simplify data management. But they remain insufficient for real-time spatial Big data; they can’t deal with real-time and stream queries efficiently. Thus, in this paper, we propose a novel data partitioning approach for real-time spatial Big data named VPA-RTSBD (Vertical Partitioning Approach for Real-Time Spatial Big data). This contribution is an implementation of the Matching algorithm for traditional vertical partitioning. We find, firstly, the optimal attribute sequence by the use of Matching algorithm. Then, we propose a new cost model used for database partitioning, for keeping the data amount of each partition more balanced limit and for providing a parallel execution guarantees for the most frequent queries. VPA-RTSBD aims to obtain a real-time partitioning scheme and deals with stream data. It improves the performance of query execution by maximizing the degree of parallel execution. This affects QoS (Quality Of Service) improvement in real-time spatial Big Data especially with a huge volume of stream data. The performance of our contribution is evaluated via simulation experiments. The results show that the proposed algorithm is both efficient and scalable, and that it outperforms comparable algorithms.

Keywords: real-time spatial big data, quality of service, vertical partitioning, horizontal partitioning, matching algorithm, hamming distance, stream query

Procedia PDF Downloads 159
Building a Blockchain-based Internet of Things

Authors: Rob van den Dam

Abstract:

Today’s Internet of Things (IoT) comprises more than a billion intelligent devices, connected via wired/wireless communications. The expected proliferation of hundreds of billions more places us at the threshold of a transformation sweeping across the communications industry. Yet, we found that the IoT architecture and solutions that currently work for billions of devices won’t necessarily scale to tomorrow’s hundreds of billions of devices because of high cost, lack of privacy, not future-proof, lack of functional value and broken business models. As the IoT scales exponentially, decentralized networks have the potential to reduce infrastructure and maintenance costs to manufacturers. Decentralization also promises increased robustness by removing single points of failure that could exist in traditional centralized networks. By shifting the power in the network from the center to the edges, devices gain greater autonomy and can become points of transactions and economic value creation for owners and users. To validate the underlying technology vision, IBM jointly developed with Samsung Electronics the autonomous decentralized peer-to- peer proof-of-concept (PoC). The primary objective of this PoC was to establish a foundation on which to demonstrate several capabilities that are fundamental to building a decentralized IoT. Though many commercial systems in the future will exist as hybrid centralized-decentralized models, the PoC demonstrated a fully distributed proof. The PoC (a) validated the future vision for decentralized systems to extensively augment today’s centralized solutions, (b) demonstrated foundational IoT tasks without the use of centralized control, (c) proved that empowered devices can engage autonomously in marketplace transactions. The PoC opens the door for the communications and electronics industry to further explore the challenges and opportunities of potential hybrid models that can address the complexity and variety of requirements posed by the internet that continues to scale. Contents: (a) The new approach for an IoT that will be secure and scalable, (b) The three foundational technologies that are key for the future IoT, (c) The related business models and user experiences, (d) How such an IoT will create an 'Economy of Things', (e) The role of users, devices, and industries in the IoT future, (f) The winners in the IoT economy.

Keywords: IoT, internet, wired, wireless

Procedia PDF Downloads 342
A Diurnal Light Based CO₂ Elevation Strategy for Up-Scaling Chlorella sp. Production by Minimizing Oxygen Accumulation

Authors: Venkateswara R. Naira, Debasish Das, Soumen K. Maiti

Abstract:

Achieving high cell densities of microalgae under obligatory light-limiting and high light conditions of diurnal (low-high-low variations of daylight intensity) sunlight are further limited by CO₂ supply and dissolved oxygen (DO) accumulation in large-scale photobioreactors. High DO levels cause low growth due to photoinhibition and/or photorespiration. Hence, scalable elevated CO₂ levels (% in air) and their effect on DO accumulation in a 10 L cylindrical membrane photobioreactor (a vertical tubular type) are studied in the present study. The CO₂ elevation strategies; biomass-based, pH control based (types II & I) and diurnal light based, were explored to study the growth of Chlorella sp. FC2 IITG under single-sided LED lighting in the laboratory, mimicking diurnal sunlight. All the experiments were conducted in fed-batch mode by maintaining N and P sources at least 50% of initial concentrations of the optimized BG-11 medium. It was observed that biomass-based (2% - 1st day, 2.5% - 2nd day and 3% - thereafter) and well-known pH control based, type-I (5.8 pH throughout) strategies were found lethal for FC2 growth. In both strategies, the highest peak DO accumulation of 150% air saturation was resulted due to high photosynthetic activity caused by higher CO₂ levels. In the pH control based type-I strategy, automatically resulted CO₂ levels for pH control were recorded so high (beyond the inhibition range, 5%). However, pH control based type-II strategy (5.8 – 2 days, 6.3 – 3 days, 6.7 – thereafter) showed final biomass titer up to 4.45 ± 0.05 g L⁻¹ with peak DO of 122% air saturation; high CO₂ levels beyond 5% (in air) were recorded thereafter. Thus, it became sustainable for obtaining high biomass. Finally, a diurnal light based (2% - low light, 2.5 % - medium light and 3% - high light) strategy was applied on the basis of increasing/decreasing photosynthesis due to increase/decrease in diurnal light intensity. It has resulted in maximum final biomass titer of 5.33 ± 0.12 g L⁻¹, with total biomass productivity of 0.59 ± 0.01 g L⁻¹ day⁻¹. The values are remarkably higher than constant 2% CO₂ level (final biomass titer: 4.26 ± 0.09 g L⁻¹; biomass productivity: 0.27 ± 0.005 g L⁻¹ day⁻¹). However, 135% air saturation of peak DO was observed. Thus, the diurnal light based elevation should be further improved by using CO₂ enriched N₂ instead of air. To the best of knowledge, the light-based CO₂ elevation strategy is not reported elsewhere.

Keywords: Chlorella sp., CO₂ elevation strategy, dissolved oxygen accumulation, diurnal light based CO₂ elevation, high cell density, microalgae, scale-up

Procedia PDF Downloads 125
IoT Based Soil Moisture Monitoring System for Indoor Plants

Authors: Gul Rahim Rahimi

Abstract:

The IoT-based soil moisture monitoring system for indoor plants is designed to address the challenges of maintaining optimal moisture levels in soil for plant growth and health. The system utilizes sensor technology to collect real-time data on soil moisture levels, which is then processed and analyzed using machine learning algorithms. This allows for accurate and timely monitoring of soil moisture levels, ensuring plants receive the appropriate amount of water to thrive. The main objectives of the system are twofold: to keep plants fresh and healthy by preventing water deficiency and to provide users with comprehensive insights into the water content of the soil on a daily and hourly basis. By monitoring soil moisture levels, users can identify patterns and trends in water consumption, allowing for more informed decision-making regarding watering schedules and plant care. The scope of the system extends to the agriculture industry, where it can be utilized to minimize the efforts required by farmers to monitor soil moisture levels manually. By automating the process of soil moisture monitoring, farmers can optimize water usage, improve crop yields, and reduce the risk of plant diseases associated with over or under-watering. Key technologies employed in the system include the Capacitive Soil Moisture Sensor V1.2 for accurate soil moisture measurement, the Node MCU ESP8266-12E Board for data transmission and communication, and the Arduino framework for programming and development. Additionally, machine learning algorithms are utilized to analyze the collected data and provide actionable insights. Cloud storage is utilized to store and manage the data collected from multiple sensors, allowing for easy access and retrieval of information. Overall, the IoT-based soil moisture monitoring system offers a scalable and efficient solution for indoor plant care, with potential applications in agriculture and beyond. By harnessing the power of IoT and machine learning, the system empowers users to make informed decisions about plant watering, leading to healthier and more vibrant indoor environments.

Keywords: IoT-based, soil moisture monitoring, indoor plants, water management

Procedia PDF Downloads 56
Geographic Information System Cloud for Sustainable Digital Water Management: A Case Study

Authors: Mohamed H. Khalil

Abstract:

Water is one of the most crucial elements which influence human lives and development. Noteworthy, over the last few years, GIS plays a significant role in optimizing water management systems, especially after exponential developing in this sector. In this context, the Egyptian government initiated an advanced ‘GIS-Web Based System’. This system is efficiently designed to tangibly assist and optimize the complement and integration of data between departments of Call Center, Operation and Maintenance, and laboratory. The core of this system is a unified ‘Data Model’ for all the spatial and tabular data of the corresponding departments. The system is professionally built to provide advanced functionalities such as interactive data collection, dynamic monitoring, multi-user editing capabilities, enhancing data retrieval, integrated work-flow, different access levels, and correlative information record/track. Noteworthy, this cost-effective system contributes significantly not only in the completeness of the base-map (93%), the water network (87%) in high level of details GIS format, enhancement of the performance of the customer service, but also in reducing the operating costs/day-to-day operations (~ 5-10 %). In addition, the proposed system facilitates data exchange between different departments (Call Center, Operation and Maintenance, and laboratory), which allowed a better understanding/analyzing of complex situations. Furthermore, this system reflected tangibly on: (i) dynamic environmental monitor/water quality indicators (ammonia, turbidity, TDS, sulfate, iron, pH, etc.), (ii) improved effectiveness of the different water departments, (iii) efficient deep advanced analysis, (iv) advanced web-reporting tools (daily, weekly, monthly, quarterly, and annually), (v) tangible planning synthesizing spatial and tabular data; and finally, (vi) scalable decision support system. It is worth to highlight that the proposed future plan (second phase) of this system encompasses scalability will extend to include integration with departments of Billing and SCADA. This scalability will comprise advanced functionalities in association with the existing one to allow further sustainable contributions.

Keywords: GIS Web-Based, base-map, water network, decision support system

Procedia PDF Downloads 100