Search results for: preparation for building construction (PEO)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8163

Search results for: preparation for building construction (PEO)

7983 Effective Thermal Retrofitting Methods to Improve Energy Efficiency of Existing Dwellings in Sydney

Authors: Claire Far, Sara Wilkinson, Deborah Ascher Barnstone

Abstract:

Energy issues have been a growing concern in current decades. Limited energy resources and increasing energy consumption from one side and environmental pollution and waste of resources from the other side have substantially affected the future of human life. Around 40 percent of total energy consumption of Australian buildings goes to heating and cooling due to the low thermal performance of the buildings. Thermal performance of buildings determines the amount of energy used for heating and cooling of the buildings which profoundly influences energy efficiency. Therefore, employing sustainable design principles and effective use of construction materials for building envelope can play crucial role in the improvement of energy efficiency of existing dwellings and enhancement of thermal comfort of the occupants. The energy consumption for heating and cooling normally is determined by the quality of the building envelope. Building envelope is the part of building which separates the habitable areas from exterior environment. Building envelope consists of external walls, external doors, windows, roof, ground and the internal walls that separate conditioned spaces from non-condition spaces. The energy loss from the building envelope is the key factor. Heat loss through conduction, convection and radiation from building envelope. Thermal performance of the building envelope can be improved by using different methods of retrofitting depending on the climate conditions and construction materials. Based on the available studies, the importance of employing sustainable design principles has been highlighted among the Australian building professionals. However, the residential building sector still suffers from a lack of having the best practice examples and experience for effective use of construction materials for building envelope. As a result, this study investigates the effectiveness of different energy retrofitting techniques and examines the impact of employing those methods on energy consumption of existing dwellings in Sydney, the most populated city in Australia. Based on the research findings, the best thermal retrofitting methods for increasing thermal comfort and energy efficiency of existing residential dwellings as well as reducing their environmental impact and footprint have been identified and proposed.

Keywords: thermal comfort, energy consumption, residential dwellings, sustainable design principles, thermal retrofit

Procedia PDF Downloads 244
7982 Adaptability of Steel-Framed Industrialized Building System In Post-Service Life

Authors: Alireza Taghdiri, Sara Ghanbarzade Ghomi

Abstract:

Existing buildings are permanently subjected to change, continuously renovated and repaired in their long service life. Old buildings are destroyed and their material and components are recycled or reused for constructing new ones. In this process, the importance of sustainability principles for building construction is obviously known and great significance must be attached to the consumption of resources, resulting effects on the environment and economic costs. Utilization strategies for extending buildings service life and delay in destroying have a positive effect on environment protection. In addition, simpler alterability or expandability of buildings’ structures and reducing energy and natural resources consumption have benefits for users, producers and the environment. To solve these problems, by applying theories of open building, structural components of some conventional building systems have been analyzed and then, a new geometry adaptive building system is developed which can transform and support different imposed loads. In order to achieve this goal, various research methods and tools such as professional and scientific literatures review, comparative analysis, case study and computer simulation were applied and data interpretation was implemented using descriptive statistics and logical arguments. Therefore, hypothesis and proposed strategies were evaluated and an adaptable and reusable 2-dimensional building system was presented which can respond appropriately to dwellers and end-users needs and provide reusability of structural components of building system in new construction or function. Investigations showed that this incremental building system can be successfully applied in achieving the architectural design objectives and by small modifications on components and joints, it is easy to obtain different and adaptable load-optimized component alternatives for flexible spaces.

Keywords: adaptability, durability, open building, service life, structural building system

Procedia PDF Downloads 403
7981 A Review on Design and Analysis of Structure Against Blast Forces

Authors: Akshay Satishrao Kawtikwar

Abstract:

The effect of blast masses on structures is an essential aspect that need to be considered. This type of assault could be very horrifying, who where we take it into consideration in the course of the design system. While designing a building, now not only the wind and seismic masses however also the consequences of the blast have to be take into consideration. Blast load is the burden implemented to a structure form a blast wave that comes straight away after an explosion. A blast in or close to a constructing can reason catastrophic harm to the interior and exterior of the building, inner structural framework, wall collapsing, and so on. The most important feature of blast resistant construction is the ability to absorb blast energy without causing catastrophic failure of the structure as a whole. Construction materials in blastprotective structures must have ductility as well as strength.

Keywords: blast resistant design, blast load, explosion, ETABS

Procedia PDF Downloads 73
7980 Building Information Modeling and Its Application in the State of Kuwait

Authors: Michael Gerges, Ograbe Ahiakwo, Martin Jaeger, Ahmad Asaad

Abstract:

Recent advances of Building Information Modeling (BIM) especially in the Middle East have increased remarkably. Dubai has been taking a lead on this by making it mandatory for BIM to be adopted for all projects that involve complex architecture designs. This is because BIM is a dynamic process that assists all stakeholders in monitoring the project status throughout different project phases with great transparency. It focuses on utilizing information technology to improve collaboration among project participants during the entire life cycle of the project from the initial design, to the supply chain, resource allocation, construction and all productivity requirements. In view of this trend, the paper examines the extent of applying BIM in the State of Kuwait, by exploring practitioners’ perspectives on BIM, especially their perspectives on main barriers and main advantages. To this end structured interviews were carried out based on questionnaires and with a range of different construction professionals. The results revealed that practitioners perceive improved communication and mitigated project risks by encouraged collaboration between project participants. However, it was also observed that the full implementation of BIM in the State of Kuwait requires concerted efforts to make clients demanding BIM, counteract resistance to change among construction professionals and offer more training for design team members. This paper forms part of an on-going research effort on BIM and its application in the State of Kuwait and it is on this basis that further research on the topic is proposed.

Keywords: building information modeling, BIM, construction industry, Kuwait

Procedia PDF Downloads 351
7979 Cold Formed Steel Sections: Analysis, Design and Applications

Authors: A. Saha Chaudhuri, D. Sarkar

Abstract:

In steel construction, there are two families of structural members. One is hot rolled steel and another is cold formed steel. Cold formed steel section includes steel sheet, strip, plate or flat bar. Cold formed steel section is manufactured in roll forming machine by press brake or bending operation. Cold formed steel (CFS), also known as Light Gauge Steel (LGS). As cold formed steel is a sustainable material, it is widely used in green building. Cold formed steel can be recycled and reused with no degradation in structural properties. Cold formed steel structures can earn credits for green building ratings such as LEED and similar programs. Cold formed steel construction satisfies international demand for better, more efficient and affordable buildings. Cold formed steel sections are used in building, car body, railway coach, various types of equipment, storage rack, grain bin, highway product, transmission tower, transmission pole, drainage facility, bridge construction etc. Various shapes of cold formed steel sections are available, such as C section, Z section, I section, T section, angle section, hat section, box section, square hollow section (SHS), rectangular hollow section (RHS), circular hollow section (CHS) etc. In building construction cold formed steel is used as eave strut, purlin, girt, stud, header, floor joist, brace, diaphragm and covering for roof, wall and floor. Cold formed steel has high strength to weight ratio and high stiffness. Cold formed steel is non shrinking and non creeping at ambient temperature, it is termite proof and rot proof. CFS is durable, dimensionally stable and non combustible material. CFS is economical in transportation and handling. At present days cold formed steel becomes a competitive building material. In this paper all these applications related present research work are described and how the CFS can be used as blast resistant structural system that is examined.

Keywords: cold form steel sections, applications, present research review, blast resistant design

Procedia PDF Downloads 116
7978 Maturity Level of Knowledge Management in Whole Life Costing in the UK Construction Industry: An Empirical Study

Authors: Ndibarefinia Tobin

Abstract:

The UK construction industry has been under pressure for many years to produce economical buildings which offer value for money, not only during the construction phase, but more importantly, during the full life of the building. Whole life costing is considered as an economic analysis tool that takes into account the total investment cost in and ownership, operation and subsequent disposal of a product or system to which the whole life costing method is being applied. In spite of its importance, the practice is still crippled by the lack of tangible evidence, ‘know-how’ skills and knowledge of the practice i.e. the lack of professionals with the knowledge and training on the use of the practice in construction project, this situation is compounded by the absence of available data on whole life costing from relevant projects, lack of data collection mechanisms and so on. The aforementioned problems has forced many construction organisations to adopt project enhancement initiatives to boost their performance on the use of whole life costing techniques so as to produce economical buildings which offer value for money during the construction stage also the whole life of the building/asset. The management of knowledge in whole life costing is considered as one of the many project enhancement initiative and it is becoming imperative in the performance and sustainability of an organisation. Procuring building projects using whole life costing technique is heavily reliant on the knowledge, experience, ideas and skills of workers, which comes from many sources including other individuals, electronic media and documents. Due to the diversity of knowledge, capabilities and skills of employees that vary across an organisation, it is significant that they are directed and coordinated efficiently so as to capture, retrieve and share knowledge in order to improve the performance of the organisation. The implementation of knowledge management concept has different levels in each organisation. Measuring the maturity level of knowledge management in whole life costing practice will paint a comprehensible picture of how knowledge is managed in construction organisations. Purpose: The purpose of this study is to identify knowledge management maturity in UK construction organisations adopting whole life costing in construction project. Design/methodology/approach: This study adopted a survey method and conducted by distributing questionnaires to large construction companies that implement knowledge management activities in whole life costing practice in construction project. Four level of knowledge management maturity was proposed on this study. Findings: From the results obtained in the study shows that 34 contractors at the practiced level, 26 contractors at managed level and 12 contractors at continuously improved level.

Keywords: knowledge management, whole life costing, construction industry, knowledge

Procedia PDF Downloads 219
7977 Review and Comparison of Iran`s Sixteenth Topic of the Building with the Ranking System of the Water Sector Lead to Improve the Criteria of the Sixteenth Topic

Authors: O. Fatemi

Abstract:

Considering growing building construction industry in developing countries and sustainable development concept, as well as the importance of taking care of the future generations, codifying buildings scoring system based on environmental criteria, has always been a subject for discussion. The existing systems cannot be used for all the regions due to several reasons, including but not limited to variety in regional variables. In this article, the most important common LEED (Leadership in Energy and Environmental Design) and BREEAM (Building Research Establishment Environmental Assessment Method) common and Global environmental scoring systems, used in UK, USA, and Japan, respectively, have been discussed and compared with a special focus on CASBEE (Comprehensive Assessment System for Built Environment Efficiency), to credit assigning field (weighing and scores systems) as well as sustainable development criteria in each system. Then, converging and distinct fields of the foregoing systems are examined considering National Iranian Building Code. Furthermore, the common credits in the said systems not mentioned in National Iranian Building Code have been identified. These credits, which are generally included in well-known fundamental principles in sustainable development, may be considered as offered options for the Iranian building environmental scoring system. It is suggested that one of the globally and commonly accepted systems is chosen considering national priorities in order to offer an effective method for buildings environmental scoring, and then, a part of credits is added and/or removed, or a certain credit score is changed, and eventually, a new scoring system with a new title is developed for the country. Evidently, building construction industry highly affects the environment, economy, efficiency, and health of the relevant occupants. Considering the growing trend of cities and construction, achieving building scoring systems based on environmental criteria has always been a matter of discussion. The existing systems cannot be used for all the regions due to several reasons, including but not limited to variety in regional variables.

Keywords: scoring system, sustainability assessment, water efficiency, national Iranian building code

Procedia PDF Downloads 149
7976 Integrating Dependent Material Planning Cycle into Building Information Management: A Building Information Management-Based Material Management Automation Framework

Authors: Faris Elghaish, Sepehr Abrishami, Mark Gaterell, Richard Wise

Abstract:

The collaboration and integration between all building information management (BIM) processes and tasks are necessary to ensure that all project objectives can be delivered. The literature review has been used to explore the state of the art BIM technologies to manage construction materials as well as the challenges which have faced the construction process using traditional methods. Thus, this paper aims to articulate a framework to integrate traditional material planning methods such as ABC analysis theory (Pareto principle) to analyse and categorise the project materials, as well as using independent material planning methods such as Economic Order Quantity (EOQ) and Fixed Order Point (FOP) into the BIM 4D, and 5D capabilities in order to articulate a dependent material planning cycle into BIM, which relies on the constructability method. Moreover, we build a model to connect between the material planning outputs and the BIM 4D and 5D data to ensure that all project information will be accurately presented throughout integrated and complementary BIM reporting formats. Furthermore, this paper will present a method to integrate between the risk management output and the material management process to ensure that all critical materials are monitored and managed under the all project stages. The paper includes browsers which are proposed to be embedded in any 4D BIM platform in order to predict the EOQ as well as FOP and alarm the user during the construction stage. This enables the planner to check the status of the materials on the site as well as to get alarm when the new order will be requested. Therefore, this will lead to manage all the project information in a single context and avoid missing any information at early design stage. Subsequently, the planner will be capable of building a more reliable 4D schedule by allocating the categorised material with the required EOQ to check the optimum locations for inventory and the temporary construction facilitates.

Keywords: building information management, BIM, economic order quantity, EOQ, fixed order point, FOP, BIM 4D, BIM 5D

Procedia PDF Downloads 145
7975 An Investigation on Opportunities and Obstacles on Implementation of Building Information Modelling for Pre-fabrication in Small and Medium Sized Construction Companies in Germany: A Practical Approach

Authors: Nijanthan Mohan, Rolf Gross, Fabian Theis

Abstract:

The conventional method used in the construction industries often resulted in significant rework since most of the decisions were taken onsite under the pressure of project deadlines and also due to the improper information flow, which results in ineffective coordination. However, today’s architecture, engineering, and construction (AEC) stakeholders demand faster and accurate deliverables, efficient buildings, and smart processes, which turns out to be a tall order. Hence, the building information modelling (BIM) concept was developed as a solution to fulfill the above-mentioned necessities. Even though BIM is successfully implemented in most of the world, it is still in the early stages in Germany, since the stakeholders are sceptical of its reliability and efficiency. Due to the huge capital requirement, the small and medium-sized construction companies are still reluctant to implement BIM workflow in their projects. The purpose of this paper is to analyse the opportunities and obstacles to implementing BIM for prefabrication. Among all other advantages of BIM, pre-fabrication is chosen for this paper because it plays a vital role in creating an impact on time as well as cost factors of a construction project. The positive impact of prefabrication can be explicitly observed by the project stakeholders and participants, which enables the breakthrough of the skepticism factor among the small scale construction companies. The analysis consists of the development of a process workflow for implementing prefabrication in building construction, followed by a practical approach, which was executed with two case studies. The first case study represents on-site prefabrication, and the second was done for off-site prefabrication. It was planned in such a way that the first case study gives a first-hand experience for the workers at the site on the BIM model so that they can make much use of the created BIM model, which is a better representation compared to the traditional 2D plan. The main aim of the first case study is to create a belief in the implementation of BIM models, which was succeeded by the execution of offshore prefabrication in the second case study. Based on the case studies, the cost and time analysis was made, and it is inferred that the implementation of BIM for prefabrication can reduce construction time, ensures minimal or no wastes, better accuracy, less problem-solving at the construction site. It is also observed that this process requires more planning time, better communication, and coordination between different disciplines such as mechanical, electrical, plumbing, architecture, etc., which was the major obstacle for successful implementation. This paper was carried out in the perspective of small and medium-sized mechanical contracting companies for the private building sector in Germany.

Keywords: building information modelling, construction wastes, pre-fabrication, small and medium sized company

Procedia PDF Downloads 89
7974 Carbon Accounting for Sustainable Design and Manufacturing in the Signage Industry

Authors: Prudvi Paresi, Fatemeh Javidan

Abstract:

In recent years, greenhouse gas, or in particular, carbon emissions, have received special attention from environmentalists and designers due to the fact that they significantly contribute to the temperature rise. The building industry is one of the top seven major industries contributing to embodied carbon emission. Signage systems are an integral part of the building industry and bring completeness to the space-building by providing the required information and guidance. A significant amount of building materials, such as steel, aluminium, acrylic, LED, etc., are utilized in these systems, but very limited information is available on their sustainability and carbon footprint. Therefore, there is an urgent need to assess the emissions associated with the signage industry and for controlling these by adopting different mitigation techniques without sacrificing the efficiency of the project. The present paper investigates the embodied carbon of two case studies in the Australian signage industry within the cradle – gate (A1-A3) and gate–site (A4-A5) stages. A material source-based database is considered to achieve more accuracy. The study identified that aluminium is the major contributor to embodied carbon in the signage industry compared to other constituents. Finally, an attempt is made to suggest strategies for mitigating embodied carbon in this industry.

Keywords: carbon accounting, small-scale construction, signage industry, construction materials

Procedia PDF Downloads 88
7973 Wind Energy Loss Phenomenon Over Volumized Building Envelope with Porous Air Portals

Authors: Ying-chang Yu, Yuan-lung Lo

Abstract:

More and more building envelopes consist of the construction of balconies, canopies, handrails, sun-shading, vertical planters or gardens, maintenance platforms, display devices, lightings, ornaments, and also the most commonly seen double skin system. These components form a uniform but three-dimensional disturbance structure and create a complex surface wind field in front of the actual watertight building interface. The distorted wind behavior would affect the façade performance and building ventilation. Comparing with sole windscreen walls, these three-dimensional structures perform like distributed air portal assembly, and each portal generates air turbulence and consume wind pressure and energy simultaneously. In this study, we attempted to compare the behavior of 2D porous windscreens without internal construction, porous tubular portal windscreens, porous tapered portal windscreens, and porous coned portal windscreens. The wind energy reduction phenomenon is then compared to the different distributed air portals. The experiments are conducted in a physical wind tunnel with 1:25 in scale to simulate the three-dimensional structure of a real building envelope. The experimental airflow was set up to smooth flow. The specimen is designed as a plane with a distributed tubular structure behind, and the control group uses different tubular shapes but the same fluid volume to observe the wind damping phenomenon of various geometries.

Keywords: volumized building envelope, porous air portal, wind damping, wind tunnel test, wind energy loss

Procedia PDF Downloads 111
7972 Integrating Best Practices for Construction Waste in Quality Management Systems

Authors: Paola Villoria Sáez, Mercedes Del Río Merino, Jaime Santa Cruz Astorqui, Antonio Rodríguez Sánchez

Abstract:

The Spanish construction industry generates large volumes of waste. However, despite the legislative improvements introduced for construction and demolition waste (CDW), construction waste recycling rate remains well below other European countries and also below the target set for 2020. This situation can be due to many difficulties. i.e.: The difficulty of onsite segregation or the estimation in advance of the total amount generated. Despite these difficulties, the proper management of CDW must be one of the main aspects to be considered by the construction companies. In this sense, some large national companies are implementing Integrated Management Systems (IMS) including not only quality and safety aspects, but also environment issues. However, although this fact is a reality for large construction companies still the vast majority of companies need to adopt this trend. In short, it is common to find in small and medium enterprises a decentralized management system: A single system of quality management, another for system safety management and a third one for environmental management system (EMS). In addition, the EMSs currently used address CDW superficially and are mainly focus on other environmental concerns such as carbon emissions. Therefore, this research determines and implements a specific best practice management system for CDW based on eight procedures in a Spanish Construction company. The main advantages and drawbacks of its implementation are highlighted. Results of this study show that establishing and implementing a CDW management system in building works, improve CDW quantification as the company obtains their own CDW generation ratio. This helps construction stakeholders when developing CDW Management Plans and also helps to achieve a higher adjustment of CDW management costs. Finally, integrating this CDW system with the EMS of the company favors the cohesion of the construction process organization at all stages, establishing responsibilities in the field of waste and providing a greater control over the process.

Keywords: construction and demolition waste, waste management, best practices, waste minimization, building, quality management systems

Procedia PDF Downloads 507
7971 Application of Mobile Aluminium Light Structure Housing System in Sustainable Building Process

Authors: Wang Haining, Zhang Hong

Abstract:

In China, rapid urbanization needs more and more buildings constructed for the growing population in cities. With the help of the methodology which contains investigation, contrastive analysis, design based on component with BIM and experiment before real construction, this research based on mobile light structure system, trying to the sustainable problems partly in present China by systematic study. The system cannot replace the permanent heavy structure completely. So the goal is the improvement of the whole building system by the addition of light structure. This house system uses modularized envelopes and standardized connections, which are pre-fabricated and assembled in factories and transported like containers. Aluminum is used as the structural material in this system, and inorganic thermal insulation material used in the envelope, which have high fireproof properties. The relationship between manufactory and construction of the system is progressive hierarchy. They exist as First Industrial, Second Industrial, Third Industrial and Site Assembly Stage. It could maximize the land usage capacity by fully exploit the area where normal permanent architecture can't take advantage of. Not only the building system itself especially the thermal isolated materials used and active solar photovoltaic system equipped can save energy, but also the way of product development is sustainable.

Keywords: aluminum house, light Structure, rapid assembly, repeat construction

Procedia PDF Downloads 456
7970 Smart Cities’ Sustainable Modular Houses Architecture

Authors: Khaled Elbehiery, Hussam Elbehiery

Abstract:

Smart cities are a framework of technologies along with sustainable infrastructure to provide their citizens an improved quality of life, safer environment, affordability, and more, which in turn helps with the society's economic growth. The proposed research will focus on the primary building block of the smart city; the infrastructure of the house itself. The traditional method of building houses has been, for a long time, nothing but a costly manufacturing process, and consequently, buying a house becomes not an option for everyone anymore. The smart cities' Modular Houses are not using traditional building construction materials; the design reduces the common lengthy construction times and associated high costs. The Modular Houses are technological homes, low-cost and customizable based on a family's requirements. In addition, the Modular Houses are environmentally friendly and healthy enough to assist with the pandemic situation.

Keywords: smart cities, modular houses, single-unit property, multi-unit property, mobility features, chain-supply, livable environment, carbon footprint

Procedia PDF Downloads 99
7969 Research on Contract's Explicit Incentive and Reputation's Implicit Incentive Mechanism towards Construction Contractors

Authors: Li Ma, Meishuang Ma, Mengying Huang

Abstract:

The quality of construction projects reflects the credit and responsibilities of construction contractors for the owners and the whole society. Because the construction contractors master more relevant information about the entrusted engineering project under construction while the owners are in unfavorable position of gaining information, asymmetric information may lead the contractors act against the owners in order to pursue their own interests. Building a powerful motivation mechanism is the key to guarantee investor economic interests and the life and property of users in construction projects. Based on principal-agent theory and game theory, the authors develop relevant mathematical models to analyze and compare the contractor’s utility functions under different combinations of contracts’ explicit incentive mechanism and reputation’s implicit incentive mechanism aiming at finding out the conditions for incentive validity. The research concludes that the most rational motivation way is to combine the explicit and implicit incentive effects of both contracts and reputation mechanism, and puts forth some measures for problems on account of China’s current situation.

Keywords: construction contractors, contract, reputation, incentive mechanism

Procedia PDF Downloads 482
7968 Simulation IDM for Schedule Generation of Slip-Form Operations

Authors: Hesham A. Khalek, Shafik S. Khoury, Remon F. Aziz, Mohamed A. Hakam

Abstract:

Slipforming operation’s linearity is a source of planning complications, and operation is usually subjected to bottlenecks at any point, so careful planning is required in order to achieve success. On the other hand, Discrete-event simulation concepts can be applied to simulate and analyze construction operations and to efficiently support construction scheduling. Nevertheless, preparation of input data for construction simulation is very challenging, time-consuming and human prone-error source. Therefore, to enhance the benefits of using DES in construction scheduling, this study proposes an integrated module to establish a framework for automating the generation of time schedules and decision support for Slipform construction projects, particularly through the project feasibility study phase by using data exchange between project data stored in an Intermediate database, DES and Scheduling software. Using the stored information, proposed system creates construction tasks attribute [e.g. activities durations, material quantities and resources amount], then DES uses all the given information to create a proposal for the construction schedule automatically. This research is considered a demonstration of a flexible Slipform project modeling, rapid scenario-based planning and schedule generation approach that may be of interest to both practitioners and researchers.

Keywords: discrete-event simulation, modeling, construction planning, data exchange, scheduling generation, EZstrobe

Procedia PDF Downloads 353
7967 Investigating the Role of Supplier Involvement in the Design Process as an Approach for Enhancing Building Maintainability

Authors: Kamal Ahmed, Othman Ayman, Refat Mostafa

Abstract:

The post-construction phase represents a critical milestone in the project lifecycle. This is because design errors and omissions, as well as construction defects, are examined during this phase. The traditional procurement approaches that are commonly adopted in construction projects separate design from construction, which ultimately inhibits contractors, suppliers and other parties from providing the design team with constructive comments and feedback to improve the project design. As a result, a lack of considering maintainability aspects during the design process results in increasing maintenance and operation costs as well as reducing building performance. This research aims to investigate the role of Early Supplier Involvement (ESI) in the design process as an approach to enhancing building maintainability. In order to achieve this aim, a research methodology consisting of a literature review, case studies and a survey questionnaire was designed to accomplish four objectives. Firstly, a literature review was used to examine the concepts of building maintenance, maintainability, the design process and ESI. Secondly, three case studies were presented and analyzed to investigate the role of ESI in enhancing building maintainability during the design process. Thirdly, a survey questionnaire was conducted with a representative sample of Architectural Design Firms (ADFs) in Egypt to investigate their perception and application of ESI towards enhancing building maintainability during the design process. Finally, the research developed a framework to facilitate ESI in the design process in ADFs in Egypt. Data analysis showed that the ‘Difficulty of trusting external parties and sharing information with transparency’ was ranked the highest challenge of ESI in ADFs in Egypt, followed by ‘Legal competitive advantage restrictions’. Moreover, ‘Better estimation for operation and maintenance costs’ was ranked the highest contribution of ESI towards enhancing building maintainability, followed by ‘Reduce the number of operation and maintenance problems or reworks’. Finally, ‘Innovation, technical expertise, and competence’ was ranked the highest supplier’s selection criteria, while ‘paying consultation fees for offering advice and recommendations to the design team’ was ranked the highest form of supplier’s remuneration. The proposed framework represents a synthesis that is creative in thought and adds value to the knowledge in a manner that has not previously occurred.

Keywords: maintenance, building maintainability, building life cycle cost (ICC), material supplier

Procedia PDF Downloads 21
7966 Observed Damages to Adobe Masonry Buildings after 2011 Van Earthquake

Authors: Eylem Güzel, Soner Güler, Mustafa Gülen

Abstract:

Masonry is the oldest building materials since ancient times. Adobe, stone, brick are the most widespread materials used in the construction of masonry buildings. Masonry buildings compose of a large part of building stock especially in rural areas and underdeveloped regions of Turkey. The seismic performance of adobe masonry buildings is vulnerable against earthquake effects. In this study, after 2011 Van earthquake with magnitude 7.2 Mw, damages occurred in existing adobe masonry buildings in Van city is investigated. The observed damages and reasons of adobe masonry buildings in design and construction phase are specified and evaluated.

Keywords: adobe masonry buildings, earthquake effects, damages, seismic performance

Procedia PDF Downloads 291
7965 BIM Application Research Based on the Main Entrance and Garden Area Project of Shanghai Disneyland

Authors: Ying Yuken, Pengfei Wang, Zhang Qilin, Xiao Ben

Abstract:

Based on the main entrance and garden area (ME&G) project of Shanghai Disneyland, this paper introduces the application of BIM technology in this kind of low-rise comprehensive building with complex facade system, electromechanical system and decoration system. BIM technology is applied to the whole process of design, construction and completion of the whole project. With the construction of BIM application framework of the whole project, the key points of BIM modeling methods of different systems and the integration and coordination of BIM models are elaborated in detail. The specific application methods of BIM technology in similar complex low-rise building projects are sorted out. Finally, the paper summarizes the benefits of BIM technology application, and puts forward some suggestions for BIM management mode and practical application of similar projects in the future.

Keywords: BIM, complex low-rise building, BIM modeling, model integration and coordination, 3D scanning

Procedia PDF Downloads 136
7964 Analysis of Construction Waste Generation and Its Effect in a Construction Site

Authors: R. K. D. G. Kaluarachchi

Abstract:

The generation of solid waste and its effective management are debated topics in Sri Lanka as well as in the global environment. It was estimated that the most of the waste generated in global was originated from construction and demolition of buildings. Thus, the proportion of construction waste in solid waste generation cannot be underestimated. The construction waste, which is the by-product generated and removed from work sites is collected in direct and indirect processes. Hence, the objectives of this research are to identify the proportion of construction waste which can be reused and identify the methods to reduce the waste generation without reducing the quality of the process. A 6-storey building construction site was selected for this research. The site was divided into six zones depending on the process. Ten waste materials were identified by considering the adverse effects on safety and health of people and the economic value of them. The generated construction waste in each zone was recorded per week for a period of five months. The data revealed that sand, cement, wood used for form work and rusted steel rods were the generated waste which has higher economic value in all zones. Structured interviews were conducted to gather information on how the materials are categorized as waste and the capability of reducing, reusing and recycling the waste. It was identified that waste is generated in following processes; ineffective storage of material for a longer time and improper handling of material during the work process. Further, the alteration of scheduled activities of construction work also yielded more waste. Finally, a proper management of construction waste is suggested to reduce and reuse waste.

Keywords: construction-waste, effective management, reduce, reuse

Procedia PDF Downloads 177
7963 Exploration of Environmental Parameters on the Evolution of Vernacular Building Techniques in East Austria

Authors: Hubert Feiglstorfer

Abstract:

Due to its location in a transition zone from the Pannonian to the pre-Alpine region, the east of Austria shows a small-scale diversity in the regional development of certain vernacular building techniques. In this article the relationship between natural building material resources, topography and climate will be examined. Besides environmental preconditions, social and economic historical factors have developed different construction techniques within certain regions in the Weinviertel and Burgenland, the two eastern federal states of Austria. But even within these regions, varying building techniques were found, due to the locally different use of raw materials like wood, stone, clay, lime, or organic fibres. Within these small-scale regions, building traditions were adapted over the course of time due to changes in the use of the building material, for example from wood to brick or from wood to earth. The processing of the raw materials varies from region to region, for example as rammed earth, cob, log, or brick construction. Environmental preconditions cross national borders. For that reason, developments in the neighbouring countries, the Czech Republic, Slovakia, Hungary and Slovenia are included in this analysis. As an outcome of this research a map was drawn which shows the interrelation between locally available building materials, topography, climate and local building techniques? As a result of this study, which covers the last 300 years, one can see how the local population used natural resources very sensitively adapted to local environmental preconditions. In the case of clay, for example, changes of proportions of lime and particular minerals cause structural changes that differ from region to region. Based on material analyses in the field of clay mineralogy, on ethnographic research, literature and archive research, explanations for certain local structural developments will be given for the first time over the region of East Austria.

Keywords: European crafts, material culture, architectural history, earthen architecture, earth building history

Procedia PDF Downloads 205
7962 Comparative Spatial Analysis of a Re-Arranged Hospital Building

Authors: Burak Köken, Hatice D. Arslan, Bilgehan Y. Çakmak

Abstract:

Analyzing the relation networks between the hospital buildings which have complex structure and distinctive spatial relationships is quite difficult. The hospital buildings which require specialty in spatial relationship solutions during design and self-innovation through the developing technology should survive and keep giving service even after the disasters such as earthquakes. In this study, a hospital building where the load-bearing system was strengthened because of the insufficient earthquake performance and the construction of an additional building was required to meet the increasing need for space was discussed and a comparative spatial evaluation of the hospital building was made with regard to its status before the change and after the change. For this reason, spatial organizations of the building before change and after the change were analyzed by means of Space Syntax method and the effects of the change on space organization parameters were searched by applying an analytical procedure. Using Depthmap UCL software, connectivity, visual mean depth, beta and visual integration analyses were conducted. Based on the data obtained after the analyses, it was seen that the relationships between spaces of the building increased after the change and the building has become more explicit and understandable for the occupants. Furthermore, it was determined according to findings of the analysis that the increase in depth causes difficulty in perceiving the spaces and the changes considering this problem generally ease spatial use.

Keywords: architecture, hospital building, space syntax, strengthening

Procedia PDF Downloads 495
7961 Implementation of Quality Function Development to Incorporate Customer’s Value in the Conceptual Design Stage of a Construction Projects

Authors: Ayedh Alqahtani

Abstract:

Many construction firms in Saudi Arabia dedicated to building projects agree that the most important factor in the real estate market is the value that they can give to their customer. These firms understand the value of their client in different ways. Value can be defined as the size of the building project in relationship to the cost or the design quality of the materials utilized in finish work or any other features of building rooms such as the bathroom. Value can also be understood as something suitable for the money the client is investing for the new property. A quality tool is required to support companies to achieve a solution for the building project and to understand and manage the customer’s needs. Quality Function Development (QFD) method will be able to play this role since the main difference between QFD and other conventional quality management tools is QFD a valuable and very flexible tool for design and taking into the account the VOC. Currently, organizations and agencies are seeking suitable models able to deal better with uncertainty, and that is flexible and easy to use. The primary aim of this research project is to incorporate customer’s requirements in the conceptual design of construction projects. Towards this goal, QFD is selected due to its capability to integrate the design requirements to meet the customer’s needs. To develop QFD, this research focused upon the contribution of the different (significantly weighted) input factors that represent the main variables influencing QFD and subsequent analysis of the techniques used to measure them. First of all, this research will review the literature to determine the current practice of QFD in construction projects. Then, the researcher will review the literature to define the current customers of residential projects and gather information on customers’ requirements for the design of the residential building. After that, qualitative survey research will be conducted to rank customer’s needs and provide the views of stakeholder practitioners about how these needs can affect their satisfy. Moreover, a qualitative focus group with the members of the design team will be conducted to determine the improvements level and technical details for the design of residential buildings. Finally, the QFD will be developed to establish the degree of significance of the design’s solution.

Keywords: quality function development, construction projects, Saudi Arabia, quality tools

Procedia PDF Downloads 100
7960 An Approach towards Designing an Energy Efficient Building through Embodied Energy Assessment: A Case of Apartment Building in Composite Climate

Authors: Ambalika Ekka

Abstract:

In today’s world, the growing demand for urban built forms has resulted in the production and consumption of building materials i.e. embodied energy in building construction, leading to pollution and greenhouse gas (GHG) emissions. Therefore, new buildings will offer a unique opportunity to implement more energy efficient building without compromising on building performance of the building. Embodied energy of building materials forms major contribution to embodied energy in buildings. The paper results in an approach towards designing an energy efficient apartment building through embodied energy assessment. This paper discusses the trend of residential development in Rourkela, which includes three case studies of the contemporary houses, followed by architectural elements, number of storeys, predominant material use and plot sizes using primary data. It results in identification of predominant material used and other characteristics in urban area. Further, the embodied energy coefficients of various dominant building materials and alternative materials manufactured in Indian Industry is taken in consideration from secondary source i.e. literature study. The paper analyses the embodied energy by estimating materials and operational energy of proposed building followed by altering the specifications of the materials based on the building components i.e. walls, flooring, windows, insulation and roof through res build India software and comparison of different options is assessed with consideration of sustainable parameters. This paper results that autoclaved aerated concrete block only reaches the energy performance Index benchmark i.e. 69.35 kWh/m2 yr i.e. by saving 4% of operational energy and as embodied energy has no particular index, out of all materials it has the highest EE 23206202.43  MJ.

Keywords: energy efficient, embodied energy, EPI, building materials

Procedia PDF Downloads 161
7959 The Role of Building Information Modeling as a Design Teaching Method in Architecture, Engineering and Construction Schools in Brazil

Authors: Aline V. Arroteia, Gustavo G. Do Amaral, Simone Z. Kikuti, Norberto C. S. Moura, Silvio B. Melhado

Abstract:

Despite the significant advances made by the construction industry in recent years, the crystalized absence of integration between the design and construction phases is still an evident and costly problem in building construction. Globally, the construction industry has sought to adopt collaborative practices through new technologies to mitigate impacts of this fragmented process and to optimize its production. In this new technological business environment, professionals are required to develop new methodologies based on the notion of collaboration and integration of information throughout the building lifecycle. This scenario also represents the industry’s reality in developing nations, and the increasing need for overall efficiency has demanded new educational alternatives at the undergraduate and post-graduate levels. In countries like Brazil, it is the common understanding that Architecture, Engineering and Building Construction educational programs are being required to review the traditional design pedagogical processes to promote a comprehensive notion about integration and simultaneity between the phases of the project. In this context, the coherent inclusion of computation design to all segments of the educational programs of construction related professionals represents a significant research topic that, in fact, can affect the industry practice. Thus, the main objective of the present study was to comparatively measure the effectiveness of the Building Information Modeling courses offered by the University of Sao Paulo, the most important academic institution in Brazil, at the Schools of Architecture and Civil Engineering and the courses offered in well recognized BIM research institutions, such as the School of Design in the College of Architecture of the Georgia Institute of Technology, USA, to evaluate the dissemination of BIM knowledge amongst students in post graduate level. The qualitative research methodology was developed based on the analysis of the program and activities proposed by two BIM courses offered in each of the above-mentioned institutions, which were used as case studies. The data collection instruments were a student questionnaire, semi-structured interviews, participatory evaluation and pedagogical practices. The found results have detected a broad heterogeneity of the students regarding their professional experience, hours dedicated to training, and especially in relation to their general knowledge of BIM technology and its applications. The research observed that BIM is mostly understood as an operational tool and not as methodological project development approach, relevant to the whole building life cycle. The present research offers in its conclusion an assessment about the importance of the incorporation of BIM, with efficiency and in its totality, as a teaching method in undergraduate and graduate courses in the Brazilian architecture, engineering and building construction schools.

Keywords: building information modeling (BIM), BIM education, BIM process, design teaching

Procedia PDF Downloads 127
7958 Digital Skill Framework Required by Students of Building Technology in Nigerian Higher Institutions

Authors: Shirka Kassam Jwasshaka

Abstract:

Graduates from higher educational institutions in Nigeria need to leave with the necessary skills to be independent in the emergence work environment. The goal of this study is to develop a framework of digital skills that Nigerian graduates in building construction need to be proficient in various digital skills to comfortably fit into the global advances in a technological labour market. The descriptive survey design was used in this investigation. The study's population consisted of building construction experts selected from different sites within the North Central geographical zones of Nigeria. Using random sampling approaches, 120 seasoned experts were chosen. Three research questions raised by the researchers guided the study. The data was gathered using a 60-item, structured questionnaire. The questions were formulated around three key skill areas such as digital skills related to ICT, digital skills related to general workforce, and basic digital literacy skills that students should have. A building construction specialist validated the questionnaire. Winstep in conjunction with SPSS was used to determine the Cronbach Alpha reliability of the items' internal consistency and person separation,item measure, item fit based on PTMEA CORR, polarity items, misfit items, unidimensionality, and a person-item map. The Cronbach Coefficient reliability of items for the three sub constructs was 0.70. The results showed nearly every sub component within the three areas of digital skills was regarded as significant to be learn by experts. The researchers recommended among other things, that all parties involved in the education sector should work together to develop a curriculum that covers digital skills which can meet employer’s' needs.

Keywords: lifelong learning, digital skill, framework, building technology

Procedia PDF Downloads 32
7957 Performance Evaluation of Construction Projects by Earned Value Management Method, Using Primavera P6 – A Case Study in Istanbul, Turkey

Authors: Mohammad Lemar Zalmai, Osman Hurol Turkakin, Cemil Akcay, Ekrem Manisali

Abstract:

Most of the construction projects are exposed to time and cost overruns due to various factors and this is a major problem. As a solution to this, the Earned Value Management (EVM) method is considered. EVM is a powerful and well-known method used in monitoring and controlling the project. EVM is a technique that project managers use to track the performance of their project against project baselines. EVM gives an early indication that either project is delayed or not, and the project is either over budget or under budget at any particular day by tracking it. Thus, it helps to improve the management control system of a construction project, to detect and control the problems in potential risk areas and to suggest the importance and purpose of monitoring the construction work. This paper explains the main parameters of the EVM system involved in the calculation of time and cost for construction projects. In this study, the project management software Primavera P6 is used to deals with the project monitoring process of a seven-storeyed (G+6) faculty building whose construction is in progress at Istanbul, Turkey. A comparison between the planned progress of construction activities and actual progress is performed, and the analysis results are interpreted. This case study justifies the benefits of using EVM for project cash flow analysis and forecasting.

Keywords: earned value management (EVM), construction cost management, construction planning, primavera P6, project management, project scheduling

Procedia PDF Downloads 196
7956 A Study on How to Link BIM Services to Cloud Computing Architecture

Authors: Kim Young-Jin, Kim Byung-Kon

Abstract:

Although more efforts to expand the application of BIM (Building Information Modeling) technologies have be pursued in recent years than ever, it’s true that there have been various challenges in doing so, including a lack or absence of relevant institutions, lots of costs required to build BIM-related infrastructure, incompatible processes, etc. This, in turn, has led to a more prolonged delay in the expansion of their application than expected at an early stage. Especially, attempts to save costs for building BIM-related infrastructure and provide various BIM services compatible with domestic processes include studies to link between BIM and cloud computing technologies. Also in this study, the author attempted to develop a cloud BIM service operation model through analyzing the level of BIM applications for the construction sector and deriving relevant service areas, and find how to link BIM services to the cloud operation model, as through archiving BIM data and creating a revenue structure so that the BIM services may grow spontaneously, considering a demand for cloud resources.

Keywords: construction IT, BIM (building information modeling), cloud computing, BIM service based cloud computing

Procedia PDF Downloads 466
7955 The Application of Data Mining Technology in Building Energy Consumption Data Analysis

Authors: Liang Zhao, Jili Zhang, Chongquan Zhong

Abstract:

Energy consumption data, in particular those involving public buildings, are impacted by many factors: the building structure, climate/environmental parameters, construction, system operating condition, and user behavior patterns. Traditional methods for data analysis are insufficient. This paper delves into the data mining technology to determine its application in the analysis of building energy consumption data including energy consumption prediction, fault diagnosis, and optimal operation. Recent literature are reviewed and summarized, the problems faced by data mining technology in the area of energy consumption data analysis are enumerated, and research points for future studies are given.

Keywords: data mining, data analysis, prediction, optimization, building operational performance

Procedia PDF Downloads 822
7954 Application of Adaptive Architecture in Building Technologies: A Case Study of Neuhoff Site in Nashville, Tennessee

Authors: Shohreh Moshiri, Hossein Alimohammadi

Abstract:

Building construction has a great impact on climate change. Adaptive design strategies were developed to provide new life and purpose to old buildings and create new environments with economic benefits to meet resident needs. The role of smart material systems is undeniable in providing adaptivity of the architectural environments and their effects on creating better adaptive building environments. In this research, a case study named Neuhoff site located near Cumberland River in the Germantown neighborhood in the city of Nashville, Tennessee, was considered. This building in the early 1920s was constructed as a meat-packing facility and then served as a mixed-use space; however, New City has partnered with world-class architects to reinvent this site to be changed to mixed-use waterfront development. The future office space will be designed with LEED certification as a goal. Environmentally friendly sensitive materials and designs will offer for all adaptive reuse of the building. The smart materials and their applications, especially in the field of building technology and architecture, were emphasized in providing a renovation plan for the site. The advantages and qualities of smart material systems were targeted to explore in this research on the field of architecture. Also, this research helps to understand better the effects of smart material systems on the construction and design processes, exploration of the way to make architecture with better adaptive characteristics, plus provide optimal environmental situations for the users, which reflect on the climatic, structural, and architectural performances.

Keywords: adaptive architecture, building technology, case study, smart material systems

Procedia PDF Downloads 45