Search results for: hydrogen sulphide
827 Anaerobic Fermentation Process for Production of Biohydrogen from Pretreated Fruit Wastes
Authors: A. K. R. Gobinath, He Jianzhong, Kun-Lin Yang
Abstract:
Fruit waste was used as a feedstock to produce biohydrogen in this study. Fruit waste used in this study was collected from several fruit juice stalls in Singapore. Based on our observation, the fruit waste contained 35-40% orange, 10-20% watermelon, 10-15% apple, 10-15% pineapple, 1-5% mango. They were mixed with water (1:1 ratio based on wet biomass) and blended to attain homogenous mixtures. Later, fruit waste was subjected to one of the following pretreatments: autoclave (121 °C for 20min), microwave (20min) or both. After pretreatment, the total sugar concentration in the hydrolysate was high (>12g/l) when both autoclave and microwave were applied. In contrast, samples without pretreatment measured only less than 2g/l of sugar. While using these hydrolysates as carbon sources, Clostridium strain BOH3 produces 2526-3126 ml/l of hydrogen after 72h of anaerobic fermentation. The hydrogen yield was 295-300 ml/g of sugar which is close to the hydrogen yields from glucose (338 ml/gm) and xylose (330 ml/gm). Our HPLC analysis showed that fruit waste hydrolysate contained oligosugars (25-27%), sucrose (18-23%), fructose (25-30%), glucose (10-15%) and mannose (2-5%). Additionally, pretreatment led to the release of free amino acids (160-512 mg/l), calcium (7.8-12.9 ppm), magnesium (4.32-6.55 ppm), potassium (5.4-65.1 ppm) and sodium (0.4-0.5 ppm) into the hydrolysate. These nutrients were able to support strain-BOH3 to grow and produce high level of hydrogen. Notably, unlike other pretreatment methods (with strong acids and bases), these pretreatment techniques did not generate any inhibitors (e.g. furfural and phenolic acids) to suppress the hydrogen production. Interestingly, strain BOH3 can also ferment pretreated fruit waste slurry and produce hydrogen with a high yield (156-343 ml/gm fruit waste). While fermenting pretreated fruit waste slurry, strain-BOH3 excreted several saccharolytic enzymes majorly xylanase (1.84U/ml), amylase (1.10U/ml), pectinase (0.36U/ml) and cellulase (0.43U/ml). Due to expressions of these enzymes, strain BOH3 was able to directly utilize pretreated fruit waste hydrolysate and produces high-level of hydrogen.Keywords: autoclave pretreatment, biohydrogen production, clostridial fermentation, fruit waste, and microwave pretreatment
Procedia PDF Downloads 532826 Laminar Burning Velocity NH₃/H₂+Air Mixtures at Elevated Temperatures and Pressures
Authors: Talal Hasan, Akram Mohammad
Abstract:
Carbon-free combustion has great attention in today’s research for its unlimited benefits regarding various factors, and ammonia is considered a potential carbon-free alternative gas despite its flame characteristics. The Shrestha mechanism and Chemkin-Pro software will be used for numerical data. Firstly, experimental and numerical results should show good agreement to move for studying the laminar flame speed of ammonia under various conditions. Ammonia flame speed will be investigated under normal conditions (298 K, 1 atm) as well as under the influence of a range of equivalence ratios (0.6-1.8), elevated temperatures (298,323,373,423, and 473), elevated pressures (1 atm- 70 atm) and finally at varying hydrogen content (0-100%). Therefore, this work will understand the ammonia laminar flame speed characteristics and how and to what extent hydrogen can improve ammonia combustion intensity.Keywords: laminar burning velocity, ammonia, hydrogen, combustion
Procedia PDF Downloads 105825 Defect Classification of Hydrogen Fuel Pressure Vessels using Deep Learning
Authors: Dongju Kim, Youngjoo Suh, Hyojin Kim, Gyeongyeong Kim
Abstract:
Acoustic Emission Testing (AET) is widely used to test the structural integrity of an operational hydrogen storage container, and clustering algorithms are frequently used in pattern recognition methods to interpret AET results. However, the interpretation of AET results can vary from user to user as the tuning of the relevant parameters relies on the user's experience and knowledge of AET. Therefore, it is necessary to use a deep learning model to identify patterns in acoustic emission (AE) signal data that can be used to classify defects instead. In this paper, a deep learning-based model for classifying the types of defects in hydrogen storage tanks, using AE sensor waveforms, is proposed. As hydrogen storage tanks are commonly constructed using carbon fiber reinforced polymer composite (CFRP), a defect classification dataset is collected through a tensile test on a specimen of CFRP with an AE sensor attached. The performance of the classification model, using one-dimensional convolutional neural network (1-D CNN) and synthetic minority oversampling technique (SMOTE) data augmentation, achieved 91.09% accuracy for each defect. It is expected that the deep learning classification model in this paper, used with AET, will help in evaluating the operational safety of hydrogen storage containers.Keywords: acoustic emission testing, carbon fiber reinforced polymer composite, one-dimensional convolutional neural network, smote data augmentation
Procedia PDF Downloads 93824 Investigations into the Efficiencies of Steam Conversion in Three Reactor Chemical Looping
Authors: Ratnakumar V. Kappagantula, Gordon D. Ingram, Hari B. Vuthaluru
Abstract:
This paper analyzes a three reactor chemical looping process for hydrogen production from natural gas, allowing for carbon dioxide capture through chemical looping technology. An oxygen carrier is circulated to separate carbon dioxide, to reduce steam for hydrogen production and to supply oxygen for combustion. In this study, the emphasis is placed on the steam conversion in the steam reactor by investigating the hydrogen efficiencies of the complete system at steam conversions of 15.8% and 50%. An Aspen Plus model was developed for a Three Reactor Chemical Looping process to study the effects of operational parameters on hydrogen production is investigated. Maximum hydrogen production was observed under stoichiometric conditions. Different conversions in the steam reactor, which was modelled as a Gibbs reactor, were found when Gibbs-identified products and user identified products were chosen. Simulations were performed for different oxygen carriers, which consist of an active metal oxide on an inert support material. For the same metal oxide mass flowrate, the fuel reactor temperature decreased for different support materials in the order: aluminum oxide (Al2O3) > magnesium aluminate (MgAl2O4) > zirconia (ZrO2). To achieve the same fuel reactor temperature for the same oxide mass flow rate, the inert mass fraction was found to be 0.825 for ZrO2, 0.7 for MgAl2O4 and 0.6 for Al2O3. The effect of poisoning of the oxygen carrier was also analyzed. With 3000 ppm sulfur-based impurities in the feed gas, the hydrogen product energy rate of the process were found to decrease by 0.4%.Keywords: aspen plus, chemical looping combustion, inert support balls, oxygen carrier
Procedia PDF Downloads 327823 Towards the Inhibition Mechanism of Lysozyme Fibrillation by Hydrogen Sulfide
Authors: Indra Gonzalez Ojeda, Tatiana Quinones, Manuel Rosario, Igor Lednev, Juan Lopez Garriga
Abstract:
Amyloid fibrils are stable aggregates of misfolded protein associated with many neurodegenerative disorders. It has been shown that hydrogen sulfide (H2S), inhibits the fibrillation of lysozyme through the formation of trisulfide (S-S-S) bonds. However, the overall mechanism remains elusive. Here, the concentration dependence of H2S effect was investigated using Atomic force microscopy (AFM), non-resonance Raman spectroscopy, Deep-UV Raman spectroscopy and circular dichroism (CD). It was found that small spherical aggregates with trisulfide bonds and a unique secondary structure were formed instead of amyloid fibrils when adding concentrations of 25 mM and 50 mM of H2S. This could indicate that H2S might serve as a protecting agent for the protein. However, further characterization of these aggregates and their trisulfide bonds is needed to fully unravel the function H2S has on protein fibrillation.Keywords: amyloid fibrils, hydrogen sulfide, protein folding, raman spectroscopy
Procedia PDF Downloads 214822 Sustainable Membranes Based on 2D Materials for H₂ Separation and Purification
Authors: Juan A. G. Carrio, Prasad Talluri, Sergio G. Echeverrigaray, Antonio H. Castro Neto
Abstract:
Hydrogen as a fuel and environmentally pleasant energy carrier is part of this transition towards low-carbon systems. The extensive deployment of hydrogen production, purification and transport infrastructures still represents significant challenges. Independent of the production process, the hydrogen generally is mixed with light hydrocarbons and other undesirable gases that need to be removed to obtain H₂ with the required purity for end applications. In this context, membranes are one of the simplest, most attractive, sustainable, and performant technologies enabling hydrogen separation and purification. They demonstrate high separation efficiencies and low energy consumption levels in operation, which is a significant leap compared to current energy-intensive options technologies. The unique characteristics of 2D laminates have given rise to a diversity of research on their potential applications in separation systems. Specifically, it is already known in the scientific literature that graphene oxide-based membranes present the highest reported selectivity of H₂ over other gases. This work explores the potential of a new type of 2D materials-based membranes in separating H₂ from CO₂ and CH₄. We have developed nanostructured composites based on 2D materials that have been applied in the fabrication of membranes to maximise H₂ selectivity and permeability, for different gas mixtures, by adjusting the membranes' characteristics. Our proprietary technology does not depend on specific porous substrates, which allows its integration in diverse separation modules with different geometries and configurations, looking to address the technical performance required for industrial applications and economic viability. The tuning and precise control of the processing parameters allowed us to control the thicknesses of the membranes below 100 nanometres to provide high permeabilities. Our results for the selectivity of new nanostructured 2D materials-based membranes are in the range of the performance reported in the available literature around 2D materials (such as graphene oxide) applied to hydrogen purification, which validates their use as one of the most promising next-generation hydrogen separation and purification solutions.Keywords: membranes, 2D materials, hydrogen purification, nanocomposites
Procedia PDF Downloads 131821 Screening of Metal Chloride Anion-based Ionic Liquids for Direct Conversion of Hydrogen Sulfide by COSMO-RS
Authors: Muhammad Syahir Aminuddin, Zakaria Man, Mohamad Azmi Bustam Khalil
Abstract:
In order to identify the best possible reaction media for performing H₂S conversion, a total number of 300 different ILs from a combination of 20 cations and 15 anions were screened via COSMO-RS model simulations. By COSMO-RS method, thermodynamic and physicochemical properties of 300 ILs, such as Henry's law constants, activity coefficient, selectivity, capacity, and performance index, are obtained and analyzed. Thus, by comparing the performance of ILs via COSMO-RS, a series of TSILs containing cation of [P66614] with metal chloride anions such as Fe, Ga, and Al were chosen and selected for synthesis based on their performance predicted by COSMO-RS and their economic values. Consequently, the physiochemical properties such as density, viscosity, thermal properties, as well as H₂S absorptive oxidation performances in those TSILs will be systematically investigated.Keywords: conversion of hydrogen sulfide, hydrogen sulfide, H₂S, sour natural gas, task specific ionic liquids
Procedia PDF Downloads 150820 Stationary Methanol Steam Reforming to Hydrogen Fuel for Fuel-Cell Filling Stations
Authors: Athanasios A. Tountas, Geoffrey A. Ozin, Mohini M. Sain
Abstract:
Renewable hydrogen (H₂) carriers such as methanol (MeOH), dimethyl ether (DME), oxymethylene dimethyl ethers (OMEs), and conceivably ammonia (NH₃) can be reformed back into H₂ and are fundamental chemical conversions for the long-term viability of the H₂ economy due to their higher densities and ease of transportability compared to H₂. MeOH is an especially important carrier as it is a simple C1 chemical that can be produced from green solar-PV-generated H₂ and direct-air-captured CO₂ with a current commercially practical solar-to-fuel efficiency of 10% from renewable solar energy. MeOH steam reforming (MSR) in stationary systems next to H₂ fuel-cell filling stations can eliminate the need for onboard mobile reformers, and the former systems can be more robust in terms of attaining strict H₂ product specifications, and MeOH is a safe, lossless, and compact medium for long-term H₂ storage. Both thermal- and photo-catalysts are viable options for achieving the stable, long-term performance of stationary MSR systems.Keywords: fuel-cell vehicle filling stations, methanol steam reforming, hydrogen transport and storage, stationary reformer, liquid hydrogen carriers
Procedia PDF Downloads 100819 Dual Metal Organic Framework Derived N-Doped Fe3C Nanocages Decorated with Ultrathin ZnIn2S4 Nanosheets for Efficient Photocatalytic Hydrogen Generation
Authors: D. Amaranatha Reddy
Abstract:
Highly efficient and stable co-catalysts materials is of great important for boosting photo charge carrier’s separation, transportation efficiency, and accelerating the catalytic reactive sites of semiconductor photocatalysts. As a result, it is of decisive importance to fabricate low price noble metal free co-catalysts with high catalytic reactivity, but it remains very challenging. Considering this challenge here, dual metal organic frame work derived N-Doped Fe3C nanocages have been rationally designed and decorated with ultrathin ZnIn2S4 nanosheets for efficient photocatalytic hydrogen generation. The fabrication strategy precisely integrates co-catalyst nanocages with ultrathin two-dimensional (2D) semiconductor nanosheets by providing tightly interconnected nano-junctions and helps to suppress the charge carrier’s recombination rate. Furthermore, constructed highly porous hybrid structures expose ample active sites for catalytic reduction reactions and harvest visible light more effectively by light scattering. As a result, fabricated nanostructures exhibit superior solar driven hydrogen evolution rate (9600 µmol/g/h) with an apparent quantum efficiency of 3.6 %, which is relatively higher than the Pt noble metal co-catalyst systems and earlier reported ZnIn2S4 based nanohybrids. We believe that the present work promotes the application of sulfide based nanostructures in solar driven hydrogen production.Keywords: photocatalysis, water splitting, hydrogen fuel production, solar-driven hydrogen
Procedia PDF Downloads 132818 Determination of Viscosity and Degree of Hydrogenation of Liquid Organic Hydrogen Carriers by Cavity Based Permittivity Measurement
Authors: I. Wiemann, N. Weiß, E. Schlücker, M. Wensing
Abstract:
A very promising alternative to compression or cryogenics is the chemical storage of hydrogen by liquid organic hydrogen carriers (LOHC). These carriers enable high energy density and allow, at the same time, efficient and safe storage under ambient conditions without leakage losses. Another benefit of this storage medium is the possibility of transporting it using already available infrastructure for the transport of fossil fuels. Efficient use of LOHC is related to precise process control, which requires a number of sensors in order to measure all relevant process parameters, for example, to measure the level of hydrogen loading of the carrier. The degree of loading is relevant for the energy content of the storage carrier and simultaneously represents the modification in the chemical structure of the carrier molecules. This variation can be detected in different physical properties like permittivity, viscosity, or density. E.g., each degree of loading corresponds to different viscosity values. Conventional measurements currently use invasive viscosity measurements or near-line measurements to obtain quantitative information. This study investigates permittivity changes resulting from changes in hydrogenation degree (chemical structure) and temperature. Based on calibration measurements, the degree of loading and temperature of LOHC can thus be determined by comparatively simple permittivity measurements in a cavity resonator. Subsequently, viscosity and density can be calculated. An experimental setup with a heating device and flow test bench was designed. By varying temperature in the range of 293,15 K -393,15 K and flow velocity up to 140 mm/s, corresponding changes in the resonation frequency were determined in the hundredths of the GHz range. This approach allows inline process monitoring of hydrogenation of the liquid organic hydrogen carrier (LOHC).Keywords: hydrogen loading, LOHC, measurement, permittivity, viscosity
Procedia PDF Downloads 77817 Deflagration and Detonation Simulation in Hydrogen-Air Mixtures
Authors: Belyayev P. E., Makeyeva I. R., Mastyuk D. A., Pigasov E. E.
Abstract:
Previously, the phrase ”hydrogen safety” was often used in terms of NPP safety. Due to the rise of interest to “green” and, particularly, hydrogen power engineering, the problem of hydrogen safety at industrial facilities has become ever more urgent. In Russia, the industrial production of hydrogen is meant to be performed by placing a chemical engineering plant near NPP, which supplies the plant with the necessary energy. In this approach, the production of hydrogen involves a wide range of combustible gases, such as methane, carbon monoxide, and hydrogen itself. Considering probable incidents, sudden combustible gas outburst into open space with further ignition is less dangerous by itself than ignition of the combustible mixture in the presence of many pipelines, reactor vessels, and any kind of fitting frames. Even ignition of 2100 cubic meters of the hydrogen-air mixture in open space gives velocity and pressure that are much lesser than velocity and pressure in Chapman-Jouguet condition and do not exceed 80 m/s and 6 kPa accordingly. However, the space blockage, the significant change of channel diameter on the way of flame propagation, and the presence of gas suspension lead to significant deflagration acceleration and to its transition into detonation or quasi-detonation. At the same time, process parameters acquired from the experiments at specific experimental facilities are not general, and their application to different facilities can only have a conventional and qualitative character. Yet, conducting deflagration and detonation experimental investigation for each specific industrial facility project in order to determine safe infrastructure unit placement does not seem feasible due to its high cost and hazard, while the conduction of numerical experiments is significantly cheaper and safer. Hence, the development of a numerical method that allows the description of reacting flows in domains with complex geometry seems promising. The base for this method is the modification of Kuropatenko method for calculating shock waves recently developed by authors, which allows using it in Eulerian coordinates. The current work contains the results of the development process. In addition, the comparison of numerical simulation results and experimental series with flame propagation in shock tubes with orifice plates is presented.Keywords: CFD, reacting flow, DDT, gas explosion
Procedia PDF Downloads 88816 Energy Consumption Estimation for Hybrid Marine Power Systems: Comparing Modeling Methodologies
Authors: Kamyar Maleki Bagherabadi, Torstein Aarseth Bø, Truls Flatberg, Olve Mo
Abstract:
Hydrogen fuel cells and batteries are one of the promising solutions aligned with carbon emission reduction goals for the marine sector. However, the higher installation and operation costs of hydrogen-based systems compared to conventional diesel gensets raise questions about the appropriate hydrogen tank size, energy, and fuel consumption estimations. Ship designers need methodologies and tools to calculate energy and fuel consumption for different component sizes to facilitate decision-making regarding feasibility and performance for retrofits and design cases. The aim of this work is to compare three alternative modeling approaches for the estimation of energy and fuel consumption with various hydrogen tank sizes, battery capacities, and load-sharing strategies. A fishery vessel is selected as an example, using logged load demand data over a year of operations. The modeled power system consists of a PEM fuel cell, a diesel genset, and a battery. The methodologies used are: first, an energy-based model; second, considering load variations during the time domain with a rule-based Power Management System (PMS); and third, a load variations model and dynamic PMS strategy based on optimization with perfect foresight. The errors and potentials of the methods are discussed, and design sensitivity studies for this case are conducted. The results show that the energy-based method can estimate fuel and energy consumption with acceptable accuracy. However, models that consider time variation of the load provide more realistic estimations of energy and fuel consumption regarding hydrogen tank and battery size, still within low computational time.Keywords: fuel cell, battery, hydrogen, hybrid power system, power management system
Procedia PDF Downloads 34815 ZnS and Graphene Quantum Dots Nanocomposite as Potential Electron Acceptor for Photovoltaics
Authors: S. M. Giripunje, Shikha Jindal
Abstract:
Zinc sulphide (ZnS) quantum dots (QDs) were synthesized successfully via simple sonochemical method. X-ray diffraction (XRD), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM) analysis revealed the average size of QDs of the order of 3.7 nm. The band gap of the QDs was tuned to 5.2 eV by optimizing the synthesis parameters. UV-Vis absorption spectra of ZnS QD confirm the quantum confinement effect. Fourier transform infrared (FTIR) analysis confirmed the formation of single phase ZnS QDs. To fabricate the diode, blend of ZnS QDs and P3HT was prepared and the heterojunction of PEDOT:PSS and the blend was formed by spin coating on indium tin oxide (ITO) coated glass substrate. The diode behaviour of the heterojunction was analysed, wherein the ideality factor was found to be 2.53 with turn on voltage 0.75 V and the barrier height was found to be 1.429 eV. ZnS-Graphene QDs nanocomposite was characterised for the surface morphological study. It was found that the synthesized ZnS QDs appear as quasi spherical particles on the graphene sheets. The average particle size of ZnS-graphene nanocomposite QDs was found to be 8.4 nm. From voltage-current characteristics of ZnS-graphene nanocomposites, it is observed that the conductivity of the composite increases by 104 times the conductivity of ZnS QDs. Thus the addition of graphene QDs in ZnS QDs enhances the mobility of the charge carriers in the composite material. Thus, the graphene QDs, with high specific area for a large interface, high mobility and tunable band gap, show a great potential as an electron-acceptors in photovoltaic devices.Keywords: graphene, heterojunction, quantum confinement effect, quantum dots(QDs), zinc sulphide(ZnS)
Procedia PDF Downloads 153814 Titania Assisted Metal-Organic Framework Matrix for Elevated Hydrogen Generation Combined with the Production of Graphene Sheets through Water-Splitting Process
Authors: Heba M. Gobara, Ahmed A. M. El-Naggar, Rasha S. El-Sayed, Amal A. AlKahlawy
Abstract:
In this study, metal organic framework (Cr-MIL-101) and TiO₂ nanoparticles were utilized as two semiconductors for water splitting process. The coupling of both semiconductors in order to improve the photocatalytic reactivity for the hydrogen production in presence of methanol as a hole scavenger under visible light (sunlight) has been performed. The forementioned semiconductors and the collected samples after water splitting application are characterized by several techniques viz., XRD, N₂ adsorption-desorption, TEM, ED, EDX, Raman spectroscopy and the total content of carbon. The results revealed an efficient yield of H₂ production with maximum purity 99.3% with the in-situ formation of graphene oxide nanosheets and multiwalled carbon nanotubes coated over the surface of the physically mixed Cr-MIL-101–TiO₂ system. The amount of H₂ gas produced was stored when using Cr-MIL-101 catalyst individually. The obtained data in this work provides promising candidate materials for pure hydrogen production as a clean fuel acquired from the water splitting process. In addition, the in-situ production of graphene nanosheets and carbon nanotubes is counted as promising advances for the presented process.Keywords: hydrogen production, water splitting, photocatalysts, Graphene
Procedia PDF Downloads 185813 Aqueous Hydrogen Sulphide in Slit-Shaped Silica Nano-Pores: Confinement Effects on Solubility, Structural and Dynamical Properties
Authors: Sakiru Badmos, David R. Cole, Alberto Striolo
Abstract:
It is known that confinement in nm-size pores affects many structural and transport properties of water and co-existing volatile species. Of particular interest for fluids in sub-surface systems, in catalysis, and in separations are reports that confinement can enhance the solubility of gases in water. Equilibrium molecular dynamics simulations were performed for aqueous H₂S confined in slit-shaped silica pores at 313K. The effect of pore width on the H₂S solubility in water was investigated. Other properties of interest include the molecular distribution of the various fluid molecules within the pores, the hydration structure for solvated H₂S molecules, and the dynamical properties of the confined fluids. The simulation results demonstrate that confinement reduces the H₂S solubility in water and that the solubility increases with pore size. Analysis of spatial distribution functions suggests that these results are due to perturbations on the coordination of water molecules around H₂S due to confinement. Confinement is found to dampen the dynamical properties of aqueous H₂S as well. Comparing the results obtained for aqueous H₂S to those reported elsewhere for aqueous CH₄, it can be concluded that H₂S permeates hydrated slit-shaped silica nano-pores faster than CH₄. In addition to contributing to better understanding the behavior of fluids in subsurface formations, these observations could also have important implications for developing new natural gas sweetening technologies.Keywords: confinement, interfacial properties, molecular dynamic simulation, sub-surface formations
Procedia PDF Downloads 162812 Impact of Different Fuel Inlet Diameters onto the NOx Emissions in a Hydrogen Combustor
Authors: Annapurna Basavaraju, Arianna Mastrodonato, Franz Heitmeir
Abstract:
The Advisory Council for Aeronautics Research in Europe (ACARE) is creating awareness for the overall reduction of NOx emissions by 80% in its vision 2020. Hence this promotes the researchers to work on novel technologies, one such technology is the use of alternative fuels. Among these fuels hydrogen is of interest due to its one and only significant pollutant NOx. The influence of NOx formation due to hydrogen combustion depends on various parameters such as air pressure, inlet air temperature, air to fuel jet momentum ratio etc. Appropriately, this research is motivated to investigate the impact of the air to fuel jet momentum ratio onto the NOx formation in a hydrogen combustion chamber for aircraft engines. The air to jet fuel momentum is defined as the ratio of impulse/momentum of air with respect to the momentum of fuel. The experiments were performed in an existing combustion chamber that has been previously tested for methane. Premix of the reactants has not been considered due to the high reactivity of the hydrogen and high risk of a flashback. In order to create a less rich zone of reaction at the burner and to decrease the emissions, a forced internal recirculation flow has been achieved by integrating a plate similar to honeycomb structure, suitable to the geometry of the liner. The liner has been provided with an external cooling system to avoid the increase of local temperatures and in turn the reaction rate of the NOx formation. The injected air has been preheated to aim at so called flameless combustion. The air to fuel jet momentum ratio has been inspected by changing the area of fuel inlets and keeping the number of fuel inlets constant in order to alter the fuel jet momentum, thus maintaining the homogeneity of the flow. Within this analysis, promising results for a flameless combustion have been achieved. For a constant number of fuel inlets, it was seen that the reduction of the fuel inlet diameter resulted in decrease of air to fuel jet momentum ratio in turn lowering the NOx emissions.Keywords: combustion chamber, hydrogen, jet momentum, NOx emission
Procedia PDF Downloads 291811 Assessing the Feasibility of Italian Hydrogen Targets with the Open-Source Energy System Optimization Model TEMOA - Italy
Authors: Alessandro Balbo, Gianvito Colucci, Matteo Nicoli, Laura Savoldi
Abstract:
Hydrogen is expected to become a game changer in the energy transition, especially enabling sector coupling possibilities and the decarbonization of hard-to-abate end-uses. The Italian National Recovery and Resilience Plan identifies hydrogen as one of the key elements of the ecologic transition to meet international decarbonization objectives, also including it in several pilot projects for the early development in Italy. This matches the European energy strategy, which aims to make hydrogen a leading energy carrier of the future, setting ambitious goals to be accomplished by 2030. The huge efforts needed to achieve the announced targets require to carefully investigate of their feasibility in terms of economic expenditures and technical aspects. In order to quantitatively assess the hydrogen potential within the Italian context and the feasibility of the planned investments and projects, this work uses the TEMOA-Italy energy system model to study pathways to meet the strict objectives above cited. The possible hydrogen development has been studied both in the supply-side and demand-side of the energy system, also including storage options and distribution chains. The assessment comprehends alternative hydrogen production technologies involved in a competition market, reflecting the several possible investments declined by the Italian National Recovery and Resilience Plan to boost the development and spread of this infrastructure, including the sector coupling potential with natural gas through the currently existing infrastructure and CO2 capture for the production of synfuels. On the other hand, the hydrogen end-uses phase covers a wide range of consumption alternatives, from fuel-cell vehicles, for which both road and non-road transport categories are considered, to steel, and chemical industries uses and cogeneration for residential and commercial buildings. The model includes both high and low TRL technologies in order to provide a consistent outcome for the future decades as it does for the present day, and since it is developed through the use of an open-source code instance and database, transparency and accessibility are fully granted.Keywords: decarbonization, energy system optimization models, hydrogen, open-source modeling, TEMOA
Procedia PDF Downloads 100810 Characteristic of Oxidation Resistant High-Entropy Alloys for Application in Zero-Emission Technologies
Authors: Wojciech J. Nowak, Natalia Maciaszek, Marcin Drajewicz
Abstract:
A constant requirement to reduce greenhouse gas emissions in combination with the desire to increase gas turbine efficiency results in a continuous trend to increase the operating temperature of gas turbines. An increase in operating temperature will result in lower fuel consumption, and a higher combustion temperature will result in lower pollution release. Moreover, there is a strong trend for hydrogen to be used as an alternative and clean fuel. However, using hydrogen or hydrogen-rich fuel results in a higher combustion temperature, as well as an increase in the water vapor content in the exhaust gases. Commonly used Ni-base alloys have their limits. Moreover, the presence of water vapor worsens the oxidation behavior of Ni-based alloys at a high temperature. Therefore, a new brand of materials is demanded to be used in gas turbines operated with hydrogen-rich fuel. High-entropy alloys (HEAs) seem to be very promising materials to replace commonly used Ni-based alloys. HEAs are the group of materials consisting of at least five main equiatomic elements. These alloys can be doped by other elements in amounts less than 5 at. % in total. Thus, in the present study, NiCoCrAlFe-X alloys are studied in terms of oxidation behavior during exposure to dry and wet atmospheres up to 1000 h. NiCoCrAlFe-X alloys are doped with minor alloying elements in amounts ranging from 1-5 at.%. The effect of the chemical composition on oxidation resistance in dry and wet atmospheres will be shown and discussed.Keywords: high entropy alloys, oxidation resistance, hydrogen fuel, water vapor
Procedia PDF Downloads 49809 Modelling and Optimization of a Combined Sorption Enhanced Biomass Gasification with Hydrothermal Carbonization, Hot Gas Cleaning and Dielectric Barrier Discharge Plasma Reactor to Produce Pure H₂ and Methanol Synthesis
Authors: Vera Marcantonio, Marcello De Falco, Mauro Capocelli, Álvaro Amado-Fierro, Teresa A. Centeno, Enrico Bocci
Abstract:
Concerns about energy security, energy prices, and climate change led scientific research towards sustainable solutions to fossil fuel as renewable energy sources coupled with hydrogen as an energy vector and carbon capture and conversion technologies. Among the technologies investigated in the last decades, biomass gasification acquired great interest owing to the possibility of obtaining low-cost and CO₂ negative emission hydrogen production from a large variety of everywhere available organic wastes. Upstream and downstream treatment were then studied in order to maximize hydrogen yield, reduce the content of organic and inorganic contaminants under the admissible levels for the technologies which are coupled with, capture, and convert carbon dioxide. However, studies which analyse a whole process made of all those technologies are still missing. In order to fill this lack, the present paper investigated the coexistence of hydrothermal carbonization (HTC), sorption enhance gasification (SEG), hot gas cleaning (HGC), and CO₂ conversion by dielectric barrier discharge (DBD) plasma reactor for H₂ production from biomass waste by means of Aspen Plus software. The proposed model aimed to identify and optimise the performance of the plant by varying operating parameters (such as temperature, CaO/biomass ratio, separation efficiency, etc.). The carbon footprint of the global plant is 2.3 kg CO₂/kg H₂, lower than the latest limit value imposed by the European Commission to consider hydrogen as “clean”, that was set to 3 kg CO₂/kg H₂. The hydrogen yield referred to the whole plant is 250 gH₂/kgBIOMASS.Keywords: biomass gasification, hydrogen, aspen plus, sorption enhance gasification
Procedia PDF Downloads 76808 Design and Performance Evaluation of Plasma Spouted Bed Reactor for Converting Waste Plastic into Green Hydrogen
Authors: Palash Kumar Mollick, Leire Olazar, Laura Santamaria, Pablo Comendador, Gartzen Lopez, Martin Olazar
Abstract:
Average calorific value of a mixure of waste plastic is approximately 38 MJ/kg. Present work aims to extract maximum possible energy from a mixure of waste plastic using a DC thermal plasma in a spouted bed reactor. Plasma pyrolysis and steam reforming process has shown a potential to generate hydrogen from plastic with much below of legal limit of producing dioxins and furans as the carcinogenic gases. A spouted bed pyrolysis rector can continuously process plastic beads to produce organic volatiles, which later react with steam in presence of catalyst to results in syngas. lasma being the fourth state of matter, can carry high impact electrons to favour the activation energy of any chemical reactions. Computational Fluid Dynamic (CFD) simulation using COMSOL Multiphysics software has been performed to evaluate performance of a plasma spouted bed reactor in producing contamination free hydrogen as a green energy from waste plastic beads. The simulation results will showcase a design of a plasma spouted bed reactor for converting plastic waste into green hydrogen in a single step process. The high temperature hydrodynamics of spouted bed with plastic beads and the corresponding temperature distribution inside the reaction chamber will be critically examined for it’s near future installation of demonstration plant.Keywords: green hydrogen, plastic waste, synthetic gas, pyrolysis, steam reforming, spouted bed, reactor design, plasma, dc palsma, cfd simulation
Procedia PDF Downloads 108807 Development of a Complete Single Jet Common Rail Injection System Gas Dynamic Model for Hydrogen Fueled Engine with Port Injection Feeding System
Authors: Mohammed Kamil, M. M. Rahman, Rosli A. Bakar
Abstract:
Modeling of hydrogen fueled engine (H2ICE) injection system is a very important tool that can be used for explaining or predicting the effect of advanced injection strategies on combustion and emissions. In this paper, a common rail injection system (CRIS) is proposed for 4-strokes 4-cylinders hydrogen fueled engine with port injection feeding system (PIH2ICE). For this system, a numerical one-dimensional gas dynamic model is developed considering single injection event for each injector per a cycle. One-dimensional flow equations in conservation form are used to simulate wave propagation phenomenon throughout the CR (accumulator). Using this model, the effect of common rail on the injection system characteristics is clarified. These characteristics include: rail pressure, sound velocity, rail mass flow rate, injected mass flow rate and pressure drop across injectors. The interaction effects of operational conditions (engine speed and rail pressure) and geometrical features (injector hole diameter) are illustrated; and the required compromised solutions are highlighted. The CRIS is shown to be a promising enhancement for PIH2ICE.Keywords: common rail, hydrogen engine, port injection, wave propagation
Procedia PDF Downloads 423806 Green Synthesis of Spinach Derived Carbon Dots for Photocatalytic Generation of Hydrogen from Sulfide Wastewater
Authors: Priya Ruban, Thirunavoukkarasu Manikkannan, Sakthivel Ramasamy
Abstract:
Sulfide is one of the major pollutants of tannery effluent which is mainly generated during the process of unhairing. Recovery of Hydrogen green fuel from sulfide wastewater using photocatalysis is a ‘Cleaner Production Method’, since renewable solar energy is utilized. It has triple advantages of the generation of H2, waste minimization and odor or pollution control. Designing of safe and green photocatalysts and developing suitable solar photoreactor is important for promoting this technology to large-scale application. In this study, green photocatalyst i.e., spinach derived carbon dots (SCDs 5 wt % and 10 wt %)/TiO2 nanocomposite was synthesized for generation of H2 from sulfide wastewater using lab-scale solar photocatalytic reactor. The physical characterization of the synthesized solar light responsive nanocomposites were studied by using DRS UV-Vis, XRD, FTIR and FESEM analysis. The absorption edge of TiO2 nanoparticles is extended to visible region by the incorporation of SCDs, which was used for converting noxious pollutant sulfide into eco-friendly solar fuel H2. The SCDs (10 wt%)-TiO2 nanocomposite exhibits enhanced photocatalytic hydrogen production i.e. ~27 mL of H2 (180 min) from simulated sulfide wastewater under LED visible light irradiation which is higher as compared to SCDs. The enhancement in the photocatalytic generation of H2 is attributed to combining of SCDs which increased the charge mobility. This work may provide new insights to usage of naturally available and cheap materials to design novel nanocomposite as a visible light active photocatalyst for the generation of H2 from sulfide containing wastewater.Keywords: carbon dots, hydrogen fuel, hydrogen sulfide, photocatalysis, sulfide wastewater
Procedia PDF Downloads 386805 Enhancing Photocatalytic Hydrogen Production: Modification of TiO₂ by Coupling with Semiconductor Nanoparticles
Authors: Saud Hamdan Alshammari
Abstract:
Photocatalytic water splitting to produce hydrogen (H₂) has obtained significant attention as an environmentally friendly technology. This process, which produces hydrogen from water and sunlight, represents a renewable energy source. Titanium dioxide (TiO₂) plays a critical role in photocatalytic hydrogen production due to its chemical stability, availability, and low cost. Nevertheless, TiO₂'s wide band gap (3.2 eV) limits its visible light absorption and might affect the effectiveness of the photocatalytic. Coupling TiO₂ with other semiconductors is a strategy that can enhance TiO₂ by narrowing its band gap and improving visible light absorption. This paper studies the modification of TiO₂ by coupling it with another semiconductor such as CdS nanoparticles using a reflux reactor and autoclave reactor that helps form a core-shell structure. Characterization techniques, including TEM and UV-Vis spectroscopy, confirmed successful coating of TiO₂ on CdS core, reduction of the band gap from 3.28 eV to 3.1 eV, and enhanced light absorption in the visible region. These modifications are attributed to the heterojunction structure between TiO₂ and CdS.The essential goal of this study is to improve TiO₂ for use in photocatalytic water splitting to enhance hydrogen production. The core-shell TiO₂@CdS nanoparticles exhibited promising results, due to band gap narrowing and improved light absorption. Future work will involve adding Pt as a co-catalyst, which is known to increase surface reaction activity by enhancing proton adsorption. Evaluation of the TiO₂@CdS@Pt catalyst will include performance assessments and hydrogen productivity tests, considering factors such as effective shapes and material ratios. Moreover, the study could be enhanced by studying further modifications to the catalyst and displaying additional performance evaluations. For instance, doping TiO₂ with metals such as nickel (Ni), iron (Fe), and cobalt (Co) and non-metals such as nitrogen (N), carbon (C), and sulfur (S) could positively influence the catalyst by reducing the band gap, enhancing the separation of photogenerated electron-hole pairs, and increasing the surface area, respectively. Additionally, to further improve catalytic performance, examining different catalyst morphologies, such as nanorods, nanowires, and nanosheets, in hydrogen production could be highly beneficial. Optimizing photoreactor design for efficient photon delivery and illumination will further enhance the photocatalytic process. These strategies collectively aim to overcome current challenges and improve the efficiency of hydrogen production via photocatalysis.Keywords: hydrogen production, photocatalytic, water spliiting, semiconductor, nanoparticles
Procedia PDF Downloads 19804 Simulation of the Performance of the Reforming of Methane in a Primary Reformer
Authors: A. Alkattib, M. Boumaza
Abstract:
Steam reforming is industrially important as it is incorporated in several major chemical processes including the production of ammonia, methanol, hydrogen and ox alcohols. Due to the strongly endothermic nature of the process, a large amount of heat is supplied by fuel burning (commonly natural gas) in the furnace chamber. Reaction conversions, tube catalyst life, energy consumption and CO2 emission represent the principal factors affecting the performance of this unit and are directly influenced by the high operating temperatures and pressures. This study presents a simulation of the performance of the reforming of methane in a primary reformer, through a developed empirical relation which enables to investigate the effects of operating parameters such as the pressure, temperature, steam to carbon ratio on the production of hydrogen, as well as the fraction of non-converted methane. It appears from this analysis that the exit temperature Te, the operating pressure as well the steam to carbon ratio has an important effect on the reforming of methane.Keywords: reforming, methane, performance, hydrogen, parameters
Procedia PDF Downloads 224803 NiFe-Type Catalysts for Anion Exchange Membrane (AEM) Electrolyzers
Authors: Boldin Roman, Liliana Analía Diaz
Abstract:
As the hydrogen economy continues to expand, reducing energy consumption and emissions while stimulating economic growth, the development of efficient and cost-effective hydrogen production technologies is critical. Among various methods, anion exchange membrane (AEM) water electrolysis stands out due to its potential for using non-noble metal catalysts. The exploration and enhancement of non-noble metal catalysts, such as NiFe-type catalysts, are pivotal for the advancement of AEM technology, ensuring its commercial viability and environmental sustainability. NiFe-type catalysts were synthesized through electrodeposition and characterized both electrochemically and physico-chemically. Various supports, including Ni foam and Ni mesh, were used as porous transport layers (PTLs) to evaluate the effective catalyst thickness and the influence of the PTL in a 5 cm² AEM electrolyzer. This methodological approach allows for a detailed assessment of catalyst performance under operational conditions typical of industrial hydrogen production. The study revealed that electrodeposited non-noble multi-metallic catalysts maintain stable performance as anodes in AEM water electrolysis. NiFe-type catalysts demonstrated superior activity, with the NiFeCoP alloy outperforming others by delivering the lowest overpotential and the highest current density. Furthermore, the use of different PTLs showed significant effects on the electrochemical behavior of the catalysts, indicating that PTL selection is crucial for optimizing performance and efficiency in AEM electrolyzers. Conclusion: The research underscores the potential of non-noble metal catalysts in enhancing efficiency and reducing the costs of AEM electrolysers. The findings highlight the importance of catalyst and PTL optimization in developing scalable and economically viable hydrogen production technologies. Continued innovation in this area is essential for supporting the growth of the hydrogen economy and achieving sustainable energy solutions.Keywords: AEMWE, electrocatalyst, hydrogen production, water electrolysis.
Procedia PDF Downloads 23802 Assessment of Hydrogen Demand for Different Technological Pathways to Decarbonise the Aviation Sector in Germany
Authors: Manish Khanra, Shashank Prabhu
Abstract:
The decarbonization of hard-to-abate sectors is currently high on the agenda in the EU and its member states, as these sectors have substantial shares in overall GHG emissions while it is facing serious challenges to decarbonize. In particular, the aviation sector accounts for 2.8% of global anthropogenic CO₂ emissions. These emissions are anticipated to grow dramatically unless immediate mitigating efforts are implemented. Hydrogen and its derivatives based on renewable electricity can have a key role in the transition towards CO₂-neutral flights. The substantial shares of energy carriers in the form of drop-in fuel, direct combustion and Hydrogen-to-Electric are promising in most scenarios towards 2050. For creating appropriate policies to ramp up the production and utilisation of hydrogen commodities in the German aviation sector, a detailed analysis of the spatial distribution of supply-demand sites is essential. The objective of this research work is to assess the demand for hydrogen-based alternative fuels in the German aviation sector to achieve the perceived goal of the ‘Net Zero’ scenario by 2050. Here, the analysis of the technological pathways for the production and utilisation of these fuels in various aircraft options is conducted for reaching mitigation targets. Our method is based on data-driven bottom-up assessment, considering production and demand sites and their spatial distribution. The resulting energy demand and its spatial distribution with consideration of technology diffusion lead to a possible transition pathway of the aviation sector to meet short-term and long-term mitigation targets. Additionally, to achieve mitigation targets in this sector, costs and policy aspects are discussed, which would support decision-makers from airline industries, policymakers and the producers of energy commodities.Keywords: the aviation sector, hard-to-abate sectors, hydrogen demand, alternative fuels, technological pathways, data-driven approach
Procedia PDF Downloads 127801 Dissolution Kinetics of Chevreul’s Salt in Ammonium Cloride Solutions
Authors: Mustafa Sertçelik, Turan Çalban, Hacali Necefoğlu, Sabri Çolak
Abstract:
In this study, Chevreul’s salt solubility and its dissolution kinetics in ammonium chloride solutions were investigated. Chevreul’s salt that we used in the studies was obtained by using the optimum conditions (ammonium sulphide concentration; 0,4 M, copper sulphate concentration; 0,25 M, temperature; 60°C, stirring speed; 600 rev/min, pH; 4 and reaction time; 15 mins) determined by T. Çalban et al. Chevreul’s salt solubility in ammonium chloride solutions and the kinetics of dissolution were investigated. The selected parameters that affect solubility were reaction temperature, concentration of ammonium chloride, stirring speed, and solid/liquid ratio. Correlation of experimental results had been achieved using linear regression implemented in the statistical package program statistica. The effect of parameters on Chevreul’s salt solubility was examined and integrated rate expression of dissolution rate was found using kinetic models in solid-liquid heterogeneous reactions. The results revealed that the dissolution rate of Chevreul’s salt was decreasing while temperature, concentration of ammonium chloride and stirring speed were increasing. On the other hand, dissolution rate was found to be decreasing with the increase of solid/liquid ratio. Based on result of the applications of the obtained experimental results to the kinetic models, we can deduce that Chevreul’s salt dissolution rate is controlled by diffusion through the ash (or product layer). Activation energy of the reaction of dissolution was found as 74.83 kJ/mol. The integrated rate expression along with the effects of parameters on Chevreul's salt solubility was found to be as follows: 1-3(1-X)2/3+2(1-X)= [2,96.1013.(CA)3,08 .(S/L)-038.(W)1,23 e-9001,2/T].tKeywords: Chevreul's salt, copper, ammonium chloride, ammonium sulphide, dissolution kinetics
Procedia PDF Downloads 305800 Quantum Sieving for Hydrogen Isotope Separation
Authors: Hyunchul Oh
Abstract:
One of the challenges in modern separation science and technology is the separation of hydrogen isotopes mixtures since D2 and H2 consist of almost identical size, shape and thermodynamic properties. Recently, quantum sieving of isotopes by confinement in narrow space has been proposed as an alternative technique. Despite many theoretical suggestions, however, it has been difficult to discover a feasible microporous material up to now. Among various porous materials, the novel class of microporous framework materials (COFs, ZIFs and MOFs) is considered as a promising material class for isotope sieving due to ultra-high porosity and uniform pore size which can be tailored. Hence, we investigate experimentally the fundamental correlation between D2/H2 molar ratio and pore size at optimized operating conditions by using different ultramicroporous frameworks. The D2/H2 molar ratio is strongly depending on pore size, pressure and temperature. An experimentally determined optimum pore diameter for quantum sieving lies between 3.0 and 3.4 Å which can be an important guideline for designing and developing feasible microporous frameworks for isotope separation. Afterwards, we report a novel strategy for efficient hydrogen isotope separation at technologically relevant operating pressure through the development of quantum sieving exploited by the pore aperture engineering. The strategy involves installation of flexible components in the pores of the framework to tune the pore surface.Keywords: gas adsorption, hydrogen isotope, metal organic frameworks(MOFs), quantum sieving
Procedia PDF Downloads 263799 Study on the Impact of Power Fluctuation, Hydrogen Utilization, and Fuel Cell Stack Orientation on the Performance Sensitivity of PEM Fuel Cell
Authors: Majid Ali, Xinfang Jin, Victor Eniola, Henning Hoene
Abstract:
The performance of proton exchange membrane (PEM) fuel cells is sensitive to several factors, including power fluctuations, hydrogen utilization, and the quality orientation of the fuel cell stack. In this study, we investigate the impact of these factors on the performance of a PEM fuel cell. We start by analyzing the power fluctuations that are typical in renewable energy systems and their effects on the 50 Watt fuel cell's performance. Next, we examine the hydrogen utilization rate (0-1000 mL/min) and its impact on the cell's efficiency and durability. Finally, we investigate the quality orientation (three different positions) of the fuel cell stack, which can significantly affect the cell's lifetime and overall performance. The basis of our analysis is the utilization of experimental results, which have been further validated by comparing them with simulations and manufacturer results. Our results indicate that power fluctuations can cause significant variations in the fuel cell's voltage and current, leading to a reduction in its performance. Moreover, we show that increasing the hydrogen utilization rate beyond a certain threshold can lead to a decrease in the fuel cell's efficiency. Finally, our analysis demonstrates that the orientation of the fuel cell stack can affect its performance and lifetime due to non-uniform distribution of reactants and products. In summary, our study highlights the importance of considering power fluctuations, hydrogen utilization, and quality orientation in designing and optimizing PEM fuel cell systems. The findings of this study can be useful for researchers and engineers working on the development of fuel cell systems for various applications, including transportation, stationary power generation, and portable devices.Keywords: fuel cell, proton exchange membrane, renewable energy, power fluctuation, experimental
Procedia PDF Downloads 133798 Using RASCAL and ALOHA Codes to Establish an Analysis Methodology for Hydrogen Fluoride Evaluation
Authors: J. R. Wang, Y. Chiang, W. S. Hsu, H. C. Chen, S. H. Chen, J. H. Yang, S. W. Chen, C. Shih
Abstract:
In this study, the RASCAL and ALOHA codes are used to establish an analysis methodology for hydrogen fluoride (HF) evaluation. There are three main steps in this study. First, the UF6 data were collected. Second, one postulated case was analyzed by using the RASCAL and UF6 data. This postulated case assumes that fire occurring and UF6 is releasing from a building. Third, the results of RASCAL for HF mass were as the input data of ALOHA. Two postulated cases of HF were analyzed by using ALOHA code and the results of RASCAL. These postulated cases assume fire occurring and HF is releasing with no raining (Case 1) or raining (Case 2) condition. According to the analysis results of ALOHA, the HF concentration of Case 2 is smaller than Case 1. The results can be a reference for the preparing of emergency plans for the release of HF.Keywords: RASCAL, ALOHA, UF₆, hydrogen fluoride
Procedia PDF Downloads 747