Search results for: match outcome forecasting
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2955

Search results for: match outcome forecasting

2775 Functional Outcome and Quality of Life of Conservative versus Surgical Management of Adult Potts Disease: A Prospective Cohort Study

Authors: Mark Angelo Maranon, David Endriga

Abstract:

Objective: The aim of the study is to determine the differences in functional outcome and quality of life of adult patients with Potts disease who have undergone surgical versus non-surgical management. Methods: In this prospective cohort study, 45 patients were followed up for 1 year after undergoing pharmacologic treatment alone versus a combination of anti-Kochs and surgery for Potts disease. Oswestry Disability Index (ODI) and Short Form-36 (SF-36) were obtained on initiation of treatment, after three months, six months and one year. Results: ASIA scores from the onset of treatment and after 1 year significantly improved (p<0.001) for both non-surgical and surgical patients. ODI scores significantly improved after 6 months of treatment for both surgical and non-surgical patients. Both surgical and non-surgical patients showed significant improvement in their SF-36 scores, but scores were noted to be higher in patients who underwent surgery. Conclusions: Significant improvement with regards to functional outcome and quality of life was noted from both surgical and non-surgical patients after 1 year of treatment, with earlier improvements and better final scores in SF 36 and ODI in patients who underwent surgery.

Keywords: tuberculosis, spinal, potts disease, functional outcome

Procedia PDF Downloads 148
2774 Investigating the performance of machine learning models on PM2.5 forecasts: A case study in the city of Thessaloniki

Authors: Alexandros Pournaras, Anastasia Papadopoulou, Serafim Kontos, Anastasios Karakostas

Abstract:

The air quality of modern cities is an important concern, as poor air quality contributes to human health and environmental issues. Reliable air quality forecasting has, thus, gained scientific and governmental attention as an essential tool that enables authorities to take proactive measures for public safety. In this study, the potential of Machine Learning (ML) models to forecast PM2.5 at local scale is investigated in the city of Thessaloniki, the second largest city in Greece, which has been struggling with the persistent issue of air pollution. ML models, with proven ability to address timeseries forecasting, are employed to predict the PM2.5 concentrations and the respective Air Quality Index 5-days ahead by learning from daily historical air quality and meteorological data from 2014 to 2016 and gathered from two stations with different land use characteristics in the urban fabric of Thessaloniki. The performance of the ML models on PM2.5 concentrations is evaluated with common statistical methods, such as R squared (r²) and Root Mean Squared Error (RMSE), utilizing a portion of the stations’ measurements as test set. A multi-categorical evaluation is utilized for the assessment of their performance on respective AQIs. Several conclusions were made from the experiments conducted. Experimenting on MLs’ configuration revealed a moderate effect of various parameters and training schemas on the model’s predictions. Their performance of all these models were found to produce satisfactory results on PM2.5 concentrations. In addition, their application on untrained stations showed that these models can perform well, indicating a generalized behavior. Moreover, their performance on AQI was even better, showing that the MLs can be used as predictors for AQI, which is the direct information provided to the general public.

Keywords: Air Quality, AQ Forecasting, AQI, Machine Learning, PM2.5

Procedia PDF Downloads 77
2773 Forecasting Nokoué Lake Water Levels Using Long Short-Term Memory Network

Authors: Namwinwelbere Dabire, Eugene C. Ezin, Adandedji M. Firmin

Abstract:

The prediction of hydrological flows (rainfall-depth or rainfall-discharge) is becoming increasingly important in the management of hydrological risks such as floods. In this study, the Long Short-Term Memory (LSTM) network, a state-of-the-art algorithm dedicated to time series, is applied to predict the daily water level of Nokoue Lake in Benin. This paper aims to provide an effective and reliable method enable of reproducing the future daily water level of Nokoue Lake, which is influenced by a combination of two phenomena: rainfall and river flow (runoff from the Ouémé River, the Sô River, the Porto-Novo lagoon, and the Atlantic Ocean). Performance analysis based on the forecasting horizon indicates that LSTM can predict the water level of Nokoué Lake up to a forecast horizon of t+10 days. Performance metrics such as Root Mean Square Error (RMSE), coefficient of correlation (R²), Nash-Sutcliffe Efficiency (NSE), and Mean Absolute Error (MAE) agree on a forecast horizon of up to t+3 days. The values of these metrics remain stable for forecast horizons of t+1 days, t+2 days, and t+3 days. The values of R² and NSE are greater than 0.97 during the training and testing phases in the Nokoué Lake basin. Based on the evaluation indices used to assess the model's performance for the appropriate forecast horizon of water level in the Nokoué Lake basin, the forecast horizon of t+3 days is chosen for predicting future daily water levels.

Keywords: forecasting, long short-term memory cell, recurrent artificial neural network, Nokoué lake

Procedia PDF Downloads 64
2772 Study of ANFIS and ARIMA Model for Weather Forecasting

Authors: Bandreddy Anand Babu, Srinivasa Rao Mandadi, C. Pradeep Reddy, N. Ramesh Babu

Abstract:

In this paper quickly illustrate the correlation investigation of Auto-Regressive Integrated Moving and Average (ARIMA) and daptive Network Based Fuzzy Inference System (ANFIS) models done by climate estimating. The climate determining is taken from University of Waterloo. The information is taken as Relative Humidity, Ambient Air Temperature, Barometric Pressure and Wind Direction utilized within this paper. The paper is carried out by analyzing the exhibitions are seen by demonstrating of ARIMA and ANIFIS model like with Sum of average of errors. Versatile Network Based Fuzzy Inference System (ANFIS) demonstrating is carried out by Mat lab programming and Auto-Regressive Integrated Moving and Average (ARIMA) displaying is produced by utilizing XLSTAT programming. ANFIS is carried out in Fuzzy Logic Toolbox in Mat Lab programming.

Keywords: ARIMA, ANFIS, fuzzy surmising tool stash, weather forecasting, MATLAB

Procedia PDF Downloads 418
2771 Early Detection of Major Earthquakes Using Broadband Accelerometers

Authors: Umberto Cerasani, Luca Cerasani

Abstract:

Methods for earthquakes forecasting have been intensively investigated in the last decades, but there is still no universal solution agreed by seismologists. Rock failure is most often preceded by a tiny elastic movement in the failure area and by the appearance of micro-cracks. These micro-cracks could be detected at the soil surface and represent useful earth-quakes precursors. The aim of this study was to verify whether tiny raw acceleration signals (in the 10⁻¹ to 10⁻⁴ cm/s² range) prior to the arrival of main primary-waves could be exploitable and related to earthquakes magnitude. Mathematical tools such as Fast Fourier Transform (FFT), moving average and wavelets have been applied on raw acceleration data available on the ITACA web site, and the study focused on one of the most unpredictable earth-quakes, i.e., the August 24th, 2016 at 01H36 one that occurred in the central Italy area. It appeared that these tiny acceleration signals preceding main P-waves have different patterns both on frequency and time domains for high magnitude earthquakes compared to lower ones.

Keywords: earthquake, accelerometer, earthquake forecasting, seism

Procedia PDF Downloads 144
2770 The Application of Bayesian Heuristic for Scheduling in Real-Time Private Clouds

Authors: Sahar Sohrabi

Abstract:

The emergence of Cloud data centers has revolutionized the IT industry. Private Clouds in specific provide Cloud services for certain group of customers/businesses. In a real-time private Cloud each task that is given to the system has a deadline that desirably should not be violated. Scheduling tasks in a real-time private CLoud determine the way available resources in the system are shared among incoming tasks. The aim of the scheduling policy is to optimize the system outcome which for a real-time private Cloud can include: energy consumption, deadline violation, execution time and the number of host switches. Different scheduling policies can be used for scheduling. Each lead to a sub-optimal outcome in a certain settings of the system. A Bayesian Scheduling strategy is proposed for scheduling to further improve the system outcome. The Bayesian strategy showed to outperform all selected policies. It also has the flexibility in dealing with complex pattern of incoming task and has the ability to adapt.

Keywords: cloud computing, scheduling, real-time private cloud, bayesian

Procedia PDF Downloads 359
2769 Fast and Scale-Adaptive Target Tracking via PCA-SIFT

Authors: Yawen Wang, Hongchang Chen, Shaomei Li, Chao Gao, Jiangpeng Zhang

Abstract:

As the main challenge for target tracking is accounting for target scale change and real-time, we combine Mean-Shift and PCA-SIFT algorithm together to solve the problem. We introduce similarity comparison method to determine how the target scale changes, and taking different strategies according to different situation. For target scale getting larger will cause location error, we employ backward tracking to reduce the error. Mean-Shift algorithm has poor performance when tracking scale-changing target due to the fixed bandwidth of its kernel function. In order to overcome this problem, we introduce PCA-SIFT matching. Through key point matching between target and template, that adjusting the scale of tracking window adaptively can be achieved. Because this algorithm is sensitive to wrong match, we introduce RANSAC to reduce mismatch as far as possible. Furthermore target relocating will trigger when number of match is too small. In addition we take comprehensive consideration about target deformation and error accumulation to put forward a new template update method. Experiments on five image sequences and comparison with 6 kinds of other algorithm demonstrate favorable performance of the proposed tracking algorithm.

Keywords: target tracking, PCA-SIFT, mean-shift, scale-adaptive

Procedia PDF Downloads 433
2768 Cross Matching: An Improved Method to Obtain Comprehensive and Consolidated Evidence

Authors: Tuula Heinonen, Wilhelm Gaus

Abstract:

At present safety, assessment starts with animal tests although their predictivity is often poor. Even after extended human use experimental data are often judged as the core information for risk assessment. However, the best opportunity to generate true evidence is to match all available information. Cross matching methodology combines the different fields of knowledge and types of data (e.g. in-vitro and in-vivo experiments, clinical observations, clinical and epidemiological studies, and daily life observations) and gives adequate weight to individual findings. To achieve a consolidated outcome, the information from all available sources is analysed and compared with each other. If single pieces of information fit together a clear picture becomes visible. If pieces of information are inconsistent or contradictory careful consideration is necessary. 'Cross' can be understood as 'orthographic' in geometry or as 'independent' in mathematics. Results coming from different sources bring independent and; therefore, they result in new information. Independent information gives a larger contribution to evidence than results coming repeatedly from the same source. A successful example of cross matching is the assessment of Ginkgo biloba where we were able to come to the conclusive result: Ginkgo biloba leave extract is well tolerated and safe for humans.

Keywords: cross-matching, human use, safety assessment, Ginkgo biloba leave extract

Procedia PDF Downloads 286
2767 Multiple Winding Multiphase Motor for Electric Drive System

Authors: Zhao Tianxu, Cui Shumei

Abstract:

This paper proposes a novel multiphase motor structure. The armature winding consists of several independent multiphase windings that have different rating rotate speed and power. Compared to conventional motor, the novel motor structure has more operation mode and fault tolerance mode, which makes it adapt to high-reliability requirement situation such as electric vehicle, aircraft and ship. Performance of novel motor structure varies with winding match. In order to find optimum control strategy, motor torque character, efficiency performance and fault tolerance ability under different operation mode are analyzed in this paper, and torque distribution strategy for efficiency optimization is proposed. Simulation analyze is taken and the result shows that proposed structure has the same efficiency on heavy load and higher efficiency on light load operation points, which expands high efficiency area of motor and cruise range of vehicle. The proposed structure can improve motor highest speed.

Keywords: multiphase motor, armature winding match, torque distribution strategy, efficiency

Procedia PDF Downloads 359
2766 Elementary Education Outcome Efficiency in Indian States

Authors: Jyotsna Rosario, K. R. Shanmugam

Abstract:

Since elementary education is a merit good, considerable public resources are allocated to universalise it. However, elementary education outcomes vary across the Indian States. Evidences indicate that while some states are lagging in elementary education outcome primarily due to lack of resources and poor schooling infrastructure, others are lagging despite resource abundance and well-developed schooling infrastructure. Addressing the issue of efficiency, the study employs Stochastic Frontier Analysis for panel data of 27 Indian states from 2012-13 to 2017-18 to estimate the technical efficiency of State governments in generating enrolment. The mean efficiency of states was estimated to be 58%. Punjab, Meghalaya, and West Bengal were found to be the most efficient states. Whereas Jammu and Kashmir, Nagaland, Madhya Pradesh, and Odisha are one of the most inefficient states. This study emphasizes the efficient utilisation of public resources and helps in the identification of best practices.

Keywords: technical efficiency, public expenditure, elementary education outcome, stochastic frontier analysis

Procedia PDF Downloads 185
2765 Investigating the Challenges Faced by English Language Teachers in Implementing Outcome Based Education the Outcome Based Education model in Engineering Universities of Sindh

Authors: Habibullah Pathan

Abstract:

The present study aims to explore problems faced by English Language Teachers (ELT) while implementing the Outcome Based Education (OBE) model in engineering universities of Sindh. OBE is an emerging model initiative of the International Engineering Alliance. Traditional educational systems are teacher-centered or curriculum-centered, in which learners are not able to achieve desired outcomes, but the OBE model enables learners to know the outcomes before the start of the program. OBE is a circular process that begins from the needs and demands of society to stakeholders who ask the experts to produce the alumnus who can fulfill the needs and ends up getting new enrollment in the respective programs who can work according to the demands. In all engineering institutions, engineering courses besides English language courses are taught on the OBE model. English language teachers were interviewed to learn the in-depth of the problems faced by them. The study found that teachers were facing problems including pedagogical, OBE training, assessment, evaluation and administrative support. This study will be a guide for public and private English language teachers to cope with these challenges while teaching the English language on the OBE model. OBE is an emerging model by which the institutions can produce such a product that can meet the demands.

Keywords: problems of ELT teachers, outcome based education (OBE), implementing, assessment

Procedia PDF Downloads 97
2764 Markov Switching of Conditional Variance

Authors: Josip Arneric, Blanka Skrabic Peric

Abstract:

Forecasting of volatility, i.e. returns fluctuations, has been a topic of interest to portfolio managers, option traders and market makers in order to get higher profits or less risky positions. Based on the fact that volatility is time varying in high frequency data and that periods of high volatility tend to cluster, the most common used models are GARCH type models. As standard GARCH models show high volatility persistence, i.e. integrated behaviour of the conditional variance, it is difficult the predict volatility using standard GARCH models. Due to practical limitations of these models different approaches have been proposed in the literature, based on Markov switching models. In such situations models in which the parameters are allowed to change over time are more appropriate because they allow some part of the model to depend on the state of the economy. The empirical analysis demonstrates that Markov switching GARCH model resolves the problem of excessive persistence and outperforms uni-regime GARCH models in forecasting volatility for selected emerging markets.

Keywords: emerging markets, Markov switching, GARCH model, transition probabilities

Procedia PDF Downloads 455
2763 The Role of Inventory Classification in Supply Chain Responsiveness in a Build-to-Order and Build-To-Forecast Manufacturing Environment: A Comparative Analysis

Authors: Qamar Iqbal

Abstract:

Companies strive to improve their forecasting methods to predict the fluctuations in customer demand. These fluctuation and variation in demand affect the manufacturing operations and can limit a company’s ability to fulfill customer demand on time. Companies keep the inventory buffer and maintain the stocking levels to reduce the impact of demand variation. A mid-size company deals with thousands of stock keeping units (skus). It is neither easy and nor efficient to control and manage each sku. Inventory classification provides a tool to the management to increase their ability to support customer demand. The paper presents a framework that shows how inventory classification can play a role to increase supply chain responsiveness. A case study will be presented to further elaborate the method both for build-to-order and build-to-forecast manufacturing environments. Results will be compared that will show which manufacturing setting has advantage over another under different circumstances. The outcome of this study is very useful to the management because this will give them an insight on how inventory classification can be used to increase their ability to respond to changing customer needs.

Keywords: inventory classification, supply chain responsiveness, forecast, manufacturing environment

Procedia PDF Downloads 595
2762 Benchmarking Machine Learning Approaches for Forecasting Hotel Revenue

Authors: Rachel Y. Zhang, Christopher K. Anderson

Abstract:

A critical aspect of revenue management is a firm’s ability to predict demand as a function of price. Historically hotels have used simple time series models (regression and/or pick-up based models) owing to the complexities of trying to build casual models of demands. Machine learning approaches are slowly attracting attention owing to their flexibility in modeling relationships. This study provides an overview of approaches to forecasting hospitality demand – focusing on the opportunities created by machine learning approaches, including K-Nearest-Neighbors, Support vector machine, Regression Tree, and Artificial Neural Network algorithms. The out-of-sample performances of above approaches to forecasting hotel demand are illustrated by using a proprietary sample of the market level (24 properties) transactional data for Las Vegas NV. Causal predictive models can be built and evaluated owing to the availability of market level (versus firm level) data. This research also compares and contrast model accuracy of firm-level models (i.e. predictive models for hotel A only using hotel A’s data) to models using market level data (prices, review scores, location, chain scale, etc… for all hotels within the market). The prospected models will be valuable for hotel revenue prediction given the basic characters of a hotel property or can be applied in performance evaluation for an existed hotel. The findings will unveil the features that play key roles in a hotel’s revenue performance, which would have considerable potential usefulness in both revenue prediction and evaluation.

Keywords: hotel revenue, k-nearest-neighbors, machine learning, neural network, prediction model, regression tree, support vector machine

Procedia PDF Downloads 132
2761 Disaggregating and Forecasting the Total Energy Consumption of a Building: A Case Study of a High Cooling Demand Facility

Authors: Juliana Barcelos Cordeiro, Khashayar Mahani, Farbod Farzan, Mohsen A. Jafari

Abstract:

Energy disaggregation has been focused by many energy companies since energy efficiency can be achieved when the breakdown of energy consumption is known. Companies have been investing in technologies to come up with software and/or hardware solutions that can provide this type of information to the consumer. On the other hand, not all people can afford to have these technologies. Therefore, in this paper, we present a methodology for breaking down the aggregate consumption and identifying the highdemanding end-uses profiles. These energy profiles will be used to build the forecast model for optimal control purpose. A facility with high cooling load is used as an illustrative case study to demonstrate the results of proposed methodology. We apply a high level energy disaggregation through a pattern recognition approach in order to extract the consumption profile of its rooftop packaged units (RTUs) and present a forecast model for the energy consumption.  

Keywords: energy consumption forecasting, energy efficiency, load disaggregation, pattern recognition approach

Procedia PDF Downloads 277
2760 The Effects of Evidence-Based Nursing Training and Consultation Program on Self-Efficacy and Outcome Expectancy of Evidence-Based Practice among Nurses

Authors: Yea-Pyng Lin

Abstract:

Evidence-based nursing (EBN) can improve quality of patient care and reduce medical expenses. Development of training and consultation program according to nurses’ needs and difficulties is essential to promote their competence and self-efficacy in EBN. However, limited research evaluated the effects of EBN program on EBN self-efficacy among nurses. This study aimed to evaluate the effects of an EBN consultation program on self-efficacy and outcome expectancy of evidence-based practice (EBP) among nurses. A two-group pretest-posttest quasi-experimental design was used. A purposive sample of full-time nurses was recruited from a hospital. Experimental group (n=28) received the EBN consultation program including 18-hour EBN training courses, hand-on practices and group discussion by faculty mentors. Control group (n=33) received regular in-service education with no EBN program. All participants received baseline and post-test assessment using Chinese version of Self-Efficacy in EBP scale (SE-EBP) and Outcome Expectancy for EBP scale (OE-EBP). After receiving EBN consultation program, experimental group’s posttest scores of SE-EBP (t=-4.98, p<0.001) and OE-SEP (t=-3.65, p=0.001) were significantly higher than those of the pretests. By controlling the age and years of nursing work experience, the experimental group‘s SE-EBP(F=10.47, p=0.002) and OE-SEP(F=9.53, p=0.003) scores were significantly improved compared to those of the control group. EBN program focus on hand-on practice and group discussion by faculty mentors in addition to EBN training courses can improve EBP self-efficacy and outcome expectancy among nurses. EBN program focus on English literature reading, database searching, and appraisal practice according to nurses’ needs and difficulties can promote implementation of EBN.

Keywords: evidence-based nursing, evidence-based practice, consultation program, self-efficacy, outcome expectancy

Procedia PDF Downloads 500
2759 Inventory Optimization in Restaurant Supply Chain Outlets

Authors: Raja Kannusamy

Abstract:

The research focuses on reducing food waste in the restaurant industry. A study has been conducted on the chain of retail restaurant outlets. It has been observed that the food wastages are due to the inefficient inventory management systems practiced in the restaurant outlets. The major food items which are wasted more in quantity are being selected across the retail chain outlets. A moving average forecasting method has been applied for the selected food items so that their future demand could be predicted accurately and food wastage could be avoided. It has been found that the moving average prediction method helps in predicting forecasts accurately. The demand values obtained from the moving average method have been compared to the actual demand values and are found to be similar with minimum variations. The inventory optimization technique helps in reducing food wastage in restaurant supply chain outlets.

Keywords: food wastage, restaurant supply chain, inventory optimisation, demand forecasting

Procedia PDF Downloads 91
2758 Application of Public Access Two-Dimensional Hydrodynamic and Distributed Hydrological Models for Flood Forecasting in Ungauged Basins

Authors: Ahmad Shayeq Azizi, Yuji Toda

Abstract:

In Afghanistan, floods are the most frequent and recurrent events among other natural disasters. On the other hand, lack of monitoring data is a severe problem, which increases the difficulty of making the appropriate flood countermeasures of flood forecasting. This study is carried out to simulate the flood inundation in Harirud River Basin by application of distributed hydrological model, Integrated Flood Analysis System (IFAS) and 2D hydrodynamic model, International River Interface Cooperative (iRIC) based on satellite rainfall combined with historical peak discharge and global accessed data. The results of the simulation can predict the inundation area, depth and velocity, and the hardware countermeasures such as the impact of levee installation can be discussed by using the present method. The methodology proposed in this study is suitable for the area where hydrological and geographical data including river survey data are poorly observed.

Keywords: distributed hydrological model, flood inundation, hydrodynamic model, ungauged basins

Procedia PDF Downloads 166
2757 The Logistics Collaboration in Supply Chain of Orchid Industry in Thailand

Authors: Chattrarat Hotrawaisaya

Abstract:

This research aims to formulate the logistics collaborative model which is the management tool for orchid flower exporter. The researchers study logistics activities in orchid supply chain that stakeholders can collaborate and develop, including demand forecasting, inventory management, warehouse and storage, order-processing, and transportation management. The research also explores logistics collaboration implementation into orchid’s stakeholders. The researcher collected data before implementation and after model implementation. Consequently, the costs and efficiency were calculated and compared between pre and post period of implementation. The research found that the results of applying the logistics collaborative model to orchid exporter reduces inventory cost and transport cost. The model also improves forecasting accuracy, and synchronizes supply chain of exporter. This research paper contributes the uniqueness logistics collaborative model which value to orchid industry in Thailand. The orchid exporters may use this model as their management tool which aims in competitive advantage.

Keywords: logistics, orchid, supply chain, collaboration

Procedia PDF Downloads 437
2756 A Systematic Review of the Transportability of Cognitive Therapy for the Treatment of PTSD among South African Survivors of Rape

Authors: Anita Padmanabhanunni

Abstract:

Trauma-focused cognitive-treatment (CT) models are among the most efficacious in treating PTSD arising from exposure to rape. However, these treatment approaches are severely under-utilised by South African mental health care practitioners owing to concerns around whether treatments developed in Western clinical contexts are transportable and applicable in routine clinical settings. One way of promoting the use of these efficacious treatments in local contexts is by identifying and appraising the evidence from local outcome studies. This paper presents the findings of a systematic review of research evidence from local outcome studies on the effectiveness of CT in the treatment of rape-related PTSD in South Africa. The study found that whilst limited research has been published in South Africa on the outcome of CT in the treatment of rape survivors, the studies that are available afford insights into the effectiveness of CT.

Keywords: cognitive treatment, PTSD, South Africa, transportability

Procedia PDF Downloads 339
2755 Forecasting Electricity Spot Price with Generalized Long Memory Modeling: Wavelet and Neural Network

Authors: Souhir Ben Amor, Heni Boubaker, Lotfi Belkacem

Abstract:

This aims of this paper is to forecast the electricity spot prices. First, we focus on modeling the conditional mean of the series so we adopt a generalized fractional -factor Gegenbauer process (k-factor GARMA). Secondly, the residual from the -factor GARMA model has used as a proxy for the conditional variance; these residuals were predicted using two different approaches. In the first approach, a local linear wavelet neural network model (LLWNN) has developed to predict the conditional variance using the Back Propagation learning algorithms. In the second approach, the Gegenbauer generalized autoregressive conditional heteroscedasticity process (G-GARCH) has adopted, and the parameters of the k-factor GARMA-G-GARCH model has estimated using the wavelet methodology based on the discrete wavelet packet transform (DWPT) approach. The empirical results have shown that the k-factor GARMA-G-GARCH model outperform the hybrid k-factor GARMA-LLWNN model, and find it is more appropriate for forecasts.

Keywords: electricity price, k-factor GARMA, LLWNN, G-GARCH, forecasting

Procedia PDF Downloads 231
2754 PM10 Prediction and Forecasting Using CART: A Case Study for Pleven, Bulgaria

Authors: Snezhana G. Gocheva-Ilieva, Maya P. Stoimenova

Abstract:

Ambient air pollution with fine particulate matter (PM10) is a systematic permanent problem in many countries around the world. The accumulation of a large number of measurements of both the PM10 concentrations and the accompanying atmospheric factors allow for their statistical modeling to detect dependencies and forecast future pollution. This study applies the classification and regression trees (CART) method for building and analyzing PM10 models. In the empirical study, average daily air data for the city of Pleven, Bulgaria for a period of 5 years are used. Predictors in the models are seven meteorological variables, time variables, as well as lagged PM10 variables and some lagged meteorological variables, delayed by 1 or 2 days with respect to the initial time series, respectively. The degree of influence of the predictors in the models is determined. The selected best CART models are used to forecast future PM10 concentrations for two days ahead after the last date in the modeling procedure and show very accurate results.

Keywords: cross-validation, decision tree, lagged variables, short-term forecasting

Procedia PDF Downloads 194
2753 To Compare the Visual Outcome, Safety and Efficacy of Phacoemulsification and Small-Incision Cataract Surgery (SICS) at CEITC, Bangladesh

Authors: Rajib Husain, Munirujzaman Osmani, Mohammad Shamsal Islam

Abstract:

Purpose: To compare the safety, efficacy and visual outcome of phacoemulsification vs. manual small-incision cataract surgery (SICS) for the treatment of cataract in Bangladesh. Objectives: 1. To assess the Visual outcome after cataract surgery 2. To understand the post-operative complications and early rehabilitation 3. To identified which surgical procedure more attractive to the patients 4. To identify which surgical procedure is occurred fewer complications. 5. To find out the socio-economic and demographic characteristics of study patients Setting: Chittagong Eye Infirmary and Training Complex, Chittagong, Bangladesh. Design: Retrospective, randomised comparison of 300 patients with visually significant cataracts. Method: The present study was designed as a retrospective hospital-based research. The sample size was 300 and study period was from July, 2012 to July, 2013 and assigned randomly to receive either phacoemulsification or manual small-incision cataract surgery (SICS). Preoperative and post-operative data were collected through a well designed collection format. Three follow-up were done; i) during discharge ii) 1-3 weeks & iii) 4-11 weeks post operatively. All preoperative and surgical complications, uncorrected and best-corrected visual acuity (BCVA) and astigmatism were taken into consideration for comparison of outcome Result: Nearly 95% patients were more than 40 years of age. About 52% patients were female, and 48% were male. 52% (N=157) patients came to operate their first eye where 48% (N=143) patients were visited again to operate their second eye. Postoperatively, five eyes (3.33%) developed corneal oedema with >10 Descemets folds, and six eyes (4%) had corneal oedema with <10 Descemets folds for Phacoemulsification surgeries. For SICS surgeries, seven eyes (4.66%) developed corneal oedema with >10 Descemets folds and eight eyes (5.33%) had corneal oedema with < 10 descemets folds. However, both the uncorrected and corrected (4-11 weeks) visual acuities were better in the eyes that had phacoemulsification (p=0.02 and p=0.03), and there was less astigmatism (p=0.001) at 4-11 weeks in the eye that had phacoemulsification. Best-corrected visual acuity (BCVA) of final follow-up 95% (N=253) had a good outcome, borderline 3.10% (N=40) and poor outcome was 1.6% (N=7). The individual surgeon outcome were closer, 95% (BCVA) in SICS and 96% (BCVA) in Phacoemulsification at 4-11 weeks follow-up respectively. Conclusion: outcome of cataract surgery both Phacoemulsification and SICS in CEITC was more satisfactory according to who norms. Both Phacoemulsification and manual small-incision cataract surgery (SICS) shows excellent visual outcomes with low complication rates and good rehabilitation. Phacoemulsification is significantly faster, and modern technology based surgical procedure for cataract treatment.

Keywords: phacoemulsification, SICS, cataract, Bangladesh, visual outcome of SICS

Procedia PDF Downloads 348
2752 A Medical Resource Forecasting Model for Emergency Room Patients with Acute Hepatitis

Authors: R. J. Kuo, W. C. Cheng, W. C. Lien, T. J. Yang

Abstract:

Taiwan is a hyper endemic area for the Hepatitis B virus (HBV). The estimated total number of HBsAg carriers in the general population who are more than 20 years old is more than 3 million. Therefore, a case record review is conducted from January 2003 to June 2007 for all patients with a diagnosis of acute hepatitis who were admitted to the Emergency Department (ED) of a well-known teaching hospital. The cost for the use of medical resources is defined as the total medical fee. In this study, principal component analysis (PCA) is firstly employed to reduce the number of dimensions. Support vector regression (SVR) and artificial neural network (ANN) are then used to develop the forecasting model. A total of 117 patients meet the inclusion criteria. 61% patients involved in this study are hepatitis B related. The computational result shows that the proposed PCA-SVR model has superior performance than other compared algorithms. In conclusion, the Child-Pugh score and echogram can both be used to predict the cost of medical resources for patients with acute hepatitis in the ED.

Keywords: acute hepatitis, medical resource cost, artificial neural network, support vector regression

Procedia PDF Downloads 422
2751 Radio Frequency Identification Chips in Colour Preference Tracking

Authors: A. Ballard

Abstract:

The ability to track goods and products en route in the delivery system, in the warehouse, and on the top floor is a huge advantage to shippers and retailers. Recently the emergence of radio frequency identification (RFID) technology has enabled this better than ever before. However, a significant problem exists in that RFID technology depends on the quality of the information stored for each tagged product. Because of the profusion of names for colours, it is very difficult to ascertain that stored values are recognised by all users who view the product visually. This paper reports the findings of a study in which 50 consumers and 50 logistics workers were shown colour swatches and asked to choose the name of the colour from a multiple choice list. They were then asked to match consumer products, including toasters, jumpers, and toothbrushes, with the identifying inventory information available for each one. The findings show that the ability to match colours was significantly stronger with the color swatches than with the consumer products and that while logistics professionals made more frequent correct identification than the consumers, their results were still unsatisfactorily low. Based on these findings, a proposed universal model of colour identification numbers has been developed.

Keywords: consumer preferences, supply chain logistics, radio frequency identification, RFID, colour preference

Procedia PDF Downloads 120
2750 A Data-Driven Agent Based Model for the Italian Economy

Authors: Michele Catalano, Jacopo Di Domenico, Luca Riccetti, Andrea Teglio

Abstract:

We develop a data-driven agent based model (ABM) for the Italian economy. We calibrate the model for the initial condition and parameters. As a preliminary step, we replicate the Monte-Carlo simulation for the Austrian economy. Then, we evaluate the dynamic properties of the model: the long-run equilibrium and the allocative efficiency in terms of disequilibrium patterns arising in the search and matching process for final goods, capital, intermediate goods, and credit markets. In this perspective, we use a randomized initial condition approach. We perform a robustness analysis perturbing the system for different parameter setups. We explore the empirical properties of the model using a rolling window forecast exercise from 2010 to 2022 to observe the model’s forecasting ability in the wake of the COVID-19 pandemic. We perform an analysis of the properties of the model with a different number of agents, that is, with different scales of the model compared to the real economy. The model generally displays transient dynamics that properly fit macroeconomic data regarding forecasting ability. We stress the model with a large set of shocks, namely interest policy, fiscal policy, and exogenous factors, such as external foreign demand for export. In this way, we can explore the most exposed sectors of the economy. Finally, we modify the technology mix of the various sectors and, consequently, the underlying input-output sectoral interdependence to stress the economy and observe the long-run projections. In this way, we can include in the model the generation of endogenous crisis due to the implied structural change, technological unemployment, and potential lack of aggregate demand creating the condition for cyclical endogenous crises reproduced in this artificial economy.

Keywords: agent-based models, behavioral macro, macroeconomic forecasting, micro data

Procedia PDF Downloads 69
2749 Identifying Degradation Patterns of LI-Ion Batteries from Impedance Spectroscopy Using Machine Learning

Authors: Yunwei Zhang, Qiaochu Tang, Yao Zhang, Jiabin Wang, Ulrich Stimming, Alpha Lee

Abstract:

Forecasting the state of health and remaining useful life of Li-ion batteries is an unsolved challenge that limits technologies such as consumer electronics and electric vehicles. Here we build an accurate battery forecasting system by combining electrochemical impedance spectroscopy (EIS) -- a real-time, non-invasive and information-rich measurement that is hitherto underused in battery diagnosis -- with Gaussian process machine learning. We collect over 20,000 EIS spectra of commercial Li-ion batteries at different states of health, states of charge and temperatures -- the largest dataset to our knowledge of its kind. Our Gaussian process model takes the entire spectrum as input, without further feature engineering, and automatically determines which spectral features predict degradation. Our model accurately predicts the remaining useful life, even without complete knowledge of past operating conditions of the battery. Our results demonstrate the value of EIS signals in battery management systems.

Keywords: battery degradation, machine learning method, electrochemical impedance spectroscopy, battery diagnosis

Procedia PDF Downloads 148
2748 An Efficient Propensity Score Method for Causal Analysis With Application to Case-Control Study in Breast Cancer Research

Authors: Ms Azam Najafkouchak, David Todem, Dorothy Pathak, Pramod Pathak, Joseph Gardiner

Abstract:

Propensity score (PS) methods have recently become the standard analysis as a tool for the causal inference in the observational studies where exposure is not randomly assigned, thus, confounding can impact the estimation of treatment effect on the outcome. For the binary outcome, the effect of treatment on the outcome can be estimated by odds ratios, relative risks, and risk differences. However, using the different PS methods may give you a different estimation of the treatment effect on the outcome. Several methods of PS analyses have been used mainly, include matching, inverse probability of weighting, stratification, and covariate adjusted on PS. Due to the dangers of discretizing continuous variables (exposure, covariates), the focus of this paper will be on how the variation in cut-points or boundaries will affect the average treatment effect (ATE) utilizing the stratification of PS method. Therefore, we are trying to avoid choosing arbitrary cut-points, instead, we continuously discretize the PS and accumulate information across all cut-points for inferences. We will use Monte Carlo simulation to evaluate ATE, focusing on two PS methods, stratification and covariate adjusted on PS. We will then show how this can be observed based on the analyses of the data from a case-control study of breast cancer, the Polish Women’s Health Study.

Keywords: average treatment effect, propensity score, stratification, covariate adjusted, monte Calro estimation, breast cancer, case_control study

Procedia PDF Downloads 105
2747 The Use of Respiratory Index of Severity in Children (RISC) for Predicting Clinical Outcomes for 3 Months-59 Months Old Patients Hospitalized with Community-Acquired Pneumonia in Visayas Community Medical Center, Cebu City from January 2013 - June 2

Authors: Karl Owen L. Suan, Juliet Marie S. Lambayan, Floramay P. Salo-Curato

Abstract:

Objective: To predict the outcome among patients admitted with community-acquired pneumonia (ages 3 months to 59 months old) admitted in Visayas Community Medical Center using the Respiratory Index of Severity in Children (RISC). Design: A cross-sectional study design was used. Setting: The study was done in Visayas Community Medical Center, which is a private tertiary level in Cebu City from January-June 2013. Patients/Participants: A total of 72 patients were initially enrolled in the study. However, 1 patient transferred to another institution, thus 71 patients were included in this study. Within 24 hours from admission, patients were assigned a RISC score. Statistical Analysis: Cohen’s kappa coefficient was used for inter-rater agreement for categorical data. This study used frequency and percentage distribution for qualitative data. Mean, standard deviation and range were used for quantitative data. To determine the relationship of each RISC score parameter and the total RISC score with the outcome, a Mann Whitney U Test and 2x2 Fischer Exact test for testing associations were used. A p value less of than 0.05 alpha was considered significant. Results: There was a statistical significance between RISC score and clinical outcome. RISC score of greater than 4 was correlated with intubation and/or mortality. Conclusion: The RISC scoring system is a simple combination of clinical parameters and a reliable tool that will help stratify patients aged 3 months to 59 months in predicting clinical outcome.

Keywords: RISC, clinical outcome, community-acquired pneumonia, patients

Procedia PDF Downloads 302
2746 Surgical Outcome of Heavy Silicone Oil in Rhegmatogenous Retinal Detachment

Authors: Pheeraphat Ussadamongkol, Suthasinee Sinawat

Abstract:

Objective: The purpose of this study is to evaluate the anatomical and visual outcomes associated with the use of heavy silicone oil (HSO) during pars plana vitrectomy (PPV) in patients with rhegmatogenous retinal detachment (RRD). Materials and methods: A Total of 66 eyes of 66 patients with RRD patients who underwent PPV with HSO from 2018-2023 were included in this retrospective study. Risk factors of surgical outcomes were also investigated. Results: The mean age of the recruited patients was 55.26 ± 13.05 years. The most common diagnosis was recurrent RRD, with 43 patients (65.15%), and the majority of these patients (81.39%) had a history of multiple vitreoretinal surgeries. Inferior breaks and PVR grade ≧ C were present in 65.15% and 42.42% of cases, respectively. The mean duration of HSO tamponade was 7.77+5.19 months. The retinal attachment rate after surgery was 71.21%, with a final attachment rate of 87.88%. The mean final VA was 1.62 ± 1.11 logMAR. 54.54% of patients could achieve a final visual acuity (VA)  6/60. Multivariate analysis revealed that proliferative vitreoretinopathy (PVR) and multiple breaks were significantly associated with retinal redetachment, while initial good VA (  6/60) was associated with good visual outcome ( 6/60). The most common complications were glaucoma (30.3%) and epimacular membrane (7.58%). Conclusion: The use of heavy silicone oil in pars plana vitrectomy for rhegmatogenous retinal detachment yields favorable anatomical and visual outcomes. Factors associated with retinal redetachment are proliferative vitreoretinopathy and multiple breaks. Good initial VA can predict good visual outcomes.

Keywords: rhegmatogenous retinal detachment, heavy silicone oil, surgical outcome, visual outcome, risk factors

Procedia PDF Downloads 6