Search results for: data management applications
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 35740

Search results for: data management applications

35560 State of Play of Mobile Government Apps on Google Play Store

Authors: Abdelbaset Rabaiah

Abstract:

e-Government mobile applications provide an extension for effective e-government services in today’s omniconnected world. They constitute part of m-government platforms. This study explores the usefulness, availability, discoverability and maturity of such applications. While this study impacts theory by addressing a relatively lacking area, it impacts practice more. The outcomes of this study suggest valuable recommendations for practitioners-developers of e-government applications. The methodology followed is to examine a large number of e-government smartphone applications. The focus is on applications available at the Google Play Store. Moreover, the study investigates applications published on government portals of a number of countries. A sample of 15 countries is researched. The results show a diversity in the level of discoverability, development, maturity, and usage of smartphone apps dedicated for use of e-government services. It was found that there are major issues in discovering e-government applications on both the Google Play Store and as-well-as on local government portals. The study found that only a fraction of mobile government applications was published on the Play Store. Only 19% of apps were multilingual, and 43% were developed by third parties including private individuals. Further analysis was made, and important recommendations are suggested in this paper for a better utilization of e-government smartphone applications. These recommendations will result in better discoverability, maturity, and usefulness of e-government applications.

Keywords: mobile applications, e-government, m-government, Google Play Store

Procedia PDF Downloads 154
35559 Technological Affordances of a Mobile Fitness Application- A Role of Escapism and Social Outcome Expectation

Authors: Inje Cho

Abstract:

The leading health risks threatening the world today are associated with a modern lifestyle characterized by sedentary behavior, stress, anxiety, and an obesogenic food environment. To counter this alarming trend, the Centers for Disease Control and Prevention have proffered Physical Activity guidelines to bolster physical engagement. Concurrently, the burgeon of smartphones and mobile applications has witnessed a proliferation of fitness applications aimed at invigorating exercise adherence and real-time activity monitoring. Grounded in the Uses and gratification theory, this study delves into the technological affordances of mobile fitness applications, discerning the mediating influences of escapism and social outcome expectations on attitudes and exercise intention. The theory explains how individuals employ distinct communication mediums to satiate their exigencies and desires. Technological affordances manifest as attributes of emerging technologies that galvanize personal engagement in physical activities. Several features of mobile fitness applications include affordances for goal setting, virtual rewards, peer support, and exercise information. Escapism, denoting the inclination to disengage from normal routines, has emerged as a salient motivator for the consumption of new media. This study postulates that individual’s perceptions technological affordances within mobile fitness applications, can affect escapism and social outcome expectations, potentially influencing attitude, and behavior formation. Thus, the integrated model has been developed to empirically examine the interrelationships between technological affordances, escapism, social outcome expectations, and exercise intention. Structural Equation Modelling serves as the methodological tool, and a cohort of 400 Fitbit users shall be enlisted from the Prolific, data collection platform. A sequence of multivariate data analyses will scrutinize both the measurement and hypothesized structural models. By delving into the effects of mobile fitness applications, this study contributes to the growing of new media studies in sport management. Moreover, the novel integration of the uses and gratification theory, technological affordances, via the prism of escapism, illustrates the dynamics that underlies mobile fitness user’s attitudes and behavioral intentions. Therefore, the findings from this study contribute to theoretical understanding and provide pragmatic insights to developers and practitioners in optimizing the impact of mobile fitness applications.

Keywords: technological affordances, uses and gratification, mobile fitness apps, escapism, physical activity

Procedia PDF Downloads 81
35558 An Intelligent Traffic Management System Based on the WiFi and Bluetooth Sensing

Authors: Hamed Hossein Afshari, Shahrzad Jalali, Amir Hossein Ghods, Bijan Raahemi

Abstract:

This paper introduces an automated clustering solution that applies to WiFi/Bluetooth sensing data and is later used for traffic management applications. The paper initially summarizes a number of clustering approaches and thereafter shows their performance for noise removal. In this context, clustering is used to recognize WiFi and Bluetooth MAC addresses that belong to passengers traveling by a public urban transit bus. The main objective is to build an intelligent system that automatically filters out MAC addresses that belong to persons located outside the bus for different routes in the city of Ottawa. The proposed intelligent system alleviates the need for defining restrictive thresholds that however reduces the accuracy as well as the range of applicability of the solution for different routes. This paper moreover discusses the performance benefits of the presented clustering approaches in terms of the accuracy, time and space complexity, and the ease of use. Note that results of clustering can further be used for the purpose of the origin-destination estimation of individual passengers, predicting the traffic load, and intelligent management of urban bus schedules.

Keywords: WiFi-Bluetooth sensing, cluster analysis, artificial intelligence, traffic management

Procedia PDF Downloads 242
35557 Implementation of Invisible Digital Watermarking

Authors: V. Monisha, D. Sindhuja, M. Sowmiya

Abstract:

Over the decade, the applications about multimedia have been developed rapidly. The advancement in the communication field at the faster pace, it is necessary to protect the data during transmission. Thus, security of multimedia contents becomes a vital issue, and it is a need for protecting the digital content against malfunctions. Digital watermarking becomes the solution for the copyright protection and authentication of data in the network. In multimedia applications, embedded watermarks should be robust, and imperceptible. For improving robustness, the discrete wavelet transform is used. Both encoding and extraction algorithm can be done using MATLAB R2012a. In this Discrete wavelet transform (DWT) domain of digital image, watermarking algorithm is used, and hardware implementation can be done on Xilinx based FPGA.

Keywords: digital watermarking, DWT, robustness, FPGA

Procedia PDF Downloads 414
35556 Impact of Knowledge Management on Learning Organizations

Authors: Gunmala Suri

Abstract:

The purpose of this study was to investigate the relationship between various dimensions of Knowledge Management and Learning Organizations. On the basis of the dimensions of Learning Organization, Hypothesis were formulated. Knowledge Management (KM) is taken as the independent variable and Learning Organization (LO) as a dependent variable. KM had 5 dimensions and LO had 7. For this study, a total of 92 participants took part and answered the questionnaire. The respondents were selected using Judgemental and Snowball sampling. The respondents were from SMEs in and around Chandigarh. SPSS was used to for the data analysis purposes. The results showed that the dimensions of KM had a positive influence on the dimensions of LO. The hypothesis were accepted.

Keywords: knowledge management leadership, knowledge management, learning organization, knowledge management culture

Procedia PDF Downloads 419
35555 Artificial Intelligence Technologies Used in Healthcare: Its Implication on the Healthcare Workforce and Applications in the Diagnosis of Diseases

Authors: Rowanda Daoud Ahmed, Mansoor Abdulhak, Muhammad Azeem Afzal, Sezer Filiz, Usama Ahmad Mughal

Abstract:

This paper discusses important aspects of AI in the healthcare domain. The increase of data in healthcare both in size and complexity, opens more room for artificial intelligence applications. Our focus is to review the main AI methods within the scope of the health care domain. The results of the review show that recommendations for diagnosis and recommendations for treatment, patent engagement, and administrative tasks are the key applications of AI in healthcare. Understanding the potential of AI methods in the domain of healthcare would benefit healthcare practitioners and will improve patient outcomes.

Keywords: AI in healthcare, technologies of AI, neural network, future of AI in healthcare

Procedia PDF Downloads 116
35554 A Web Service Based Sensor Data Management System

Authors: Rose A. Yemson, Ping Jiang, Oyedeji L. Inumoh

Abstract:

The deployment of wireless sensor network has rapidly increased, however with the increased capacity and diversity of sensors, and applications ranging from biological, environmental, military etc. generates tremendous volume of data’s where more attention is placed on the distributed sensing and little on how to manage, analyze, retrieve and understand the data generated. This makes it more quite difficult to process live sensor data, run concurrent control and update because sensor data are either heavyweight, complex, and slow. This work will focus on developing a web service platform for automatic detection of sensors, acquisition of sensor data, storage of sensor data into a database, processing of sensor data using reconfigurable software components. This work will also create a web service based sensor data management system to monitor physical movement of an individual wearing wireless network sensor technology (SunSPOT). The sensor will detect movement of that individual by sensing the acceleration in the direction of X, Y and Z axes accordingly and then send the sensed reading to a database that will be interfaced with an internet platform. The collected sensed data will determine the posture of the person such as standing, sitting and lying down. The system is designed using the Unified Modeling Language (UML) and implemented using Java, JavaScript, html and MySQL. This system allows real time monitoring an individual closely and obtain their physical activity details without been physically presence for in-situ measurement which enables you to work remotely instead of the time consuming check of an individual. These details can help in evaluating an individual’s physical activity and generate feedback on medication. It can also help in keeping track of any mandatory physical activities required to be done by the individuals. These evaluations and feedback can help in maintaining a better health status of the individual and providing improved health care.

Keywords: HTML, java, javascript, MySQL, sunspot, UML, web-based, wireless network sensor

Procedia PDF Downloads 212
35553 Data Science in Military Decision-Making: A Semi-Systematic Literature Review

Authors: H. W. Meerveld, R. H. A. Lindelauf

Abstract:

In contemporary warfare, data science is crucial for the military in achieving information superiority. Yet, to the authors’ knowledge, no extensive literature survey on data science in military decision-making has been conducted so far. In this study, 156 peer-reviewed articles were analysed through an integrative, semi-systematic literature review to gain an overview of the topic. The study examined to what extent literature is focussed on the opportunities or risks of data science in military decision-making, differentiated per level of war (i.e. strategic, operational, and tactical level). A relatively large focus on the risks of data science was observed in social science literature, implying that political and military policymakers are disproportionally influenced by a pessimistic view on the application of data science in the military domain. The perceived risks of data science are, however, hardly addressed in formal science literature. This means that the concerns on the military application of data science are not addressed to the audience that can actually develop and enhance data science models and algorithms. Cross-disciplinary research on both the opportunities and risks of military data science can address the observed research gaps. Considering the levels of war, relatively low attention for the operational level compared to the other two levels was observed, suggesting a research gap with reference to military operational data science. Opportunities for military data science mostly arise at the tactical level. On the contrary, studies examining strategic issues mostly emphasise the risks of military data science. Consequently, domain-specific requirements for military strategic data science applications are hardly expressed. Lacking such applications may ultimately lead to a suboptimal strategic decision in today’s warfare.

Keywords: data science, decision-making, information superiority, literature review, military

Procedia PDF Downloads 169
35552 Gradient Boosted Trees on Spark Platform for Supervised Learning in Health Care Big Data

Authors: Gayathri Nagarajan, L. D. Dhinesh Babu

Abstract:

Health care is one of the prominent industries that generate voluminous data thereby finding the need of machine learning techniques with big data solutions for efficient processing and prediction. Missing data, incomplete data, real time streaming data, sensitive data, privacy, heterogeneity are few of the common challenges to be addressed for efficient processing and mining of health care data. In comparison with other applications, accuracy and fast processing are of higher importance for health care applications as they are related to the human life directly. Though there are many machine learning techniques and big data solutions used for efficient processing and prediction in health care data, different techniques and different frameworks are proved to be effective for different applications largely depending on the characteristics of the datasets. In this paper, we present a framework that uses ensemble machine learning technique gradient boosted trees for data classification in health care big data. The framework is built on Spark platform which is fast in comparison with other traditional frameworks. Unlike other works that focus on a single technique, our work presents a comparison of six different machine learning techniques along with gradient boosted trees on datasets of different characteristics. Five benchmark health care datasets are considered for experimentation, and the results of different machine learning techniques are discussed in comparison with gradient boosted trees. The metric chosen for comparison is misclassification error rate and the run time of the algorithms. The goal of this paper is to i) Compare the performance of gradient boosted trees with other machine learning techniques in Spark platform specifically for health care big data and ii) Discuss the results from the experiments conducted on datasets of different characteristics thereby drawing inference and conclusion. The experimental results show that the accuracy is largely dependent on the characteristics of the datasets for other machine learning techniques whereas gradient boosting trees yields reasonably stable results in terms of accuracy without largely depending on the dataset characteristics.

Keywords: big data analytics, ensemble machine learning, gradient boosted trees, Spark platform

Procedia PDF Downloads 241
35551 The Effects of Quality of Web-Based Applications on Competitive Advantage: An Empirical Study in Commercial Banks in Jordan

Authors: Faisal Asad Aburub

Abstract:

Many organizations are investing in web applications and technologies in order to be competitive, some of them could not achieve its goals. The quality of web-based applications could play an important role for organizations to be competitive. So the aim of this study is to investigate the impact of quality of web-based applications to achieve a competitive advantage. A new model has been developed. An empirical investigation was performed on a banking sector in Jordan to test the new model. The results show that impact of web-based applications on competitive advantage is significant. Finally, further work is planned to validate and evaluate the proposed model using several domains.

Keywords: competitive advantage, web-based applications, empirical investigation, commercial banks in Jordan

Procedia PDF Downloads 341
35550 The Use Management of the Knowledge Management and the Information Technologies in the Competitive Strategy of a Self-Propelling Industry

Authors: Guerrero Ramírez Sandra, Ramos Salinas Norma Maricela, Muriel Amezcua Vanesa

Abstract:

This article presents the beginning of a wider study that intends to demonstrate how within organizations of the automotive industry from the city of Querétaro. Knowledge management and technological management are required, as well as people’s initiative and the interaction embedded at the interior of it, with the appropriate environment that facilitates information conversion with wide information technologies management (ITM) range. A company was identified for the pilot study of this research, where descriptive and inferential research information was obtained. The results of the pilot suggest that some respondents did noted entity the knowledge management topic, even if staffs have access to information technology (IT) that serve to enhance access to knowledge (through internet, email, databases, external and internal company personnel, suppliers, customers and competitors) data, this implicates that there are Knowledge Management (KM) problems. The data shows that academically well-prepared organizations normally do not recognize the importance of knowledge in the business, nor in the implementation of it, which at the end is a great influence on how to manage it, so that it should guide the company to greater in sight towards a competitive strategy search, given that the company has an excellent technological infrastructure and KM was not exploited. Cultural diversity is another factor that was observed by the staff.

Keywords: Knowledge Management (KM), Technological Knowledge Management (TKM), Technology Information Management (TI), access to knowledge

Procedia PDF Downloads 502
35549 Evaluation and Analysis of ZigBee-Based Wireless Sensor Network: Home Monitoring as Case Study

Authors: Omojokun G. Aju, Adedayo O. Sule

Abstract:

ZigBee wireless sensor and control network is one of the most popularly deployed wireless technologies in recent years. This is because ZigBee is an open standard lightweight, low-cost, low-speed, low-power protocol that allows true operability between systems. It is built on existing IEEE 802.15.4 protocol and therefore combines the IEEE 802.15.4 features and newly added features to meet required functionalities thereby finding applications in wide variety of wireless networked systems. ZigBee‘s current focus is on embedded applications of general-purpose, inexpensive, self-organising networks which requires low to medium data rates, high number of nodes and very low power consumption such as home/industrial automation, embedded sensing, medical data collection, smart lighting, safety and security sensor networks, and monitoring systems. Although the ZigBee design specification includes security features to protect data communication confidentiality and integrity, however, when simplicity and low-cost are the goals, security is normally traded-off. A lot of researches have been carried out on ZigBee technology in which emphasis has mainly been placed on ZigBee network performance characteristics such as energy efficiency, throughput, robustness, packet delay and delivery ratio in different scenarios and applications. This paper investigate and analyse the data accuracy, network implementation difficulties and security challenges of ZigBee network applications in star-based and mesh-based topologies with emphases on its home monitoring application using the ZigBee ProBee ZE-10 development boards for the network setup. The paper also expose some factors that need to be considered when designing ZigBee network applications and suggest ways in which ZigBee network can be designed to provide more resilient to network attacks.

Keywords: home monitoring, IEEE 802.14.5, topology, wireless security, wireless sensor network (WSN), ZigBee

Procedia PDF Downloads 385
35548 A Relational Data Base for Radiation Therapy

Authors: Raffaele Danilo Esposito, Domingo Planes Meseguer, Maria Del Pilar Dorado Rodriguez

Abstract:

As far as we know, it is still unavailable a commercial solution which would allow to manage, openly and configurable up to user needs, the huge amount of data generated in a modern Radiation Oncology Department. Currently, available information management systems are mainly focused on Record & Verify and clinical data, and only to a small extent on physical data. Thus, results in a partial and limited use of the actually available information. In the present work we describe the implementation at our department of a centralized information management system based on a web server. Our system manages both information generated during patient planning and treatment, and information of general interest for the whole department (i.e. treatment protocols, quality assurance protocols etc.). Our objective it to be able to analyze in a simple and efficient way all the available data and thus to obtain quantitative evaluations of our treatments. This would allow us to improve our work flow and protocols. To this end we have implemented a relational data base which would allow us to use in a practical and efficient way all the available information. As always we only use license free software.

Keywords: information management system, radiation oncology, medical physics, free software

Procedia PDF Downloads 242
35547 Simulation and Hardware Implementation of Data Communication Between CAN Controllers for Automotive Applications

Authors: R. M. Kalayappan, N. Kathiravan

Abstract:

In automobile industries, Controller Area Network (CAN) is widely used to reduce the system complexity and inter-task communication. Therefore, this paper proposes the hardware implementation of data frame communication between one controller to other. The CAN data frames and protocols will be explained deeply, here. The data frames are transferred without any collision or corruption. The simulation is made in the KEIL vision software to display the data transfer between transmitter and receiver in CAN. ARM7 micro-controller is used to transfer data’s between the controllers in real time. Data transfer is verified using the CRO.

Keywords: control area network (CAN), automotive electronic control unit, CAN 2.0, industry

Procedia PDF Downloads 398
35546 Revolutionizing Accounting: Unleashing the Power of Artificial Intelligence

Authors: Sogand Barghi

Abstract:

The integration of artificial intelligence (AI) in accounting practices is reshaping the landscape of financial management. This paper explores the innovative applications of AI in the realm of accounting, emphasizing its transformative impact on efficiency, accuracy, decision-making, and financial insights. By harnessing AI's capabilities in data analysis, pattern recognition, and automation, accounting professionals can redefine their roles, elevate strategic decision-making, and unlock unparalleled value for businesses. This paper delves into AI-driven solutions such as automated data entry, fraud detection, predictive analytics, and intelligent financial reporting, highlighting their potential to revolutionize the accounting profession. Artificial intelligence has swiftly emerged as a game-changer across industries, and accounting is no exception. This paper seeks to illuminate the profound ways in which AI is reshaping accounting practices, transcending conventional boundaries, and propelling the profession toward a new era of efficiency and insight-driven decision-making. One of the most impactful applications of AI in accounting is automation. Tasks that were once labor-intensive and time-consuming, such as data entry and reconciliation, can now be streamlined through AI-driven algorithms. This not only reduces the risk of errors but also allows accountants to allocate their valuable time to more strategic and analytical tasks. AI's ability to analyze vast amounts of data in real time enables it to detect irregularities and anomalies that might go unnoticed by traditional methods. Fraud detection algorithms can continuously monitor financial transactions, flagging any suspicious patterns and thereby bolstering financial security. AI-driven predictive analytics can forecast future financial trends based on historical data and market variables. This empowers organizations to make informed decisions, optimize resource allocation, and develop proactive strategies that enhance profitability and sustainability. Traditional financial reporting often involves extensive manual effort and data manipulation. With AI, reporting becomes more intelligent and intuitive. Automated report generation not only saves time but also ensures accuracy and consistency in financial statements. While the potential benefits of AI in accounting are undeniable, there are challenges to address. Data privacy and security concerns, the need for continuous learning to keep up with evolving AI technologies, and potential biases within algorithms demand careful attention. The convergence of AI and accounting marks a pivotal juncture in the evolution of financial management. By harnessing the capabilities of AI, accounting professionals can transcend routine tasks, becoming strategic advisors and data-driven decision-makers. The applications discussed in this paper underline the transformative power of AI, setting the stage for an accounting landscape that is smarter, more efficient, and more insightful than ever before. The future of accounting is here, and it's driven by artificial intelligence.

Keywords: artificial intelligence, accounting, automation, predictive analytics, financial reporting

Procedia PDF Downloads 71
35545 Decision Support System for the Management of the Shandong Peninsula, China

Authors: Natacha Fery, Guilherme L. Dalledonne, Xiangyang Zheng, Cheng Tang, Roberto Mayerle

Abstract:

A Decision Support System (DSS) for supporting decision makers in the management of the Shandong Peninsula has been developed. Emphasis has been given to coastal protection, coastal cage aquaculture and harbors. The investigations were done in the framework of a joint research project funded by the German Ministry of Education and Research (BMBF) and the Chinese Academy of Sciences (CAS). In this paper, a description of the DSS, the development of its components, and results of its application are presented. The system integrates in-situ measurements, process-based models, and a database management system. Numerical models for the simulation of flow, waves, sediment transport and morphodynamics covering the entire Bohai Sea are set up based on the Delft3D modelling suite (Deltares). Calibration and validation of the models were realized based on the measurements of moored Acoustic Doppler Current Profilers (ADCP) and High Frequency (HF) radars. In order to enable cost-effective and scalable applications, a database management system was developed. It enhances information processing, data evaluation, and supports the generation of data products. Results of the application of the DSS to the management of coastal protection, coastal cage aquaculture and harbors are presented here. Model simulations covering the most severe storms observed during the last decades were carried out leading to an improved understanding of hydrodynamics and morphodynamics. Results helped in the identification of coastal stretches subjected to higher levels of energy and improved support for coastal protection measures.

Keywords: coastal protection, decision support system, in-situ measurements, numerical modelling

Procedia PDF Downloads 195
35544 Investigating Knowledge Management in Financial Organisation: Proposing a New Model for Implementing Knowledge Management

Authors: Ziba R. Tehrani, Sanaz Moayer

Abstract:

In the age of the knowledge-based economy, knowledge management has become a key factor in sustainable competitive advantage. Knowledge management is discovering, acquiring, developing, sharing, maintaining, evaluating, and using right knowledge in right time by right person in organization; which is accomplished by creating a right link between human resources, information technology, and appropriate structure, to achieve organisational goals. Studying knowledge management financial institutes shows the knowledge management in banking system is not different from other industries but because of complexity of bank’s environment, the implementation is more difficult. The bank managers found out that implementation of knowledge management will bring many advantages to financial institutes, one of the most important of which is reduction of threat to lose subsequent information of personnel job quit. Also Special attention to internal conditions and environment of the financial institutes and avoidance from copy-making in designing the knowledge management is a critical issue. In this paper, it is tried first to define knowledge management concept and introduce existing models of knowledge management; then some of the most important models which have more similarities with other models will be reviewed. In second step according to bank requirements with focus on knowledge management approach, most major objectives of knowledge management are identified. For gathering data in this stage face to face interview is used. Thirdly these specified objectives are analysed with the response of distribution of questionnaire which is gained through managers and expert staffs of ‘Karafarin Bank’. Finally based on analysed data, some features of exiting models are selected and a new conceptual model will be proposed.

Keywords: knowledge management, financial institute, knowledge management model, organisational knowledge

Procedia PDF Downloads 360
35543 TRIZ-Based Conflicts-Solving Applications in New Product Development (NPD) Process and Knowledge Management (KM) System

Authors: Chi-Hao Yeh

Abstract:

The aim of this paper is to show how to apply TRIZ to resolve conflicts in management area, which can be readily applied in new product development (NPD) process and Knowledge Management (KM) system in desinging and manfacturing stages. TRIZ has been well-known as a creative and innovative thinking theory in solving engineering and technology contradictions in the last two decades. However, few studies and practical usage were proposed in management area. Conflicts occurring including schedule, budget, and risk plannings at smart phone R&D process are discussed to demonstrate the ideas guided by 39 TRIZ management parameters, 40 TRIZ innovative principles, and contradiction matrix. The results show that TRIZ is able to provide direct, quick and effective alternatives to resolve the management conflicts. In this manner, huge effort and cost can be actually saved and practical experince can be stored in KM system. In this paper, an innovative 3C consuming product such as smart-phone is utilized as a case study to describe the proposed TRIZ-based conflicts-solving approaches in NPD process and Knowledge Management (KM) system.

Keywords: TRIZ, conflicts-solving in managment area, new product development (NPD), knowledge management (KM), smart-phone

Procedia PDF Downloads 522
35542 Recreation and Environmental Quality of Tropical Wetlands: A Social Media Based Spatial Analysis

Authors: Michael Sinclair, Andrea Ghermandi, Sheela A. Moses, Joseph Sabu

Abstract:

Passively crowdsourced data, such as geotagged photographs from social media, represent an opportunistic source of location-based and time-specific behavioral data for ecosystem services analysis. Such data have innovative applications for environmental management and protection, which are replicable at wide spatial scales and in the context of both developed and developing countries. Here we test one such innovation, based on the analysis of the metadata of online geotagged photographs, to investigate the provision of recreational services by the entire network of wetland ecosystems in the state of Kerala, India. We estimate visitation to individual wetlands state-wide and extend, for the first time to a developing region, the emerging application of cultural ecosystem services modelling using data from social media. The impacts of restoration of wetland areal extension and water quality improvement are explored as a means to inform more sustainable management strategies. Findings show that improving water quality to a level suitable for the preservation of wildlife and fisheries could increase annual visits by 350,000, an increase of 13% in wetland visits state-wide, while restoring previously encroached wetland area could result in a 7% increase in annual visits, corresponding to 49,000 visitors, in the Ashtamudi and Vembanad lakes alone, two large coastal Ramsar wetlands in Kerala. We discuss how passive crowdsourcing of social media data has the potential to improve current ecosystem service analyses and environmental management practices also in the context of developing countries.

Keywords: coastal wetlands, cultural ecosystem services, India, passive crowdsourcing, social media, wetland restoration

Procedia PDF Downloads 157
35541 Government Big Data Ecosystem: A Systematic Literature Review

Authors: Syed Iftikhar Hussain Shah, Vasilis Peristeras, Ioannis Magnisalis

Abstract:

Data that is high in volume, velocity, veracity and comes from a variety of sources is usually generated in all sectors including the government sector. Globally public administrations are pursuing (big) data as new technology and trying to adopt a data-centric architecture for hosting and sharing data. Properly executed, big data and data analytics in the government (big) data ecosystem can be led to data-driven government and have a direct impact on the way policymakers work and citizens interact with governments. In this research paper, we conduct a systematic literature review. The main aims of this paper are to highlight essential aspects of the government (big) data ecosystem and to explore the most critical socio-technical factors that contribute to the successful implementation of government (big) data ecosystem. The essential aspects of government (big) data ecosystem include definition, data types, data lifecycle models, and actors and their roles. We also discuss the potential impact of (big) data in public administration and gaps in the government data ecosystems literature. As this is a new topic, we did not find specific articles on government (big) data ecosystem and therefore focused our research on various relevant areas like humanitarian data, open government data, scientific research data, industry data, etc.

Keywords: applications of big data, big data, big data types. big data ecosystem, critical success factors, data-driven government, egovernment, gaps in data ecosystems, government (big) data, literature review, public administration, systematic review

Procedia PDF Downloads 231
35540 AI-Driven Solutions for Optimizing Master Data Management

Authors: Srinivas Vangari

Abstract:

In the era of big data, ensuring the accuracy, consistency, and reliability of critical data assets is crucial for data-driven enterprises. Master Data Management (MDM) plays a crucial role in this endeavor. This paper investigates the role of Artificial Intelligence (AI) in enhancing MDM, focusing on how AI-driven solutions can automate and optimize various stages of the master data lifecycle. By integrating AI (Quantitative and Qualitative Analysis) into processes such as data creation, maintenance, enrichment, and usage, organizations can achieve significant improvements in data quality and operational efficiency. Quantitative analysis is employed to measure the impact of AI on key metrics, including data accuracy, processing speed, and error reduction. For instance, our study demonstrates an 18% improvement in data accuracy and a 75% reduction in duplicate records across multiple systems post-AI implementation. Furthermore, AI’s predictive maintenance capabilities reduced data obsolescence by 22%, as indicated by statistical analyses of data usage patterns over a 12-month period. Complementing this, a qualitative analysis delves into the specific AI-driven strategies that enhance MDM practices, such as automating data entry and validation, which resulted in a 28% decrease in manual errors. Insights from case studies highlight how AI-driven data cleansing processes reduced inconsistencies by 25% and how AI-powered enrichment strategies improved data relevance by 24%, thus boosting decision-making accuracy. The findings demonstrate that AI significantly enhances data quality and integrity, leading to improved enterprise performance through cost reduction, increased compliance, and more accurate, real-time decision-making. These insights underscore the value of AI as a critical tool in modern data management strategies, offering a competitive edge to organizations that leverage its capabilities.

Keywords: artificial intelligence, master data management, data governance, data quality

Procedia PDF Downloads 20
35539 Security Risks Assessment: A Conceptualization and Extension of NFC Touch-And-Go Application

Authors: Ku Aina Afiqah Ku Adzman, Manmeet Mahinderjit Singh, Zarul Fitri Zaaba

Abstract:

NFC operates on low-range 13.56 MHz frequency within a distance from 4cm to 10cm, and the applications can be categorized as touch and go, touch and confirm, touch and connect, and touch and explore. NFC applications are vulnerable to various security and privacy attacks such due to its physical nature; unprotected data stored in NFC tag and insecure communication between its applications. This paper aims to determine the likelihood of security risks happening in an NFC technology and application. We present an NFC technology taxonomy covering NFC standards, types of application and various security and privacy attack. Based on observations and the survey presented to evaluate the risk assessment within the touch and go application demonstrates two security attacks that are high risks namely data corruption and DOS attacks. After the risks are determined, risk countermeasures by using AHP is adopted. The guideline and solutions to these two high risks, attacks are later applied to a secure NFC-enabled Smartphone Attendance System.

Keywords: Near Field Communication (NFC), risk assessment, multi-criteria decision making, Analytical Hierarchy Process (AHP)

Procedia PDF Downloads 302
35538 Development of an Interagency Crime Management System for Nigeria’s Law Enforcement Agencies

Authors: Muhammad Abba Jallo, Fred Fudah Moveh

Abstract:

This study addresses the challenges faced by Nigerian law enforcement agencies due to the lack of an integrated crime management system. While various agencies use ICT-based systems, the absence of interoperability creates barriers to effective collaboration and information sharing. The research proposes the development of an Interagency Crime Management System (ICMS), which integrates the Crime Management Systems (CMS) of different agencies through an Application Program Interface (API). The system is designed to allow all law enforcement agencies to input data using a standardized format, improving crime tracking, reporting, and management across Nigeria. This paper details the design and implementation process, highlighting the benefits of enhanced collaboration for crime management.

Keywords: crime management, Nigeria, law enforcement, ICT

Procedia PDF Downloads 23
35537 Analysis of Developments in the Understanding of In-Service Training in Turkish Public Administration: Personnel Management to Human Resource Management

Authors: Sema Müge Özdemiray

Abstract:

In line with the new public management approach to provide effective and efficient services necessary to achieve the social goals of public institutions, employees must have the knowledge and skills required by the age. In conjunction with the transition from personnel management to human resources management, it is seen that there is a change in the understanding of in-service training, the understanding of "required in-service training" has switched to the understanding of "continuous in-service training". However, in terms of in-service training in Turkey, it seems to be trouble at the point of adopting to change. The main purpose of this study is to primarily create a conceptual framework of in-service training and subsequently determine, analyze and discuss the developments and problems faced by in-service training in Turkey in the transition from personnel management to human resources management. In accordance with this purpose, the necessary data of this study were collected using qualitative approaches. Observation and document analysis was used and content analysis was performed on the data gathered in the study. The results of this study, according to data such as the number of institutions requesting in-service training, allocated budget of in-service training, the number of people participating in such training, transition of personnel management to human resources management should not lead to a paradigm shift in Turkey’s understanding of in-service training, although this is compulsory for public institutions in accordance with the law in Turkey. In-service training in Turkish public administration is still not implemented effectively and is seen as a social activity for employees and a formality for institutions.

Keywords: Human resources management, in service training, personnel management, public institutions

Procedia PDF Downloads 321
35536 TransDrift: Modeling Word-Embedding Drift Using Transformer

Authors: Nishtha Madaan, Prateek Chaudhury, Nishant Kumar, Srikanta Bedathur

Abstract:

In modern NLP applications, word embeddings are a crucial backbone that can be readily shared across a number of tasks. However, as the text distributions change and word semantics evolve over time, the downstream applications using the embeddings can suffer if the word representations do not conform to the data drift. Thus, maintaining word embeddings to be consistent with the underlying data distribution is a key problem. In this work, we tackle this problem and propose TransDrift, a transformer-based prediction model for word embeddings. Leveraging the flexibility of the transformer, our model accurately learns the dynamics of the embedding drift and predicts future embedding. In experiments, we compare with existing methods and show that our model makes significantly more accurate predictions of the word embedding than the baselines. Crucially, by applying the predicted embeddings as a backbone for downstream classification tasks, we show that our embeddings lead to superior performance compared to the previous methods.

Keywords: NLP applications, transformers, Word2vec, drift, word embeddings

Procedia PDF Downloads 92
35535 Empowering a New Frontier in Heart Disease Detection: Unleashing Quantum Machine Learning

Authors: Sadia Nasrin Tisha, Mushfika Sharmin Rahman, Javier Orduz

Abstract:

Machine learning is applied in a variety of fields throughout the world. The healthcare sector has benefited enormously from it. One of the most effective approaches for predicting human heart diseases is to use machine learning applications to classify data and predict the outcome as a classification. However, with the rapid advancement of quantum technology, quantum computing has emerged as a potential game-changer for many applications. Quantum algorithms have the potential to execute substantially faster than their classical equivalents, which can lead to significant improvements in computational performance and efficiency. In this study, we applied quantum machine learning concepts to predict coronary heart diseases from text data. We experimented thrice with three different features; and three feature sets. The data set consisted of 100 data points. We pursue to do a comparative analysis of the two approaches, highlighting the potential benefits of quantum machine learning for predicting heart diseases.

Keywords: quantum machine learning, SVM, QSVM, matrix product state

Procedia PDF Downloads 94
35534 Design and Application of NFC-Based Identity and Access Management in Cloud Services

Authors: Shin-Jer Yang, Kai-Tai Yang

Abstract:

In response to a changing world and the fast growth of the Internet, more and more enterprises are replacing web-based services with cloud-based ones. Multi-tenancy technology is becoming more important especially with Software as a Service (SaaS). This in turn leads to a greater focus on the application of Identity and Access Management (IAM). Conventional Near-Field Communication (NFC) based verification relies on a computer browser and a card reader to access an NFC tag. This type of verification does not support mobile device login and user-based access management functions. This study designs an NFC-based third-party cloud identity and access management scheme (NFC-IAM) addressing this shortcoming. Data from simulation tests analyzed with Key Performance Indicators (KPIs) suggest that the NFC-IAM not only takes less time in identity identification but also cuts time by 80% in terms of two-factor authentication and improves verification accuracy to 99.9% or better. In functional performance analyses, NFC-IAM performed better in salability and portability. The NFC-IAM App (Application Software) and back-end system to be developed and deployed in mobile device are to support IAM features and also offers users a more user-friendly experience and stronger security protection. In the future, our NFC-IAM can be employed to different environments including identification for mobile payment systems, permission management for remote equipment monitoring, among other applications.

Keywords: cloud service, multi-tenancy, NFC, IAM, mobile device

Procedia PDF Downloads 437
35533 Review of the Model-Based Supply Chain Management Research in the Construction Industry

Authors: Aspasia Koutsokosta, Stefanos Katsavounis

Abstract:

This paper reviews the model-based qualitative and quantitative Operations Management research in the context of Construction Supply Chain Management (CSCM). Construction industry has been traditionally blamed for low productivity, cost and time overruns, waste, high fragmentation and adversarial relationships. The construction industry has been slower than other industries to employ the Supply Chain Management (SCM) concept and develop models that support the decision-making and planning. However the last decade there is a distinct shift from a project-based to a supply-based approach of construction management. CSCM comes up as a new promising management tool of construction operations and improves the performance of construction projects in terms of cost, time and quality. Modeling the Construction Supply Chain (CSC) offers the means to reap the benefits of SCM, make informed decisions and gain competitive advantage. Different modeling approaches and methodologies have been applied in the multi-disciplinary and heterogeneous research field of CSCM. The literature review reveals that a considerable percentage of CSC modeling accommodates conceptual or process models which discuss general management frameworks and do not relate to acknowledged soft OR methods. We particularly focus on the model-based quantitative research and categorize the CSCM models depending on their scope, mathematical formulation, structure, objectives, solution approach, software used and decision level. Although over the last few years there has been clearly an increase of research papers on quantitative CSC models, we identify that the relevant literature is very fragmented with limited applications of simulation, mathematical programming and simulation-based optimization. Most applications are project-specific or study only parts of the supply system. Thus, some complex interdependencies within construction are neglected and the implementation of the integrated supply chain management is hindered. We conclude this paper by giving future research directions and emphasizing the need to develop robust mathematical optimization models for the CSC. We stress that CSC modeling needs a multi-dimensional, system-wide and long-term perspective. Finally, prior applications of SCM to other industries have to be taken into account in order to model CSCs, but not without the consequential reform of generic concepts to match the unique characteristics of the construction industry.

Keywords: construction supply chain management, modeling, operations research, optimization, simulation

Procedia PDF Downloads 503
35532 Corporate Cultures Management towards the Retention of Employees: Case Study Company in Thailand

Authors: Duangsamorn Rungsawanpho

Abstract:

The objectives of this paper are to explore the corporate cultures management as determinants of employee retention company in Thailand. This study using mixed method methodology. Data collection using questionnaires and in-depth interviews. The statistics used for data analysis were percentage, mean, standard deviation and inferential statistics will include. The results show that the corporate management culture is perfect for any organization but it depends on the business and the industry because the situations or circumstances that corporate executives are met is different. Because the finding explained that the employees of the company determine the achievement of value-oriented by the corporate culture and international relations is perceived most value for their organizations. In additional we found the employees perceiving with participation can be interpreted as a positive example, many employees feel that they are part of management because they care about their opinions or ideas related with their work.

Keywords: corporate culture, employee retention, retention of employees, management approaches

Procedia PDF Downloads 304
35531 Reactive and Concurrency-Based Image Resource Management Module for iOS Applications

Authors: Shubham V. Kamdi

Abstract:

This paper aims to serve as an introduction to image resource caching techniques for iOS mobile applications. It will explain how developers can break down multiple image-downloading tasks concurrently using state-of-the-art iOS frameworks, namely Swift Concurrency and Combine. The paper will explain how developers can leverage SwiftUI to develop reactive view components and use declarative coding patterns. Developers will learn to bypass built-in image caching systems by curating the procedure to implement a swift-based LRU cache system. The paper will provide a full architectural overview of a system, helping readers understand how mobile applications are designed professionally. It will cover technical discussion, helping readers understand the low-level details of threads and how they can switch between them, as well as the significance of the main and background threads for requesting HTTP services via mobile applications.

Keywords: main thread, background thread, reactive view components, declarative coding

Procedia PDF Downloads 30