Search results for: network devices
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6904

Search results for: network devices

6724 Domain-Specific Deep Neural Network Model for Classification of Abnormalities on Chest Radiographs

Authors: Nkechinyere Joy Olawuyi, Babajide Samuel Afolabi, Bola Ibitoye

Abstract:

This study collected a preprocessed dataset of chest radiographs and formulated a deep neural network model for detecting abnormalities. It also evaluated the performance of the formulated model and implemented a prototype of the formulated model. This was with the view to developing a deep neural network model to automatically classify abnormalities in chest radiographs. In order to achieve the overall purpose of this research, a large set of chest x-ray images were sourced for and collected from the CheXpert dataset, which is an online repository of annotated chest radiographs compiled by the Machine Learning Research Group, Stanford University. The chest radiographs were preprocessed into a format that can be fed into a deep neural network. The preprocessing techniques used were standardization and normalization. The classification problem was formulated as a multi-label binary classification model, which used convolutional neural network architecture to make a decision on whether an abnormality was present or not in the chest radiographs. The classification model was evaluated using specificity, sensitivity, and Area Under Curve (AUC) score as the parameter. A prototype of the classification model was implemented using Keras Open source deep learning framework in Python Programming Language. The AUC ROC curve of the model was able to classify Atelestasis, Support devices, Pleural effusion, Pneumonia, A normal CXR (no finding), Pneumothorax, and Consolidation. However, Lung opacity and Cardiomegaly had a probability of less than 0.5 and thus were classified as absent. Precision, recall, and F1 score values were 0.78; this implies that the number of False Positive and False Negative is the same, revealing some measure of label imbalance in the dataset. The study concluded that the developed model is sufficient to classify abnormalities present in chest radiographs into present or absent.

Keywords: transfer learning, convolutional neural network, radiograph, classification, multi-label

Procedia PDF Downloads 129
6723 Malware Detection in Mobile Devices by Analyzing Sequences of System Calls

Authors: Jorge Maestre Vidal, Ana Lucila Sandoval Orozco, Luis Javier García Villalba

Abstract:

With the increase in popularity of mobile devices, new and varied forms of malware have emerged. Consequently, the organizations for cyberdefense have echoed the need to deploy more effective defensive schemes adapted to the challenges posed by these recent monitoring environments. In order to contribute to their development, this paper presents a malware detection strategy for mobile devices based on sequence alignment algorithms. Unlike the previous proposals, only the system calls performed during the startup of applications are studied. In this way, it is possible to efficiently study in depth, the sequences of system calls executed by the applications just downloaded from app stores, and initialize them in a secure and isolated environment. As demonstrated in the performed experimentation, most of the analyzed malicious activities were successfully identified in their boot processes.

Keywords: android, information security, intrusion detection systems, malware, mobile devices

Procedia PDF Downloads 304
6722 Data Clustering in Wireless Sensor Network Implemented on Self-Organization Feature Map (SOFM) Neural Network

Authors: Krishan Kumar, Mohit Mittal, Pramod Kumar

Abstract:

Wireless sensor network is one of the most promising communication networks for monitoring remote environmental areas. In this network, all the sensor nodes are communicated with each other via radio signals. The sensor nodes have capability of sensing, data storage and processing. The sensor nodes collect the information through neighboring nodes to particular node. The data collection and processing is done by data aggregation techniques. For the data aggregation in sensor network, clustering technique is implemented in the sensor network by implementing self-organizing feature map (SOFM) neural network. Some of the sensor nodes are selected as cluster head nodes. The information aggregated to cluster head nodes from non-cluster head nodes and then this information is transferred to base station (or sink nodes). The aim of this paper is to manage the huge amount of data with the help of SOM neural network. Clustered data is selected to transfer to base station instead of whole information aggregated at cluster head nodes. This reduces the battery consumption over the huge data management. The network lifetime is enhanced at a greater extent.

Keywords: artificial neural network, data clustering, self organization feature map, wireless sensor network

Procedia PDF Downloads 517
6721 SAFECARE: Integrated Cyber-Physical Security Solution for Healthcare Critical Infrastructure

Authors: Francesco Lubrano, Fabrizio Bertone, Federico Stirano

Abstract:

Modern societies strongly depend on Critical Infrastructures (CI). Hospitals, power supplies, water supplies, telecommunications are just few examples of CIs that provide vital functions to societies. CIs like hospitals are very complex environments, characterized by a huge number of cyber and physical systems that are becoming increasingly integrated. Ensuring a high level of security within such critical infrastructure requires a deep knowledge of vulnerabilities, threats, and potential attacks that may occur, as well as defence and prevention or mitigation strategies. The possibility to remotely monitor and control almost everything is pushing the adoption of network-connected devices. This implicitly introduces new threats and potential vulnerabilities, posing a risk, especially to those devices connected to the Internet. Modern medical devices used in hospitals are not an exception and are more and more being connected to enhance their functionalities and easing the management. Moreover, hospitals are environments with high flows of people, that are difficult to monitor and can somehow easily have access to the same places used by the staff, potentially creating damages. It is therefore clear that physical and cyber threats should be considered, analysed, and treated together as cyber-physical threats. This means that an integrated approach is required. SAFECARE, an integrated cyber-physical security solution, tries to respond to the presented issues within healthcare infrastructures. The challenge is to bring together the most advanced technologies from the physical and cyber security spheres, to achieve a global optimum for systemic security and for the management of combined cyber and physical threats and incidents and their interconnections. Moreover, potential impacts and cascading effects are evaluated through impact propagation models that rely on modular ontologies and a rule-based engine. Indeed, SAFECARE architecture foresees i) a macroblock related to cyber security field, where innovative tools are deployed to monitor network traffic, systems and medical devices; ii) a physical security macroblock, where video management systems are coupled with access control management, building management systems and innovative AI algorithms to detect behavior anomalies; iii) an integration system that collects all the incoming incidents, simulating their potential cascading effects, providing alerts and updated information regarding assets availability.

Keywords: cyber security, defence strategies, impact propagation, integrated security, physical security

Procedia PDF Downloads 165
6720 Design and Implementation of a Cross-Network Security Management System

Authors: Zhiyong Shan, Preethi Santhanam, Vinod Namboodiri, Rajiv Bagai

Abstract:

In recent years, the emerging network worms and attacks have distributive characteristics, which can spread globally in a very short time. Security management crossing networks to co-defense network-wide attacks and improve the efficiency of security administration is urgently needed. We propose a hierarchical distributed network security management system (HD-NSMS), which can integrate security management across multiple networks. First, we describe the system in macrostructure and microstructure; then discuss three key problems when building HD-NSMS: device model, alert mechanism, and emergency response mechanism; lastly, we describe the implementation of HD-NSMS. The paper is valuable for implementing NSMS in that it derives from a practical network security management system (NSMS).

Keywords: network security management, device organization, emergency response, cross-network

Procedia PDF Downloads 168
6719 Generalization of Clustering Coefficient on Lattice Networks Applied to Criminal Networks

Authors: Christian H. Sanabria-Montaña, Rodrigo Huerta-Quintanilla

Abstract:

A lattice network is a special type of network in which all nodes have the same number of links, and its boundary conditions are periodic. The most basic lattice network is the ring, a one-dimensional network with periodic border conditions. In contrast, the Cartesian product of d rings forms a d-dimensional lattice network. An analytical expression currently exists for the clustering coefficient in this type of network, but the theoretical value is valid only up to certain connectivity value; in other words, the analytical expression is incomplete. Here we obtain analytically the clustering coefficient expression in d-dimensional lattice networks for any link density. Our analytical results show that the clustering coefficient for a lattice network with density of links that tend to 1, leads to the value of the clustering coefficient of a fully connected network. We developed a model on criminology in which the generalized clustering coefficient expression is applied. The model states that delinquents learn the know-how of crime business by sharing knowledge, directly or indirectly, with their friends of the gang. This generalization shed light on the network properties, which is important to develop new models in different fields where network structure plays an important role in the system dynamic, such as criminology, evolutionary game theory, econophysics, among others.

Keywords: clustering coefficient, criminology, generalized, regular network d-dimensional

Procedia PDF Downloads 411
6718 Retaining Users in a Commercially-Supported Social Network

Authors: Sasiphan Nitayaprapha

Abstract:

A commercially-supported social network has become an emerging channel for an organization to communicate with and provide services to customers. The success of the commercially-supported social network depends on the ability of the organization to keep the customers in participating in the network. Drawing from the theories of information adoption, information systems continuance, and web usability, the author develops a model to explore how a commercially-supported social network can encourage customers to continue participating and using the information in the network. The theoretical model will be proved through an online survey of customers using the commercially-supported social networking sites of several high technology companies operating in the same sector. The result will be compared with previous studies to learn about the explanatory power of the research model, and to identify the main factors determining users’ intention to continue using a commercially-supported social network. Theoretical and practical implications, and limitations are discussed.

Keywords: social network, information adoption, information systems continuance, web usability, user satisfaction

Procedia PDF Downloads 316
6717 Prediction of Oil Recovery Factor Using Artificial Neural Network

Authors: O. P. Oladipo, O. A. Falode

Abstract:

The determination of Recovery Factor is of great importance to the reservoir engineer since it relates reserves to the initial oil in place. Reserves are the producible portion of reservoirs and give an indication of the profitability of a field Development. The core objective of this project is to develop an artificial neural network model using selected reservoir data to predict Recovery Factors (RF) of hydrocarbon reservoirs and compare the model with a couple of the existing correlations. The type of Artificial Neural Network model developed was the Single Layer Feed Forward Network. MATLAB was used as the network simulator and the network was trained using the supervised learning method, Afterwards, the network was tested with input data never seen by the network. The results of the predicted values of the recovery factors of the Artificial Neural Network Model, API Correlation for water drive reservoirs (Sands and Sandstones) and Guthrie and Greenberger Correlation Equation were obtained and compared. It was noted that the coefficient of correlation of the Artificial Neural Network Model was higher than the coefficient of correlations of the other two correlation equations, thus making it a more accurate prediction tool. The Artificial Neural Network, because of its accurate prediction ability is helpful in the correct prediction of hydrocarbon reservoir factors. Artificial Neural Network could be applied in the prediction of other Petroleum Engineering parameters because it is able to recognise complex patterns of data set and establish a relationship between them.

Keywords: recovery factor, reservoir, reserves, artificial neural network, hydrocarbon, MATLAB, API, Guthrie, Greenberger

Procedia PDF Downloads 441
6716 An Efficient Mitigation Plan to Encounter Various Vulnerabilities in Internet of Things Enterprises

Authors: Umesh Kumar Singh, Abhishek Raghuvanshi, Suyash Kumar Singh

Abstract:

As IoT networks gain popularity, they are more susceptible to security breaches. As a result, it is crucial to analyze the IoT platform as a whole from the standpoint of core security concepts. The Internet of Things relies heavily on wireless networks, which are well-known for being susceptible to a wide variety of attacks. This article provides an analysis of many techniques that may be used to identify vulnerabilities in the software and hardware associated with the Internet of Things (IoT). In the current investigation, an experimental setup is built with the assistance of server computers, client PCs, Internet of Things development boards, sensors, and cloud subscriptions. Through the use of network host scanning methods and vulnerability scanning tools, raw data relating to IoT-based applications and devices may be collected. Shodan is a tool that is used for scanning, and it is also used for effective vulnerability discovery in IoT devices as well as penetration testing. This article presents an efficient mitigation plan for encountering vulnerabilities in the Internet of Things.

Keywords: internet of things, security, privacy, vulnerability identification, mitigation plan

Procedia PDF Downloads 40
6715 DCDNet: Lightweight Document Corner Detection Network Based on Attention Mechanism

Authors: Kun Xu, Yuan Xu, Jia Qiao

Abstract:

The document detection plays an important role in optical character recognition and text analysis. Because the traditional detection methods have weak generalization ability, and deep neural network has complex structure and large number of parameters, which cannot be well applied in mobile devices, this paper proposes a lightweight Document Corner Detection Network (DCDNet). DCDNet is a two-stage architecture. The first stage with Encoder-Decoder structure adopts depthwise separable convolution to greatly reduce the network parameters. After introducing the Feature Attention Union (FAU) module, the second stage enhances the feature information of spatial and channel dim and adaptively adjusts the size of receptive field to enhance the feature expression ability of the model. Aiming at solving the problem of the large difference in the number of pixel distribution between corner and non-corner, Weighted Binary Cross Entropy Loss (WBCE Loss) is proposed to define corner detection problem as a classification problem to make the training process more efficient. In order to make up for the lack of Dataset of document corner detection, a Dataset containing 6620 images named Document Corner Detection Dataset (DCDD) is made. Experimental results show that the proposed method can obtain fast, stable and accurate detection results on DCDD.

Keywords: document detection, corner detection, attention mechanism, lightweight

Procedia PDF Downloads 354
6714 ArcGIS as a Tool for Infrastructure Documentation and Asset Management: Establishing a GIS for Computer Network Documentation

Authors: John Segars

Abstract:

Built out of a real-world need to have better, more detailed, asset and infrastructure documentation, this project will lay out the case for using the database functionality of ArcGIS as a tool to track and maintain infrastructure location, status, maintenance and serviceability. Workflows and processes will be presented and detailed which may be applied to an organizations’ infrastructure needs that might allow them to make use of the robust tools which surround the ArcGIS platform. The end result is a value-added information system framework with a geographic component e.g., the spatial location of various I.T. assets, a detailed set of records which not only documents location but also captures the maintenance history for assets along with photographs and documentation of these various assets as attachments to the numerous feature class items. In addition to the asset location and documentation benefits, the staff will be able to log into the devices and pull SNMP (Simple Network Management Protocol) based query information from within the user interface. The entire collection of information may be displayed in ArcGIS, via a JavaScript based web application or via queries to the back-end database. The project is applicable to all organizations which maintain an IT infrastructure but specifically targets post-secondary educational institutions where access to ESRI resources is generally already available in house.

Keywords: ESRI, GIS, infrastructure, network documentation, PostgreSQL

Procedia PDF Downloads 181
6713 Context and Culture in EFL Learners' and Native Speakers' Discourses

Authors: Emad A. S. Abu-Ayyash

Abstract:

Cohesive devices, the linguistic tools that are usually employed to hold the different parts of the text together, have been the focus of a significant number of discourse analysis studies. These linguistic tools have grabbed the attention of researchers since the inception of the first and most comprehensive model of cohesion in 1976. However, it was noticed that some cohesive devices (e.g., endophoric reference, conjunctions, ellipsis, substitution, and lexical ties) – being thought of as more popular than others (e.g., exophoric reference) – were over-researched. The present paper explores the usage of two cohesive devices that have been evidently almost absent from discourse analysis studies. These cohesive devices are exophoric and homophoric references, the linguistic items that can be interpreted in terms of the physical and cultural contexts of discourse. The significance of the current paper, therefore, stems from the fact that it attempts to fill a gap in the research conducted so far on cohesive devices. This study provides an explanation of the concepts of the cohesive devices that have been employed in a plethora of research on cohesion and elucidates the relevant context-related concepts. The paper also identifies the gap in cohesive devices research. Exophora and homophora, the least visited cohesive devices in previous studies, were qualitatively and quantitatively explored in six opinion articles, four produced by eight postgraduate English as a Foreign Language (EFL) students in a university in the United Arab Emirates and two by professional NS writers in the Independent and the Guardian. The six pieces were about the United Kingdom Independent Party (UKIP) leader’s call to ban the burqa in the UK and were analysed vis-a-vis the employment and function of homophora and exophora. The study found that both EFL students and native speakers employed exophora and homophora considerably in their writing to serve a variety of functions, including building assumptions, supporting main ideas, and involving the readers among others.

Keywords: cohesive devices, context, culture, exophoric reference, homophoric reference

Procedia PDF Downloads 123
6712 Congestion Control in Mobile Network by Prioritizing Handoff Calls

Authors: O. A. Lawal, O. A Ojesanmi

Abstract:

The demand for wireless cellular services continues to increase while the radio resources remain limited. Thus, network operators have to continuously manage the scarce radio resources in order to have an improved quality of service for mobile users. This paper proposes how to handle the problem of congestion in the mobile network by prioritizing handoff call, using the guard channel allocation scheme. The research uses specific threshold value for the time of allocation of the channel in the algorithm. The scheme would be simulated by generating various data for different traffics in the network as it would be in the real life. The result would be used to determine the probability of handoff call dropping and the probability of the new call blocking as a way of measuring the network performance.

Keywords: call block, channel, handoff, mobile cellular network

Procedia PDF Downloads 394
6711 Person Re-Identification using Siamese Convolutional Neural Network

Authors: Sello Mokwena, Monyepao Thabang

Abstract:

In this study, we propose a comprehensive approach to address the challenges in person re-identification models. By combining a centroid tracking algorithm with a Siamese convolutional neural network model, our method excels in detecting, tracking, and capturing robust person features across non-overlapping camera views. The algorithm efficiently identifies individuals in the camera network, while the neural network extracts fine-grained global features for precise cross-image comparisons. The approach's effectiveness is further accentuated by leveraging the camera network topology for guidance. Our empirical analysis on benchmark datasets highlights its competitive performance, particularly evident when background subtraction techniques are selectively applied, underscoring its potential in advancing person re-identification techniques.

Keywords: camera network, convolutional neural network topology, person tracking, person re-identification, siamese

Procedia PDF Downloads 72
6710 A New Low Cost Seismic Response Controlling Structures with Semi Base Isolation Devices

Authors: M. Ezati Kooshki, A. Abbaszadeh Shahri

Abstract:

A number of devices used to control seismic structures have been developed during the past decades. One of the effective ways to reduce seismic forces transmitted to the buildings is through the base isolation systems, but the use of these devices is currently limited to large and expensive buildings. This study was an attempt to introduce an effective and low cost way to protect of structures against grand motions by a semi base isolation system. In this new way, structures were not completely decoupled of bases and the natural frequency of structures was changed due to earthquake by changing the horizontal stiffness; therefore, ground excitation energy was dissipated before entering the structures. For analyzing the dynamic behavior, the new method used finite element software (ABAQUS 6-10-1). This investigation introduced a new package of semi base isolation devices with a new material constitutive, but common in automobile industries, seeking to evaluate the effects of additional new devices on the seismic response when compared with structures without additional devises for different ground motions. The proposed semi base isolation devices were applied to a one story frame and the time history analysis was conducted on the record of Kobe earthquake (1995). The results showed that the efficiency reduced the floor acceleration and displacement, as well as velocity.

Keywords: semi base isolation system, finite element, natural frequency, horizontal stiffness

Procedia PDF Downloads 396
6709 Performance Analysis of ERA Using Fuzzy Logic in Wireless Sensor Network

Authors: Kamalpreet Kaur, Harjit Pal Singh, Vikas Khullar

Abstract:

In Wireless Sensor Network (WSN), the main limitation is generally inimitable energy consumption during processing of the sensor nodes. Cluster head (CH) election is one of the main issues that can reduce the energy consumption. Therefore, discovering energy saving routing protocol is the focused area for research. In this paper, fuzzy-based energy aware routing protocol is presented, which enhances the stability and network lifetime of the network. Fuzzy logic ensures the well-organized selection of CH by taking four linguistic variables that are concentration, energy, centrality, and distance to base station (BS). The results show that the proposed protocol shows better results in requisites of stability and throughput of the network.

Keywords: ERA, fuzzy logic, network model, WSN

Procedia PDF Downloads 279
6708 3D Object Model Reconstruction Based on Polywogs Wavelet Network Parametrization

Authors: Mohamed Othmani, Yassine Khlifi

Abstract:

This paper presents a technique for compact three dimensional (3D) object model reconstruction using wavelet networks. It consists to transform an input surface vertices into signals,and uses wavelet network parameters for signal approximations. To prove this, we use a wavelet network architecture founded on several mother wavelet families. POLYnomials WindOwed with Gaussians (POLYWOG) wavelet families are used to maximize the probability to select the best wavelets which ensure the good generalization of the network. To achieve a better reconstruction, the network is trained several iterations to optimize the wavelet network parameters until the error criterion is small enough. Experimental results will shown that our proposed technique can effectively reconstruct an irregular 3D object models when using the optimized wavelet network parameters. We will prove that an accurateness reconstruction depends on the best choice of the mother wavelets.

Keywords: 3d object, optimization, parametrization, polywog wavelets, reconstruction, wavelet networks

Procedia PDF Downloads 284
6707 Study on the Characteristics of Chinese Urban Network Space from the Perspective of Innovative Collaboration

Authors: Wei Wang, Yilun Xu

Abstract:

With the development of knowledge economy era, deepening the mechanism of cooperation and adhering to sharing and win-win cooperation has become new direction of urban development nowadays. In recent years, innovative collaborations between cities are becoming more and more frequent, whose influence on urban network space has aroused many scholars' attention. Taking 46 cities in China as the research object, the paper builds the connectivity of innovative network between cities and the linkages of urban external innovation using patent cooperation data among cities, and explores urban network space in China by the application of GIS, which is a beneficial exploration to the study of social network space in China in the era of information network. The result shows that the urban innovative network space and geographical entity space exist differences, and the linkages of external innovation are not entirely related to the city innovative capacity and the level of economy development. However, urban innovative network space and geographical entity space are similar in hierarchical clustering. They have both formed Beijing-Tianjin-Hebei, Yangtze River Delta, Pearl River Delta three metropolitan areas and Beijing-Shenzhen-Shanghai-Hangzhou four core cities, which lead the development of innovative network space in China.

Keywords: innovative collaboration, urban network space, the connectivity of innovative network, the linkages of external innovation

Procedia PDF Downloads 178
6706 Critical Evaluation and Analysis of Effects of Different Queuing Disciplines on Packets Delivery and Delay for Different Applications

Authors: Omojokun Gabriel Aju

Abstract:

Communication network is a process of exchanging data between two or more devices via some forms of transmission medium using communication protocols. The data could be in form of text, images, audio, video or numbers which can be grouped into FTP, Email, HTTP, VOIP or Video applications. The effectiveness of such data exchange will be proved if they are accurately delivered within specified time. While some senders will not really mind when the data is actually received by the receiving device, inasmuch as it is acknowledged to have been received by the receiver. The time a data takes to get to a receiver could be very important to another sender, as any delay could cause serious problem or even in some cases rendered the data useless. The validity or invalidity of a data after delay will therefore definitely depend on the type of data (information). It is therefore imperative for the network device (such as router) to be able to differentiate among the packets which are time sensitive and those that are not, when they are passing through the same network. So, here is where the queuing disciplines comes to play, to handle network resources when such network is designed to service widely varying types of traffics and manage the available resources according to the configured policies. Therefore, as part of the resources allocation mechanisms, a router within the network must implement some queuing discipline that governs how packets (data) are buffered while waiting to be transmitted. The implementation of the queuing discipline will regulate how the packets are buffered while waiting to be transmitted. In achieving this, various queuing disciplines are being used to control the transmission of these packets, by determining which of the packets get the highest priority, less priority and which packets are dropped. The queuing discipline will therefore control the packets latency by determining how long a packet can wait to be transmitted or dropped. The common queuing disciplines are first-in-first-out queuing, Priority queuing and Weighted-fair queuing (FIFO, PQ and WFQ). This paper critically evaluates and analyse through the use of Optimized Network Evaluation Tool (OPNET) Modeller, Version 14.5 the effects of three queuing disciplines (FIFO, PQ and WFQ) on the performance of 5 different applications (FTP, HTTP, E-Mail, Voice and Video) within specified parameters using packets sent, packets received and transmission delay as performance metrics. The paper finally suggests some ways in which networks can be designed to provide better transmission performance while using these queuing disciplines.

Keywords: applications, first-in-first-out queuing (FIFO), optimised network evaluation tool (OPNET), packets, priority queuing (PQ), queuing discipline, weighted-fair queuing (WFQ)

Procedia PDF Downloads 358
6705 Programmable Microfluidic Device Based on Stimuli Responsive Hydrogels

Authors: Martin Elstner

Abstract:

Processing of information by means of handling chemicals is a ubiquitous phenomenon in nature. Technical implementations of chemical information processing lack of low integration densities compared to electronic devices. Stimuli responsive hydrogels are promising candidates for materials with information processing capabilities. These hydrogels are sensitive toward chemical stimuli like metal ions or amino acids. The binding of an analyte molecule induces conformational changes inside the polymer network and subsequently the water content and volume of the hydrogel varies. This volume change can control material flows, and concurrently information flows, in microfluidic devices. The combination of this technology with powerful chemical logic gates yields in a platform for highly integrated chemical circuits. The manufacturing process of such devices is very challenging and rapid prototyping is a key technology used in the study. 3D printing allows generating three-dimensional defined structures of high complexity in a single and fast process step. This thermoplastic master is molded into PDMS and the master is removed by dissolution in an organic solvent. A variety of hydrogel materials is prepared by dispenser printing of pre-polymer solutions. By a variation of functional groups or cross-linking units, the functionality of the hole circuit can be programmed. Finally, applications in the field of bio-molecular analytics were demonstrated with an autonomously operating microfluidic chip.

Keywords: bioanalytics, hydrogels, information processing, microvalve

Procedia PDF Downloads 309
6704 Cellular Mobile Telecommunication GSM Radio Base Station Network Planning

Authors: Saeed Alzahrani, Yaser Miaji

Abstract:

The project involves the design and simulation of a Mobile Cellular Telecommunication Network using the software tool CelPlanner. The design is mainly concerned with Global System for Mobile Communications . The design and simulation of the network is done for a small part of the area allocated for us in the terrain area of Shreveport city .The project is concerned with designing a network that is cost effective and which also efficiently meets the required Grade of Service (GOS) AND Quality of Service (QOS).The expected outcome of this project is the design of a network that gives a good coverage for the area allocated to us with minimum co-channel interference and adjacent channel interference. The Handover and Traffic Handling Capacity should also be taken into consideration and should be good for the given area . The Traffic Handling Capacity of the network in a way decides whether the designed network is good or bad . The design also takes into consideration the topographical and morphological information.

Keywords: mobile communication, GSM, radio base station, network planning

Procedia PDF Downloads 439
6703 Exploring Data Stewardship in Fog Networking Using Blockchain Algorithm

Authors: Ruvaitha Banu, Amaladhithyan Krishnamoorthy

Abstract:

IoT networks today solve various consumer problems, from home automation systems to aiding in driving autonomous vehicles with the exploration of multiple devices. For example, in an autonomous vehicle environment, multiple sensors are available on roads to monitor weather and road conditions and interact with each other to aid the vehicle in reaching its destination safely and timely. IoT systems are predominantly dependent on the cloud environment for data storage, and computing needs that result in latency problems. With the advent of Fog networks, some of this storage and computing is pushed to the edge/fog nodes, saving the network bandwidth and reducing the latency proportionally. Managing the data stored in these fog nodes becomes crucial as it might also store sensitive information required for a certain application. Data management in fog nodes is strenuous because Fog networks are dynamic in terms of their availability and hardware capability. It becomes more challenging when the nodes in the network also live a short span, detaching and joining frequently. When an end-user or Fog Node wants to access, read, or write data stored in another Fog Node, then a new protocol becomes necessary to access/manage the data stored in the fog devices as a conventional static way of managing the data doesn’t work in Fog Networks. The proposed solution discusses a protocol that acts by defining sensitivity levels for the data being written and read. Additionally, a distinct data distribution and replication model among the Fog nodes is established to decentralize the access mechanism. In this paper, the proposed model implements stewardship towards the data stored in the Fog node using the application of Reinforcement Learning so that access to the data is determined dynamically based on the requests.

Keywords: IoT, fog networks, data stewardship, dynamic access policy

Procedia PDF Downloads 59
6702 Flexible PVC Based Nanocomposites With the Incorporation of Electric and Magnetic Nanofillers for the Shielding Against EMI and Thermal Imaging Signals

Authors: H. M. Fayzan Shakir, Khadija Zubair, Tingkai Zhao

Abstract:

Electromagnetic (EM) waves are being used widely now a days. Cell phone signals, WIFI signals, wireless telecommunications etc everything uses EM waves which then create EM pollution. EM pollution can cause serious effects on both human health and nearby electronic devices. EM waves have electric and magnetic components that disturb the flow of charged particles in both human nervous system and electronic devices. The shielding of both humans and electronic devices are a prime concern today. EM waves can cause headaches, anxiety, suicide and depression, nausea, fatigue and loss of libido in humans and malfunctioning in electronic devices. Polyaniline (PANI) and polypyrrole (PPY) were successfully synthesized using chemical polymerizing using ammonium persulfate and DBSNa as oxidant respectively. Barium ferrites (BaFe) were also prepared using co-precipitation method and calcinated at 10500C for 8h. Nanocomposite thin films with various combinations and compositions of Polyvinylchloride, PANI, PPY and BaFe were prepared. X-ray diffraction technique was first used to confirm the successful fabrication of all nano fillers and particle size analyzer to measure the exact size and scanning electron microscopy is used for the shape. According to Electromagnetic Interference theory, electrical conductivity is the prime property required for the Electromagnetic Interference shielding. 4-probe technique is then used to evaluate DC conductivity of all samples. Samples with high concentration of PPY and PANI exhibit remarkable increased electrical conductivity due to fabrication of interconnected network structure inside the Polyvinylchloride matrix that is also confirmed by SEM analysis. Less than 1% transmission was observed in whole NIR region (700 nm – 2500 nm). Also, less than -80 dB Electromagnetic Interference shielding effectiveness was observed in microwave region (0.1 GHz to 20 GHz).

Keywords: nanocomposites, polymers, EMI shielding, thermal imaging

Procedia PDF Downloads 106
6701 Keynote Talk: The Role of Internet of Things in the Smart Cities Power System

Authors: Abdul-Rahman Al-Ali

Abstract:

As the number of mobile devices is growing exponentially, it is estimated to connect about 50 million devices to the Internet by the year 2020. At the end of this decade, it is expected that an average of eight connected devices per person worldwide. The 50 billion devices are not mobile phones and data browsing gadgets only, but machine-to-machine and man-to-machine devices. With such growing numbers of devices the Internet of Things (I.o.T) concept is one of the emerging technologies as of recently. Within the smart grid technologies, smart home appliances, Intelligent Electronic Devices (IED) and Distributed Energy Resources (DER) are major I.o.T objects that can be addressable using the IPV6. These objects are called the smart grid internet of things (SG-I.o.T). The SG-I.o.T generates big data that requires high-speed computing infrastructure, widespread computer networks, big data storage, software, and platforms services. A company’s utility control and data centers cannot handle such a large number of devices, high-speed processing, and massive data storage. Building large data center’s infrastructure takes a long time, it also requires widespread communication networks and huge capital investment. To maintain and upgrade control and data centers’ infrastructure and communication networks as well as updating and renewing software licenses which collectively, requires additional cost. This can be overcome by utilizing the emerging computing paradigms such as cloud computing. This can be used as a smart grid enabler to replace the legacy of utilities data centers. The talk will highlight the role of I.o.T, cloud computing services and their development models within the smart grid technologies.

Keywords: intelligent electronic devices (IED), distributed energy resources (DER), internet, smart home appliances

Procedia PDF Downloads 324
6700 Airon Project: IoT-Based Agriculture System for the Optimization of Irrigation Water Consumption

Authors: África Vicario, Fernando J. Álvarez, Felipe Parralejo, Fernando Aranda

Abstract:

The irrigation systems of traditional agriculture, such as gravity-fed irrigation, produce a great waste of water because, generally, there is no control over the amount of water supplied in relation to the water needed. The AIRON Project tries to solve this problem by implementing an IoT-based system to sensor the irrigation plots so that the state of the crops and the amount of water used for irrigation can be known remotely. The IoT system consists of a sensor network that measures the humidity of the soil, the weather conditions (temperature, relative humidity, wind and solar radiation) and the irrigation water flow. The communication between this network and a central gateway is conducted by means of long-range wireless communication that depends on the characteristics of the irrigation plot. The main objective of the AIRON project is to deploy an IoT sensor network in two different plots of the irrigation community of Aranjuez in the Spanish region of Madrid. The first plot is 2 km away from the central gateway, so LoRa has been used as the base communication technology. The problem with this plot is the absence of mains electric power, so devices with energy-saving modes have had to be used to maximize the external batteries' use time. An ESP32 SOC board with a LoRa module is employed in this case to gather data from the sensor network and send them to a gateway consisting of a Raspberry Pi with a LoRa hat. The second plot is located 18 km away from the gateway, a range that hampers the use of LoRa technology. In order to establish reliable communication in this case, the long-term evolution (LTE) standard is used, which makes it possible to reach much greater distances by using the cellular network. As mains electric power is available in this plot, a Raspberry Pi has been used instead of the ESP32 board to collect sensor data. All data received from the two plots are stored on a proprietary server located at the irrigation management company's headquarters. The analysis of these data by means of machine learning algorithms that are currently under development should allow a short-term prediction of the irrigation water demand that would significantly reduce the waste of this increasingly valuable natural resource. The major finding of this work is the real possibility of deploying a remote sensing system for irrigated plots by using Commercial-Off-The-Shelf (COTS) devices, easily scalable and adaptable to design requirements such as the distance to the control center or the availability of mains electrical power at the site.

Keywords: internet of things, irrigation water control, LoRa, LTE, smart farming

Procedia PDF Downloads 85
6699 Implementation of a Virtual Testbed for Secure IoT Firmware Update Using Blockchain

Authors: Tarun Chand, Michael Jurczyk

Abstract:

With the increasing need and popularity of IoT devices and how integrated they are becoming in our daily lives and industries, these devices make for a very lucrative target for malicious actors. And since these devices have such limited resources, the implementation of robust security features is a tradeoff to be made for the actual functionality the device was intended for. This makes them an easy target with high returns. Several frameworks for the secure firmware update of these devices have been recently proposed in the literature. They focus on methods such as blockchains and distributed file systems to secure firmware updates, but do not go into the details of the actual implementation of these frameworks and the lower-level interactions among these methods used. This work integrates some of these security measures into one overall framework and details the actual lower-level implementation of this framework in a virtual dockerized testbed running on AWS.

Keywords: blockchain, Ethereum, Geth, IPFS, secure IoT-firmware update, virtual testbed development

Procedia PDF Downloads 67
6698 Survey of Intrusion Detection Systems and Their Assessment of the Internet of Things

Authors: James Kaweesa

Abstract:

The Internet of Things (IoT) has become a critical component of modern technology, enabling the connection of numerous devices to the internet. The interconnected nature of IoT devices, along with their heterogeneous and resource-constrained nature, makes them vulnerable to various types of attacks, such as malware, denial-of-service attacks, and network scanning. Intrusion Detection Systems (IDSs) are a key mechanism for protecting IoT networks and from attacks by identifying and alerting administrators to suspicious activities. In this review, the paper will discuss the different types of IDSs available for IoT systems and evaluate their effectiveness in detecting and preventing attacks. Also, examine the various evaluation methods used to assess the performance of IDSs and the challenges associated with evaluating them in IoT environments. The review will highlight the need for effective and efficient IDSs that can cope with the unique characteristics of IoT networks, including their heterogeneity, dynamic topology, and resource constraints. The paper will conclude by indicating where further research is needed to develop IDSs that can address these challenges and effectively protect IoT systems from cyber threats.

Keywords: cyber-threats, iot, intrusion detection system, networks

Procedia PDF Downloads 80
6697 Design and Realization of Computer Network Security Perception Control System

Authors: El Miloudi Djelloul

Abstract:

Based on analysis on applications by perception control technology in computer network security status and security protection measures, from the angles of network physical environment and network software system environmental security, this paper provides network security system perception control solution using Internet of Things (IOT), telecom and other perception technologies. Security Perception Control System is in the computer network environment, utilizing Radio Frequency Identification (RFID) of IOT and telecom integration technology to carry out integration design for systems. In the network physical security environment, RFID temperature, humidity, gas and perception technologies are used to do surveillance on environmental data, dynamic perception technology is used for network system security environment, user-defined security parameters, security log are used for quick data analysis, extends control on I/O interface, by development of API and AT command, Computer Network Security Perception Control based on Internet and GSM/GPRS is achieved, which enables users to carry out interactive perception and control for network security environment by WEB, E-MAIL as well as PDA, mobile phone short message and Internet. In the system testing, through middle ware server, security information data perception in real time with deviation of 3-5% was achieved; it proves the feasibility of Computer Network Security Perception Control System.

Keywords: computer network, perception control system security strategy, Radio Frequency Identification (RFID)

Procedia PDF Downloads 446
6696 Uncovering the Role of Crystal Phase in Determining Nonvolatile Flash Memory Device Performance Based on 2D Van Der Waals Heterostructures

Authors: Yunpeng Xia, Jiajia Zha, Haoxin Huang, Hau Ping Chan, Chaoliang Tan

Abstract:

Although the crystal phase of two-dimensional (2D) transition metal dichalcogenides (TMDs) has been proven to play an essential role in fabricating high-performance electronic devices in the past decade, its effect on the performance of 2D material-based flash memory devices still remains unclear. Here, we report the exploration of the effect of MoTe₂ in different phases as the charge trapping layer on the performance of 2D van der Waals (vdW) heterostructure-based flash memory devices, where the metallic 1T′-MoTe₂ or semiconducting 2H-MoTe₂ nanoflake is used as the floating gate. By conducting comprehensive measurements on the two kinds of vdW heterostructure-based devices, the memory device based on MoS2/h-BN/1T′-MoTe₂ presents much better performance, including a larger memory window, faster switching speed (100 ns) and higher extinction ratio (107), than that of the device based on MoS₂/h-BN/2H-MoTe₂ heterostructure. Moreover, the device based on MoS₂/h-BN/1T′-MoTe₂ heterostructure also shows a long cycle (>1200 cycles) and retention (>3000 s) stability. Our study clearly demonstrates that the crystal phase of 2D TMDs has a significant impact on the performance of nonvolatile flash memory devices based on 2D vdW heterostructures, which paves the way for the fabrication of future high-performance memory devices based on 2D materials.

Keywords: crystal Phase, 2D van der Waals heretostructure, flash memory device, floating gate

Procedia PDF Downloads 51
6695 A Distributed Mobile Agent Based on Intrusion Detection System for MANET

Authors: Maad Kamal Al-Anni

Abstract:

This study is about an algorithmic dependence of Artificial Neural Network on Multilayer Perceptron (MPL) pertaining to the classification and clustering presentations for Mobile Adhoc Network vulnerabilities. Moreover, mobile ad hoc network (MANET) is ubiquitous intelligent internetworking devices in which it has the ability to detect their environment using an autonomous system of mobile nodes that are connected via wireless links. Security affairs are the most important subject in MANET due to the easy penetrative scenarios occurred in such an auto configuration network. One of the powerful techniques used for inspecting the network packets is Intrusion Detection System (IDS); in this article, we are going to show the effectiveness of artificial neural networks used as a machine learning along with stochastic approach (information gain) to classify the malicious behaviors in simulated network with respect to different IDS techniques. The monitoring agent is responsible for detection inference engine, the audit data is collected from collecting agent by simulating the node attack and contrasted outputs with normal behaviors of the framework, whenever. In the event that there is any deviation from the ordinary behaviors then the monitoring agent is considered this event as an attack , in this article we are going to demonstrate the  signature-based IDS approach in a MANET by implementing the back propagation algorithm over ensemble-based Traffic Table (TT), thus the signature of malicious behaviors or undesirable activities are often significantly prognosticated and efficiently figured out, by increasing the parametric set-up of Back propagation algorithm during the experimental results which empirically shown its effectiveness  for the ratio of detection index up to 98.6 percentage. Consequently it is proved in empirical results in this article, the performance matrices are also being included in this article with Xgraph screen show by different through puts like Packet Delivery Ratio (PDR), Through Put(TP), and Average Delay(AD).

Keywords: Intrusion Detection System (IDS), Mobile Adhoc Networks (MANET), Back Propagation Algorithm (BPA), Neural Networks (NN)

Procedia PDF Downloads 194