Search results for: coarse aggregates
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 558

Search results for: coarse aggregates

378 Sintering of Functionally Graded WC-TiC-Co Cemented Carbides

Authors: Stella Sten, Peter Hedström, Joakim Odqvist, Susanne Norgren

Abstract:

Two functionally graded cemented carbide samples have been produced by local addition of Titanium carbide (TiC) to a pressed Tungsten carbide and Cobalt, WC-10 wt% Co, green body prior to sintering, with the aim of creating a gradient in both composition and grain size in the as-sintered component. The two samples differ only by the in-going WC particle size, where one sub-micron and one coarse WC particle size have been chosen for comparison. The produced sintered samples had a gradient, thus a non-homogenous structure. The Titanium (Ti), Cobalt (Co), and Carbon (C) concentration profiles have been investigated using SEM-EDS and WDS; in addition, the Vickers hardness profile has been measured. Moreover, the Ti concentration profile has been simulated using DICTRA software and compared with experimental results. The concentration and hardness profiles show a similar trend for both samples. Ti and C levels decrease, as expected from the area of TiC application, whereas Co increases towards the edge of the samples. The non-homogenous composition affects the number of stable phases and WC grain size evolution. The sample with finer in-going WC grain size shows a shorter gamma (γ) phase zone and a larger difference in WC grain size compared to the coarse-grained sample. Both samples show, independent of the composition, the presence of abnormally large grains.

Keywords: cemented carbide, functional gradient material, grain growth, sintering

Procedia PDF Downloads 93
377 Recycled Cellulosic Fibers and Lignocellulosic Aggregates for Sustainable Building Materials

Authors: N. Stevulova, I. Schwarzova, V. Hospodarova, J. Junak, J. Briancin

Abstract:

Sustainability is becoming a priority for developers and the use of environmentally friendly materials is increasing. Nowadays, the application of raw materials from renewable sources to building materials has gained a significant interest in this research area. Lignocellulosic aggregates and cellulosic fibers are coming from many different sources such as wood, plants and waste. They are promising alternative materials to replace synthetic, glass and asbestos fibers as reinforcement in inorganic matrix of composites. Natural fibers are renewable resources so their cost is relatively low in comparison to synthetic fibers. With the consideration of environmental consciousness, natural fibers are biodegradable so their using can reduce CO2 emissions in the building materials production. The use of cellulosic fibers in cementitious matrices have gained importance because they make the composites lighter at high fiber content, they have comparable cost - performance ratios to similar building materials and they could be processed from waste paper, thus expanding the opportunities for waste utilization in cementitious materials. The main objective of this work is to find out the possibility of using different wastes: hemp hurds as waste of hemp stem processing and recycled fibers obtained from waste paper for making cement composite products such as mortars based on cellulose fibers. This material was made of cement mortar containing organic filler based on hemp hurds and recycled waste paper. In addition, the effects of fibers and their contents on some selected physical and mechanical properties of the fiber-cement plaster composites have been investigated. In this research organic material have used to mortars as 2.0, 5.0 and 10.0 % replacement of cement weight. Reference sample is made for comparison of physical and mechanical properties of cement composites based on recycled cellulosic fibers and lignocellulosic aggregates. The prepared specimens were tested after 28 days of curing in order to investigate density, compressive strength and water absorbability. Scanning Electron Microscopy examination was also carried out.

Keywords: Hemp hurds, organic filler, recycled paper, sustainable building materials

Procedia PDF Downloads 223
376 Quantification of Size Segregated Particulate Matter Deposition in Human Respiratory Tract and Health Risk to Residents of Glass City

Authors: Kalpana Rajouriya, Ajay Taneja

Abstract:

The objective of the present study is to investigate the regional and lobar deposition of size-segregated PM in respiratory tract of human body. PM in different fractions is monitored using the Grimm portable environmental dust monitor during winter season in Firozabad; a Glass city of India. PM10 concentration (200.817g/m³) was 4.46 and 2.0 times higher than the limits prescribed by WHO (45g/m⁻³) and NAAQS (100g/m⁻³) government agencies. PM2.5 concentration (83.538 g/m3) was 5.56 and 1.39 times higher from WHO (15g/m-3) and NAAQS (60g/m⁻³) limits. Results inferred that PM10 and PM2.5 was highest deposited in head region (0.3477-0.5622 & 0.366-0.4704) followed by pulmonary region, especially in the 9-21year old persons. The variation in deposition percentage in our study is mainly due to the airway geometry, PM size, and its deposition mechanisms. The coarse fraction, due to its large size, cannot follow the airway path and mostly gets deposited by inertial impaction in the head region and its bifurcations. The present study results inferred that Coarse and fine PM deposition was highly visualized in 9 (8.45610⁻⁴ g, 2.91110⁻⁴g) year and 3 (1.49610⁻⁴ g, 8.59310⁻⁵g) month age category. So, the 9year children and 3month infants category have high level of health risk.

Keywords: particulate matter, MPPD model, regional deposition, lobar deposition, health risk

Procedia PDF Downloads 61
375 Microstructure Analysis of Biopolymer Mixture (Chia-Gelatin) by Laser Confocal Microscopy

Authors: Emmanuel Flores Huicochea, Guadalupe Borja Mendiola, Jacqueline Flores Lopez, Rodolfo Rendon Villalobos

Abstract:

The usual procedure to investigate the properties of biodegradable films has been to prepare the film, measure the mechanical or transport properties and then decide whether the mixture has better properties than the individual components, instead of investigating whether the mixture has biopolymer-biopolymer interaction, then prepare the film and finally measure the properties of the film. The work investigates the presence of interaction biopolymer-biopolymer in a mixture of chia biopolymer and gelatin using Laser Confocal Microscopy (LCM). Previously, the chia biopolymer was obtained from chia seed. CML analysis of mixtures of chia biopolymer-gelatin without Na⁺ ions exhibited aggregates of different size, in the range of 100-400 μm, of defined color, for the two colors, but no mixing of color was observed. The increased of gelatin in the mixture decreases the size and number of aggregates. The tridimensional microstructure reveled that there are two layers of biopolymers, chia and gelatin well defined. The mixture chia biopolymer-gelatin with 10 mM Na⁺ and with a ratio 75:25 (chia-gelatin) showed lower aggregated size than others mixture with and without ions. This result could be explained because the chia biopolymer is a polyelectrolyte and the added sodium ions reduce the molecular rigidity by neutralizing the negative charges that the chia biopolymer possesses and therefore a better biopolymer-biopolymer interaction is allowed between the biopolymer of chia and gelatin.

Keywords: biopolymer-biopolymer interaction, confocal laser microscopy, CLM, microstructure, mixture chia-gelatin

Procedia PDF Downloads 208
374 Development of Cost Effective Ultra High Performance Concrete by Using Locally Available Materials

Authors: Mohamed Sifan, Brabha Nagaratnam, Julian Thamboo, Keerthan Poologanathan

Abstract:

Ultra high performance concrete (UHPC) is a type of cementitious material known for its exceptional strength, ductility, and durability. However, its production is often associated with high costs due to the significant amount of cementitious materials required and the use of fine powders to achieve the desired strength. The aim of this research is to explore the feasibility of developing cost-effective UHPC mixes using locally available materials. Specifically, the study aims to investigate the use of coarse limestone sand along with other sand types, namely, basalt sand, dolomite sand, and river sand for developing UHPC mixes and evaluating its performances. The study utilises the particle packing model to develop various UHPC mixes. The particle packing model involves optimising the combination of coarse limestone sand, basalt sand, dolomite sand, and river sand to achieve the desired properties of UHPC. The developed UHPC mixes are then evaluated based on their workability (measured through slump flow and mini slump value), compressive strength (at 7, 28, and 90 days), splitting tensile strength, and microstructural characteristics analysed through scanning electron microscope (SEM) analysis. The results of this study demonstrate that cost-effective UHPC mixes can be developed using locally available materials without the need for silica fume or fly ash. The UHPC mixes achieved impressive compressive strengths of up to 149 MPa at 28 days with a cement content of approximately 750 kg/m³. The mixes also exhibited varying levels of workability, with slump flow values ranging from 550 to 850 mm. Additionally, the inclusion of coarse limestone sand in the mixes effectively reduced the demand for superplasticizer and served as a filler material. By exploring the use of coarse limestone sand and other sand types, this study provides valuable insights into optimising the particle packing model for UHPC production. The findings highlight the potential to reduce costs associated with UHPC production without compromising its strength and durability. The study collected data on the workability, compressive strength, splitting tensile strength, and microstructural characteristics of the developed UHPC mixes. Workability was measured using slump flow and mini slump tests, while compressive strength and splitting tensile strength were assessed at different curing periods. Microstructural characteristics were analysed through SEM and energy dispersive X-ray spectroscopy (EDS) analysis. The collected data were then analysed and interpreted to evaluate the performance and properties of the UHPC mixes. The research successfully demonstrates the feasibility of developing cost-effective UHPC mixes using locally available materials. The inclusion of coarse limestone sand, in combination with other sand types, shows promising results in achieving high compressive strengths and satisfactory workability. The findings suggest that the use of the particle packing model can optimise the combination of materials and reduce the reliance on expensive additives such as silica fume and fly ash. This research provides valuable insights for researchers and construction practitioners aiming to develop cost-effective UHPC mixes using readily available materials and an optimised particle packing approach.

Keywords: cost-effective, limestone powder, particle packing model, ultra high performance concrete

Procedia PDF Downloads 109
373 Effect of Waste Foundry Slag and Alccofine on Durability Properties of High Strength Concrete

Authors: Devinder Sharma, Sanjay Sharma, Ajay Goyal, Ashish Kapoor

Abstract:

The present research paper discussed the durability properties of high strength concrete (HSC) using Foundry Slag(FD) as partial substitute for fine aggregates (FA) and Alccofine (AF) in addition to portland pozzolana (PPC) cement. Specimens of Concrete M100 grade with water/binder ratio 0.239, with Foundry Slag (FD) varying from 0 to 50% and with optimum quantity of AF(15%) were casted and tested for durability properties such as Water absorption, water permeability, resistance to sulphate attack, alkali attack and nitrate attack of HSC at the age of 7, 14, 28, 56 and 90 days. Substitution of fine aggregates (FA) with up to 45% of foundry slag(FD) content and cement with 15% substitution and addition of alccofine showed an excellent resistance against durability properties at all ages but showed a decrease in these properties with 50% of FD contents. Loss of weight in concrete samples due to sulphate attack, alkali attack and nitrate attack of HSC at the age of 365 days was compared with loss in compressive strength. Correlation between loss in weight and loss in compressive strength in all the tests was found to be excellent.

Keywords: alccofine, alkali attack, foundry slag, high strength concrete, nitrate attack, water absorption, water permeability

Procedia PDF Downloads 331
372 Fructose-Aided Cross-Linked Enzyme Aggregates of Laccase: An Insight on Its Chemical and Physical Properties

Authors: Bipasa Dey, Varsha Panwar, Tanmay Dutta

Abstract:

Laccase, a multicopper oxidase (EC 1.10.3.2) have been at the forefront as a superior industrial biocatalyst. They are versatile in terms of bestowing sustainable and ecological catalytic reactions such as polymerisation, xenobiotic degradation and bioremediation of phenolic and non-phenolic compounds. Regardless of the wide biotechnological applications, the critical limiting factors viz. reusability, retrieval, and storage stability still prevail. This can cause an impediment in their applicability. Crosslinked enzyme aggregates (CLEAs) have emerged as a promising technique that rehabilitates these essential facets, albeit at the expense of their enzymatic activity. The carrier free crosslinking method prevails over the carrier-bound immobilisation in conferring high productivity, low production cost owing to the absence of additional carrier and circumvent any non-catalytic ballast which could dilute the volumetric activity. To the best of our knowledge, the ε-amino group of lysyl residue is speculated as the best choice for forming Schiff’s base with glutaraldehyde. Despite being most preferrable, excess glutaraldehyde can bring about disproportionate and undesirable crosslinking within the catalytic site and hence could deliver undesirable catalytic losses. Moreover, the surface distribution of lysine residues in Trametes versicolor laccase is significantly less. Thus, to mitigate the adverse effect of glutaraldehyde in conjunction with scaling down the degradation or catalytic loss of the enzyme, crosslinking with inert substances like gelatine, collagen, Bovine serum albumin (BSA) or excess lysine is practiced. Analogous to these molecules, sugars have been well known as a protein stabiliser. It helps to retain the structural integrity, specifically secondary structure of the protein during aggregation by changing the solvent properties. They are comprehended to avert protein denaturation or enzyme deactivation during precipitation. We prepared crosslinked enzyme aggregates (CLEAs) of laccase from T. versicolor with the aid of sugars. The sugar CLEAs were compared with the classic BSA and glutaraldehyde laccase CLEAs concerning physico-chemical properties. The activity recovery for the fructose CLEAs were found to be ~20% higher than the non-sugar CLEA. Moreover, the 𝐾𝑐𝑎𝑡𝐾𝑚⁄ values of the CLEAs were two and three-fold higher than BSA-CLEA and GACLEA, respectively. The half-life (t1/2) deciphered by sugar-CLEA was higher than the t1/2 of GA-CLEAs and free enzyme, portraying more thermal stability. Besides, it demonstrated extraordinarily high pH stability, which was analogous to BSA-CLEA. The promising attributes of increased storage stability and recyclability (>80%) gives more edge to the sugar-CLEAs over conventional CLEAs of their corresponding free enzyme. Thus, sugar-CLEA prevails in furnishing the rudimentary properties required for a biocatalyst and holds many prospects.

Keywords: cross-linked enzyme aggregates, laccase immobilization, enzyme reusability, enzyme stability

Procedia PDF Downloads 102
371 Development of Positron Emission Tomography (PET) Tracers for the in-Vivo Imaging of α-Synuclein Aggregates in α-Synucleinopathies

Authors: Bright Chukwunwike Uzuegbunam, Wojciech Paslawski, Hans Agren, Christer Halldin, Wolfgang Weber, Markus Luster, Thomas Arzberger, Behrooz Hooshyar Yousefi

Abstract:

There is a need to develop a PET tracer that will enable to diagnosis and track the progression of Alpha-synucleinopathies (Parkinson’s disease [PD], dementia with Lewy bodies [DLB], multiple system atrophy [MSA]) in living subjects over time. Alpha-synuclein aggregates (a-syn), which are present in all the stages of disease progression, for instance, in PD, are a suitable target for in vivo PET imaging. For this reason, we have developed some promising a-syn tracers based on a disarylbisthiazole (DABTA) scaffold. The precursors are synthesized via a modified Hantzsch thiazole synthesis. The precursors were then radiolabeled via one- or two-step radiofluorination methods. The ligands were initially screened using a combination of molecular dynamics and quantum/molecular mechanics approaches in order to calculate the binding affinity to a-syn (in silico binding experiments). Experimental in vitro binding assays were also performed. The ligands were further screened in other experiments such as log D, in vitro plasma protein binding & plasma stability, biodistribution & brain metabolite analyses in healthy mice. Radiochemical yields were up to 30% - 72% in some cases. Molecular docking revealed possible binding sites in a-syn and also the free energy of binding to those sites (-28.9 - -66.9 kcal/mol), which correlated to the high binding affinity of the DABTAs to a-syn (Ki as low as 0.5 nM) and selectivity (> 100-fold) over Aβ and tau, which usually co-exist with a-synin some pathologies. The log D values range from 2.88 - 2.34, which correlated with free-protein fraction of 0.28% - 0.5%. Biodistribution experiments revealed that the tracers are taken up (5.6 %ID/g - 7.3 %ID/g) in the brain at 5 min (post-injection) p.i., and cleared out (values as low as 0.39 %ID/g were obtained at 120 min p.i. Analyses of the mice brain 20 min p.i. Revealed almost no radiometabolites in the brain in most cases. It can be concluded that in silico study presents a new venue for the rational development of radioligands with suitable features. The results obtained so far are promising and encourage us to further validate the DABTAs in autoradiography, immunohistochemistry, and in vivo imaging in non-human primates and humans.

Keywords: alpha-synuclein aggregates, alpha-synucleinopathies, PET imaging, tracer development

Procedia PDF Downloads 235
370 Suitability Number of Coarse-Grained Soils and Relationships among Fineness Modulus, Density and Strength Parameters

Authors: Khandaker Fariha Ahmed, Md. Noman Munshi, Tarin Sultana, Md. Zoynul Abedin

Abstract:

Suitability number (SN) is perhaps one of the most important parameters of coarse-grained soil in assessing its appropriateness to use as a backfill in retaining structures, sand compaction pile, Vibro compaction, and other similar foundation and ground improvement works. Though determined in an empirical manner, it is imperative to study SN to understand its relation with other aggregate properties like fineness modulus (FM), and strength and density properties of sandy soil. The present paper reports the findings of the study on the examination of the properties of sandy soil, as mentioned. Random numbers were generated to obtain the percent fineness on various sieve sizes, and fineness modulus and suitability numbers were predicted. Sand samples were collected from the field, and test samples were prepared to determine maximum density, minimum density and shear strength parameter φ against particular fineness modulus and corresponding suitability number Five samples of SN value of excellent (0-10) and three samples of SN value fair (20-30) were taken and relevant tests were done. The data obtained from the laboratory tests were statistically analyzed. Results show that with the increase of SN, the value of FM decreases. Within the SN value rated as excellent (0-10), there is a decreasing trend of φ for a higher value of SN. It is found that SN is dependent on various combinations of grain size properties like D10, D30, and D20, D50. Strong linear relationships were obtained between SN and FM (R²=.0.93) and between SN value and φ (R²=.94). Correlation equations are proposed to define relationships among SN, φ, and FM.

Keywords: density, fineness modulus, shear strength parameter, suitability number

Procedia PDF Downloads 104
369 Coarse-Grained Computational Fluid Dynamics-Discrete Element Method Modelling of the Multiphase Flow in Hydrocyclones

Authors: Li Ji, Kaiwei Chu, Shibo Kuang, Aibing Yu

Abstract:

Hydrocyclones are widely used to classify particles by size in industries such as mineral processing and chemical processing. The particles to be handled usually have a broad range of size distributions and sometimes density distributions, which has to be properly considered, causing challenges in the modelling of hydrocyclone. The combined approach of Computational Fluid Dynamics (CFD) and Discrete Element Method (DEM) offers convenience to model particle size/density distribution. However, its direct application to hydrocyclones is computationally prohibitive because there are billions of particles involved. In this work, a CFD-DEM model with the concept of the coarse-grained (CG) model is developed to model the solid-fluid flow in a hydrocyclone. The DEM is used to model the motion of discrete particles by applying Newton’s laws of motion. Here, a particle assembly containing a certain number of particles with same properties is treated as one CG particle. The CFD is used to model the liquid flow by numerically solving the local-averaged Navier-Stokes equations facilitated with the Volume of Fluid (VOF) model to capture air-core. The results are analyzed in terms of fluid and solid flow structures, and particle-fluid, particle-particle and particle-wall interaction forces. Furthermore, the calculated separation performance is compared with the measurements. The results obtained from the present study indicate that this approach can offer an alternative way to examine the flow and performance of hydrocyclones

Keywords: computational fluid dynamics, discrete element method, hydrocyclone, multiphase flow

Procedia PDF Downloads 407
368 Physical Properties of Crushed Aggregates in Some Selected Quarries in Kwara State, Nigeria

Authors: S. A. Agbalajobi, W. A. Bello

Abstract:

This study examines rock properties of crushed aggregate in some selected quarries in Kwara state, Nigeria. Some physical properties (chemical composition, mineral composition, particle size distribution) of gneiss sample were determined using ISRM standards. The physicomechanical properties (specific gravity, dry density, porosity, water absorption, point load index, tensile, and compressive strength) of the gneiss rock were evaluated. The analysis on the gneiss samples revealed the mean dry density and the unit weight are 2.52 g/m3, 2.63 g/m3, 2.38 g/m3; and 24.1 kN/m3, 25.78 kN/m3, 23.33 kN/m3, respectively (for locations A,B,C). The water absorption level of the gneiss rock sample ranged from 0.38 % – 0.57 % for the three locations. The mean Schmidt hammer rebound value ranged from 51.0 – 52.4 for the three locations and mean point load index values ranged from 9.89 – 10.56 MPa classified as very high strength while the uniaxial compressive strength of the rock samples revealed that its strength ranged from 120 - 139 MPa (for location A, B, and C) classified as strong rock. The aggregate impact value test and aggregate crushing value test conducted on the gneiss aggregates from the three locations in accordance with British Standard. The gneiss sample from the three locations (A, B, and C) is a good material for the production of construction works such as concrete, bricks, pavement, embankment among others, the compressive strength of the material is within the accepted limit.

Keywords: gneiss, aggregate impact, aggregate crushing, physic-mechanical properties, rock hardness

Procedia PDF Downloads 308
367 Mechanical Behavior of Recycled Mortars Manufactured from Moisture Correction Using the Halogen Light Thermogravimetric Balance as an Alternative to the Traditional ASTM C 128 Method

Authors: Diana Gomez-Cano, J. C. Ochoa-Botero, Roberto Bernal Correa, Yhan Paul Arias

Abstract:

To obtain high mechanical performance, the fresh conditions of a mortar are decisive. Measuring the absorption of aggregates used in mortar mixes is a fundamental requirement for proper design of the mixes prior to their placement in construction sites. In this sense, absorption is a determining factor in the design of a mix because it conditions the amount of water, which in turn affects the water/cement ratio and the final porosity of the mortar. Thus, this work focuses on the mechanical behavior of recycled mortars manufactured from moisture correction using the Thermogravimetric Balancing Halogen Light (TBHL) technique in comparison with the traditional ASTM C 128 International Standard method. The advantages of using the TBHL technique are favorable in terms of reduced consumption of resources such as materials, energy, and time. The results show that in contrast to the ASTM C 128 method, the TBHL alternative technique allows obtaining a higher precision in the absorption values of recycled aggregates, which is reflected not only in a more efficient process in terms of sustainability in the characterization of construction materials but also in an effect on the mechanical performance of recycled mortars.

Keywords: alternative raw materials, halogen light, recycled mortar, resources optimization, water absorption

Procedia PDF Downloads 114
366 Rapid Biosynthesis of Silver Nanoparticles Using Trachyspermum Ammi

Authors: Rajesh Kumar Meena, Suman Jhajharia, Goutam Chakraborty

Abstract:

Plasmonic silver nanoparticles (Ag NPs) was synthesized by chemical reduction method using Trachyspermum Ammi (TA, Ajwain) seeds extract in aqueous medium and AgNO3 solution at different time interval. Reaction time, and concentration of AgNO3 and TA could accelerate the reduction rate of Ag+ and affect AgNPs size and concentration of NPs. Surface plasmon resonance band centered at 420-430 nm (88.78nm) was recognised as first exitonic peak of UV-Vis absorption spectra of AgNPs that used to calculate the particle size (10-30 nm). FTIR results TA supported AgNPs showed decrease in intensity of peaks at 3394, 1716 and 1618 cm-1 with respect to the plain TA indicating the involvement of O-H, carbonyl group and C=C stretching in formation of TA-AgNPs aggregates. The C-O-C and C-N stretching suggested the presence of many phytochemicals on the surface of the NPs. Impedance study reveals that at low concentration of TA the rate of charge transfer is in TA-AgNPs aggregates, found higher than the higher TA concentration condition that confirms the stability of AgNPs in water. Extract reduce silver ions into silver nanoparticles (NPs) of size 6-50nm. Pronounce effect of the time on Ag NPs concentration and particle size, was exhibited by the system These biogenic Ag NPs are characterized using UV- Vis spectrophotometry (UV-Visible), Fourier transformation infrared (FTIR) and XRD. These studies give us inside view of the most probable mechanism of biosynthesis and optoelectronic properties of the as synthesised Ag NPs.

Keywords: antimicrobial activity, bioreduction, capping agent, silver nanoparticles

Procedia PDF Downloads 326
365 Investigate the Mechanical Effect of Different Root Analogue Models to Soil Strength

Authors: Asmaa Al Shafiee, Erdin Ibraim

Abstract:

Stabilizing slopes by using vegetation is considered as a cost-effective and eco-friendly alternative to the conventional methods. The main aim of this study is to investigate the mechanical effect of analogue root systems on the shear strength of different soil types. Three objectives were defined to achieve the main aim of this paper. Firstly, explore the effect of root architectural design to shear strength parameters. Secondly, study the effect of root area ratio (RAR) on the shear strength of two different soil types. Finally, to investigate how different kinds of soil can affect the behavior of the roots during shear failure. 3D printing tool was used to develop different analogue tap root models with different architectural designs. Direct shear tests were performed on Leighton Buzzard (LB) fraction B sand, which represents a coarse sand and Huston sand, which represent medium-coarse sand. All tests were done with the same relative density for both kinds of sand. The results of the direct shear test indicated that using plant roots will increase both friction angle and cohesion of soil. Additionally, different root designs affected differently the shear strength of the soil. Furthermore, the directly proportional relationship was found between root area ratio for the same root design and shear strength parameters of soil. Finally, the root area ratio effect should be combined with branches penetrating the shear plane to get the highest results.

Keywords: leighton buzzard sand, root area ratio, rooted soil, shear strength, slope stabilization

Procedia PDF Downloads 151
364 Text Localization in Fixed-Layout Documents Using Convolutional Networks in a Coarse-to-Fine Manner

Authors: Beier Zhu, Rui Zhang, Qi Song

Abstract:

Text contained within fixed-layout documents can be of great semantic value and so requires a high localization accuracy, such as ID cards, invoices, cheques, and passports. Recently, algorithms based on deep convolutional networks achieve high performance on text detection tasks. However, for text localization in fixed-layout documents, such algorithms detect word bounding boxes individually, which ignores the layout information. This paper presents a novel architecture built on convolutional neural networks (CNNs). A global text localization network and a regional bounding-box regression network are introduced to tackle the problem in a coarse-to-fine manner. The text localization network simultaneously locates word bounding points, which takes the layout information into account. The bounding-box regression network inputs the features pooled from arbitrarily sized RoIs and refine the localizations. These two networks share their convolutional features and are trained jointly. A typical type of fixed-layout documents: ID cards, is selected to evaluate the effectiveness of the proposed system. These networks are trained on data cropped from nature scene images, and synthetic data produced by a synthetic text generation engine. Experiments show that our approach locates high accuracy word bounding boxes and achieves state-of-the-art performance.

Keywords: bounding box regression, convolutional networks, fixed-layout documents, text localization

Procedia PDF Downloads 194
363 An Overview of Electronic Waste as Aggregate in Concrete

Authors: S. R. Shamili, C. Natarajan, J. Karthikeyan

Abstract:

Rapid growth of world population and widespread urbanization has remarkably increased the development of the construction industry which caused a huge demand for sand and gravels. Environmental problems occur when the rate of extraction of sand, gravels, and other materials exceeds the rate of generation of natural resources; therefore, an alternative source is essential to replace the materials used in concrete. Now-a-days, electronic products have become an integral part of daily life which provides more comfort, security, and ease of exchange of information. These electronic waste (E-Waste) materials have serious human health concerns and require extreme care in its disposal to avoid any adverse impacts. Disposal or dumping of these E-Wastes also causes major issues because it is highly complex to handle and often contains highly toxic chemicals such as lead, cadmium, mercury, beryllium, brominates flame retardants (BFRs), polyvinyl chloride (PVC), and phosphorus compounds. Hence, E-Waste can be incorporated in concrete to make a sustainable environment. This paper deals with the composition, preparation, properties, classification of E-Waste. All these processes avoid dumping to landfills whilst conserving natural aggregate resources, and providing a better environmental option. This paper also provides a detailed literature review on the behaviour of concrete with incorporation of E-Wastes. Many research shows the strong possibility of using E-Waste as a substitute of aggregates eventually it reduces the use of natural aggregates in concrete.

Keywords: dumping, electronic waste, landfill, toxic chemicals

Procedia PDF Downloads 169
362 Delineation of Fracture Zones for Investigation of Groundwater Potentials Using Vertical Electrical Sounding in a Sedimentary Complex Terrain

Authors: M. N. Yahaya, K. A. Salako, U. Z. Magawata

Abstract:

Vertical electrical sounding (VES) method was used to investigate the groundwater potential at the southern part of Gulumbe district, Kebbi State, north-western part of Nigeria. The study was carried out with the aim of determining the subsurface layer’s parameters (resistivity and thickness) and uses the same to characterize the groundwater potential of the study area. The Schlumberger configuration was used for data acquisition. A total number of thirty-three (33) sounding points (VES) were surveyed over six profiles. The software IPI2WIN was used to obtain n-layered geo-electric sections. The geo-electric section drawn from the results of the interpretation revealed that three subsurface layers could be delineated, which comprise of top soil, sand, sandstone, coarse sand, limestone, and gravelly sand. The results of the resistivity sounding were correlated with the lithological logs of nearby boreholes that expose cross-section geologic units around the study area. We found out that the area is dominated by three subsurface layers. The coarse sand layers constituted the aquifer zones in the majority of sounding stations. Thus, this present study concluded that the depth of any borehole in the study area should be located between the depth of 18.5 to 39 m. The study further classified the VES points penetrated based on their conductivity content as highly suitable, suitable, moderately suitably, and poor zones for groundwater exploration. Hence, from this research, we recommended that boreholes can be sited in high conductivity zones across VES 2, 11, 13, 16, 20, 21, 27, and 33, respectively.

Keywords: vertical electrical sounding, resistivity, geo-electric, resistivity, aquifer and groundwater

Procedia PDF Downloads 164
361 Experimental Study on Granulated Steel Slag as an Alternative to River Sand

Authors: K. Raghu, M. N. Vathhsala, Naveen Aradya, Sharth

Abstract:

River sand is the most preferred fine aggregate for mortar and concrete. River sand is a product of natural weathering of rocks over a period of millions of years and is mined from river beds. Sand mining has disastrous environmental consequences. The excessive mining of river bed is creating an ecological imbalance. This has lead to have restrictions imposed by ministry of environment on sand mining. Driven by the acute need for sand, stone dust or manufactured sand prepared from the crushing and screening of coarse aggregate is being used as sand in the recent past. However manufactured sand is also a natural material and has quarrying and quality issues. To reduce the burden on the environment, alternative materials to be used as fine aggregates are being extensively investigated all over the world. Looking to the quantum of requirements, quality and properties there has been a global consensus on a material – Granulated slags. Granulated slag has been proven as a suitable material for replacing natural sand / crushed fine aggregates. In developed countries, the use of granulated slag as fine aggregate to replace natural sand is well established and is in regular practice. In the present paper Granulated slag has been experimented for usage in mortar. Slags are the main by-products generated during iron and steel production in the steel industry. Over the past decades, the steel production has increased and, consequently, the higher volumes of by-products and residues generated which have driven to the reuse of these materials in an increasingly efficient way. In recent years new technologies have been developed to improve the recovery rates of slags. Increase of slags recovery and use in different fields of applications like cement making, construction and fertilizers help in preserving natural resources. In addition to the environment protection, these practices produced economic benefits, by providing sustainable solutions that can allow the steel industry to achieve its ambitious targets of “zero waste” in coming years. Slags are generated at two different stages of steel production, iron making and steel making known as BF(Blast Furnace) slag and steel slag respectively. The slagging agent or fluxes, such as lime stone, dolomite and quartzite added into BF or steel making furnaces in order to remove impurities from ore, scrap and other ferrous charges during smelting. The slag formation is the result of a complex series of physical and chemical reactions between the non-metallic charge(lime stone, dolomite, fluxes), the energy sources(coal, coke, oxygen, etc.) and refractory materials. Because of the high temperatures (about 15000 C) during their generation, slags do not contain any organic substances. Due to the fact that slags are lighter than the liquid metal, they float and get easily removed. The slags protect the metal bath from atmosphere and maintain temperature through a kind of liquid formation. These slags are in liquid state and solidified in air after dumping in the pit or granulated by impinging water systems. Generally, BF slags are granulated and used in cement making due to its high cementious properties, and steel slags are mostly dumped due to unfavourable physio-chemical conditions. The increasing dump of steel slag not only occupies a plenty of land but also wastes resources and can potentially have an impact on the environment due to water pollution. Since BF slag contains little Fe and can be used directly. BF slag has found a wide application, such as cement production, road construction, Civil Engineering work, fertilizer production, landfill daily cover, soil reclamation, prior to its application outside the iron and steel making process.

Keywords: steel slag, river sand, granulated slag, environmental

Procedia PDF Downloads 244
360 Hydraulic Conductivity Prediction of Cement Stabilized Pavement Base Incorporating Recycled Plastics and Recycled Aggregates

Authors: Md. Shams Razi Shopnil, Tanvir Imtiaz, Sabrina Mahjabin, Md. Sahadat Hossain

Abstract:

Saturated hydraulic conductivity is one of the most significant attributes of pavement base course. Determination of hydraulic conductivity is a routine procedure for regular aggregate base courses. However, in many cases, a cement-stabilized base course is used with compromised drainage ability. Traditional hydraulic conductivity testing procedure is a readily available option which leads to two consequential drawbacks, i.e., the time required for the specimen to be saturated and extruding the sample after completion of the laboratory test. To overcome these complications, this study aims at formulating an empirical approach to predicting hydraulic conductivity based on Unconfined Compressive Strength test results. To do so, this study comprises two separate experiments (Constant Head Permeability test and Unconfined Compressive Strength test) conducted concurrently on a specimen having the same physical credentials. Data obtained from the two experiments were then used to devise a correlation between hydraulic conductivity and unconfined compressive strength. This correlation in the form of a polynomial equation helps to predict the hydraulic conductivity of cement-treated pavement base course, bypassing the cumbrous process of traditional permeability and less commonly used horizontal permeability tests. The correlation was further corroborated by a different set of data, and it has been found that the derived polynomial equation is deemed to be a viable tool to predict hydraulic conductivity.

Keywords: hydraulic conductivity, unconfined compressive strength, recycled plastics, recycled concrete aggregates

Procedia PDF Downloads 90
359 The Basic Teachings of the Buddha

Authors: Bhaddiya Tanchangya

Abstract:

This article discusses the Four Noble Truths, the foundational teachings of Buddhism, and their significance to Buddhist philosophy. The Four Noble Truths are the Noble Truth of Suffering, the Noble Truth of the Cause of Suffering, the Noble Truth of the End of Suffering, and the Noble Truth of the Path Leading to the End of Suffering. The first truth, the Noble Truth of Suffering, explains that suffering or dukkha is an inherent part of existence, including emotional, physical, and existential forms of suffering, including the Five Aggregates, which refer to the five components that make up a sentient being's experience of existence, as they are all conditioned, interdependent, subject to the Three Characteristics of Existence: impermanence, unsatisfactoriness and emptiness. The second truth, the Noble Truth of the Cause of Suffering, states that craving or attachment to the sensory experiences of the Five Aggregates leads to suffering and identifies three types of craving: craving for sensual pleasures, craving for existence, and craving for non-existence. Through the doctrine of Dependent Origination (Paṭiccasamuppāda), the Buddha graphically shows how the entire process of suffering arises and ceases. The third truth, the Noble Truth of the End of Suffering, asserts that there is a way to end suffering and attain a state of liberation called Nibbāna that marks the end of the cycle of birth and death by removing that very craving towards the sensory experiences by cultivating the Noble Eightfold Path. The fourth truth, the Noble Truth of the Path Leading to the End of Suffering, describes the Noble Eightfold Path, a set of guidelines to develop insight and wisdom to overcome craving and attachment and attain liberation from suffering. The article emphasizes that the Four Noble Truths are universal, applicable to all people regardless of culture, background, or beliefs, and form the foundation of Buddhist philosophy and practice.

Keywords: four noble truths, impermanence, suffering, not-self-ness, interconnectedness, emptiness, morality, concentration, wisdom, nirvana, happiness

Procedia PDF Downloads 88
358 Study of Palung Granite in Central Nepal with Special Reference to Field Occurrence, Petrography and Mineralization

Authors: Narayan Bhattarai, Arjun Bhattarai, Kabi Raj Paudyal, Lalu Paudel

Abstract:

Palung granite is leucocratic, alkali feldspar granite, which is one of the six major granite bodies of the Lesser Himalaya of Nepal. The Cambro-Ordovician granite body has intruded on the Palaeozoic metasedimentary rock of the Kathmandu Complex in Central Nepal. The granite crystallized from magma that was mainly generated by anatexis of the Precambrian continental crust. The magma is heterogeneous with respect to the primary ages and/or metamorphic histories of the magma source rocks. This indicates either a derivation from (meta-) sediments or an intense mixing of different crustally derived magmas. The genesis of the Palung granite is possibly related to an orogeny which affected the Indian shield in lower Paleozoic times. The granite body has been mapped into different zones with visual inspection and petrographical study: i. Quartz rich granite: Quartz is smokey to grayish, euhedral to subherdal, 0.2 to 0.7 cm, and constitutes 30 to 40%. Feldspar is white to brownish, subhedral to euhedral, more than 3 cm, and constitutes 20–30%. Tourmaline is black, 0.1 to 0.2 cm in size, and consists of 10 to 20%. Biotite is black flakes up to o.2 cm, representing 5-8%. ii. Feldspar rich granite: white to grayish, medium to coarse-grained, containing feldspar, quartz, biotite, muscovite and tourmaline. Feldspar porphyritic crystals up to 2.5 cm subherdral represent 50–60%, quartz is smokey transparent and represents 30–40%, biotite is dark brown to black, crystals are irregular, 0.5 cm and represent 8–20%, tourmaline is black fractured, small needles represent 5–10%, and muscovite is white to brown and represents 1-4%. iii. Biotite granite: grey to white, medium to coarse-grained, containing quartz, feldspar, biotite and tourmaline. Feldspar crystals up to 2.5 cm represent 40–50%, quartz is smokey, representing 30–40%, biotite is dark brown to black, crystal size 0.5cm, representing 10–20%, tourmaline is black, small needle, 5–10%, and muscovite is white to brown, representing 3-5%. and iv. Muscovite granite: medium-coarse-grained, brown and gray, containing quartz, feldspar, muscovite and tourmaline. Feldspar is white to brown; crystal sizes 0.2–0.4 cm represents 40–50%; quartz is brown and white, transparent, crystals up to 1 cm represent 35–50%; tourmaline is black, opaque, needle shaped; size up to 7–20%; and muscovite is brownish to white, with flakes up to 0.3 cm representing 5–10%. The xenoliths are very common and are not genetically related. Xenoliths are composed mostly of fine-grained, grayish quartz biotite (muscovite) schist and garnetiferous quartz mica schist.

Keywords: leucocratic granite, cambro-ordovician granite, lesser himalayan granite, pegmatite

Procedia PDF Downloads 71
357 Microstructures and Chemical Compositions of Quarry Dust As Alternative Building Material in Malaysia

Authors: Abdul Murad Zainal Abidin, Tuan Suhaimi Salleh, Siti Nor Azila Khalid, Noryati Mustapa

Abstract:

Quarry dust is a quarry end product from rock crushing processes, which is a concentrated material used as an alternative to fine aggregates for concreting purposes. In quarrying activities, the rocks are crushed into aggregates of varying sizes, from 75mm until less than 4.5 mm, the size of which is categorized as quarry dust. The quarry dust is usually considered as waste and not utilized as a recycled aggregate product. The dumping of the quarry dust at the quarry plant poses the risk of environmental pollution and health hazard. Therefore, the research is an attempt to identify the potential of quarry dust as an alternative building material that would reduce the materials and construction costs, as well as contribute effort in mitigating depletion of natural resources. The objectives are to conduct material characterization and evaluate the properties of fresh and hardened engineering brick with quarry dust mix proportion. The microstructures of quarry dust and the bricks were investigated using scanning electron microscopy (SEM), and the results suggest that the shape and surface texture of quarry dust is a combination of hard and angular formation. The chemical composition of the quarry dust was also evaluated using X-ray fluorescence (XRF) and compared against sand and concrete. The quarry dust was found to have a higher presence of alumina (Al₂O₃), indicating the possibility of an early strength effect for brick. They are utilizing quarry dust waste as replacement material has the potential of conserving non-renewable resources as well as providing a viable alternative to disposal of current quarry waste.

Keywords: building materials, cement replacement, quarry microstructure, quarry product, sustainable materials

Procedia PDF Downloads 182
356 Evaluation of Fracture Resistance and Moisture Damage of Hot Mix Asphalt Using Plastic Coated Aggregates

Authors: Malleshappa Japagal, Srinivas Chitragar

Abstract:

The use of waste plastic in pavement is becoming important alternative worldwide for disposal of plastic as well as to improve the stability of pavement and to meet out environmental issues. However, there are still concerns on fatigue and fracture resistance of Hot Mix Asphalt with the addition of plastic waste, (HMA-Plastic mixes) and moisture damage potential. The present study was undertaken to evaluate fracture resistance of HMA-Plastic mixes using semi-circular bending (SCB) test and moisture damage potential by Indirect Tensile strength (ITS) test using retained tensile strength (TSR). In this study, a dense graded asphalt mix with 19 mm nominal maximum aggregate size was designed in the laboratory using Marshall Mix design method. Aggregates were coated with different percentages of waste plastic (0%, 2%, 3% and 4%) by weight of aggregate and performance evaluation of fracture resistance and Moisture damage was carried out. The following parameters were estimated for the mixes: J-Integral or Jc, strain energy at failure, peak load at failure, and deformation at failure. It was found that the strain energy and peak load of all the mixes decrease with an increase in notch depth, indicating that increased percentage of plastic waste gave better fracture resistance. The moisture damage potential was evaluated by Tensile strength ratio (TSR). The experimental results shown increased TRS value up to 3% addition of waste plastic in HMA mix which gives better performance hence the use of waste plastic in road construction is favorable.

Keywords: hot mix asphalt, semi circular bending, marshall mix design, tensile strength ratio

Procedia PDF Downloads 306
355 Study of Phase Separation Behavior in Flexible Polyurethane Foam

Authors: El Hatka Hicham, Hafidi Youssef, Saghiri Khalid, Ittobane Najim

Abstract:

Flexible polyurethane foam (FPUF) is a low-density cellular material generally used as a cushioning material in many applications such as furniture, bedding, packaging, etc. It is commercially produced during a continuous process, where a reactive mixture of foam chemicals is poured onto a moving conveyor. FPUFs are produced by the catalytic balancing of two reactions involved, the blowing reaction (isocyanate-water) and the gelation reaction (isocyanate-polyol). The microstructure of FPUF is generally composed of soft phases (polyol phases) and rigid domains that separate into two domains of different sizes: the rigid polyurea microdomains and the macrodomains (larger aggregates). The morphological features of FPUF are strongly influenced by the phase separation morphology that plays a key role in determining the global FPUF properties. This phase-separated morphology results from a thermodynamic incompatibility between soft segments derived from aliphatic polyether and hard segments derived from the commonly used aromatic isocyanate. In order to improve the properties of FPUF against the different stresses faced by this material during its use, we report in this work a study of the phase separation phenomenon in FPUF that has been examined using SAXS WAXS and FTIR. Indeed, we have studied with these techniques the effect of water, isocyanates, and alkaline chlorides on the phase separation behavior. SAXS was used to study the morphology of the microphase separated, WAXS to examine the nature of the hard segment packing, and FTIR to investigate the hydrogen bonding characteristics of the materials studied. The prepared foams were shown to have different levels of urea phase connectivity; the increase in water content in the FPUF formulation leads to an increase in the amount of urea formed and consequently the increase of the size of urea aggregates formed. Alkali chlorides (NaCl, KCl, and LiCl) incorporated into FPUF formulations show that is the ability to prevent hydrogen bond formation and subsequently alter the rigid domains. FPUFs prepared by different isocyanate structures showed that urea aggregates are difficult to be formed in foams prepared by asymmetric diisocyanate, while are more easily formed in foams prepared by symmetric and aliphatic diisocyanate.

Keywords: flexible polyurethane foam, hard segments, phase separation, soft segments

Procedia PDF Downloads 162
354 Experimental Correlation for Erythrocyte Aggregation Rate in Population Balance Modeling

Authors: Erfan Niazi, Marianne Fenech

Abstract:

Red Blood Cells (RBCs) or erythrocytes tend to form chain-like aggregates under low shear rate called rouleaux. This is a reversible process and rouleaux disaggregate in high shear rates. Therefore, RBCs aggregation occurs in the microcirculation where low shear rates are present but does not occur under normal physiological conditions in large arteries. Numerical modeling of RBCs interactions is fundamental in analytical models of a blood flow in microcirculation. Population Balance Modeling (PBM) is particularly useful for studying problems where particles agglomerate and break in a two phase flow systems to find flow characteristics. In this method, the elementary particles lose their individual identity due to continuous destructions and recreations by break-up and agglomeration. The aim of this study is to find RBCs aggregation in a dynamic situation. Simplified PBM was used previously to find the aggregation rate on a static observation of the RBCs aggregation in a drop of blood under the microscope. To find aggregation rate in a dynamic situation we propose an experimental set up testing RBCs sedimentation. In this test, RBCs interact and aggregate to form rouleaux. In this configuration, disaggregation can be neglected due to low shear stress. A high-speed camera is used to acquire video-microscopic pictures of the process. The sizes of the aggregates and velocity of sedimentation are extracted using an image processing techniques. Based on the data collection from 5 healthy human blood samples, the aggregation rate was estimated as 2.7x103(±0.3 x103) 1/s.

Keywords: red blood cell, rouleaux, microfluidics, image processing, population balance modeling

Procedia PDF Downloads 355
353 Radar on Bike: Coarse Classification based on Multi-Level Clustering for Cyclist Safety Enhancement

Authors: Asma Omri, Noureddine Benothman, Sofiane Sayahi, Fethi Tlili, Hichem Besbes

Abstract:

Cycling, a popular mode of transportation, can also be perilous due to cyclists' vulnerability to collisions with vehicles and obstacles. This paper presents an innovative cyclist safety system based on radar technology designed to offer real-time collision risk warnings to cyclists. The system incorporates a low-power radar sensor affixed to the bicycle and connected to a microcontroller. It leverages radar point cloud detections, a clustering algorithm, and a supervised classifier. These algorithms are optimized for efficiency to run on the TI’s AWR 1843 BOOST radar, utilizing a coarse classification approach distinguishing between cars, trucks, two-wheeled vehicles, and other objects. To enhance the performance of clustering techniques, we propose a 2-Level clustering approach. This approach builds on the state-of-the-art Density-based spatial clustering of applications with noise (DBSCAN). The objective is to first cluster objects based on their velocity, then refine the analysis by clustering based on position. The initial level identifies groups of objects with similar velocities and movement patterns. The subsequent level refines the analysis by considering the spatial distribution of these objects. The clusters obtained from the first level serve as input for the second level of clustering. Our proposed technique surpasses the classical DBSCAN algorithm in terms of geometrical metrics, including homogeneity, completeness, and V-score. Relevant cluster features are extracted and utilized to classify objects using an SVM classifier. Potential obstacles are identified based on their velocity and proximity to the cyclist. To optimize the system, we used the View of Delft dataset for hyperparameter selection and SVM classifier training. The system's performance was assessed using our collected dataset of radar point clouds synchronized with a camera on an Nvidia Jetson Nano board. The radar-based cyclist safety system is a practical solution that can be easily installed on any bicycle and connected to smartphones or other devices, offering real-time feedback and navigation assistance to cyclists. We conducted experiments to validate the system's feasibility, achieving an impressive 85% accuracy in the classification task. This system has the potential to significantly reduce the number of accidents involving cyclists and enhance their safety on the road.

Keywords: 2-level clustering, coarse classification, cyclist safety, warning system based on radar technology

Procedia PDF Downloads 79
352 Dimensionality Reduction in Modal Analysis for Structural Health Monitoring

Authors: Elia Favarelli, Enrico Testi, Andrea Giorgetti

Abstract:

Autonomous structural health monitoring (SHM) of many structures and bridges became a topic of paramount importance for maintenance purposes and safety reasons. This paper proposes a set of machine learning (ML) tools to perform automatic feature selection and detection of anomalies in a bridge from vibrational data and compare different feature extraction schemes to increase the accuracy and reduce the amount of data collected. As a case study, the Z-24 bridge is considered because of the extensive database of accelerometric data in both standard and damaged conditions. The proposed framework starts from the first four fundamental frequencies extracted through operational modal analysis (OMA) and clustering, followed by density-based time-domain filtering (tracking). The fundamental frequencies extracted are then fed to a dimensionality reduction block implemented through two different approaches: feature selection (intelligent multiplexer) that tries to estimate the most reliable frequencies based on the evaluation of some statistical features (i.e., mean value, variance, kurtosis), and feature extraction (auto-associative neural network (ANN)) that combine the fundamental frequencies to extract new damage sensitive features in a low dimensional feature space. Finally, one class classifier (OCC) algorithms perform anomaly detection, trained with standard condition points, and tested with normal and anomaly ones. In particular, a new anomaly detector strategy is proposed, namely one class classifier neural network two (OCCNN2), which exploit the classification capability of standard classifiers in an anomaly detection problem, finding the standard class (the boundary of the features space in normal operating conditions) through a two-step approach: coarse and fine boundary estimation. The coarse estimation uses classics OCC techniques, while the fine estimation is performed through a feedforward neural network (NN) trained that exploits the boundaries estimated in the coarse step. The detection algorithms vare then compared with known methods based on principal component analysis (PCA), kernel principal component analysis (KPCA), and auto-associative neural network (ANN). In many cases, the proposed solution increases the performance with respect to the standard OCC algorithms in terms of F1 score and accuracy. In particular, by evaluating the correct features, the anomaly can be detected with accuracy and an F1 score greater than 96% with the proposed method.

Keywords: anomaly detection, frequencies selection, modal analysis, neural network, sensor network, structural health monitoring, vibration measurement

Procedia PDF Downloads 123
351 Shielding Engineered Islets with Mesenchymal Stem Cells Enhance Survival under Hypoxia by Inhibiting p38 MAPK

Authors: Bhawna Chandravanshi, Ramesh Bhonde

Abstract:

In the present study, we focused on the improvisation of islet survival in hypoxia. The Islet-like cell aggregates (ICAs) derived from Wharton's jelly mesenchymal stem cells (WJ-MSC) were cultured with and without WJ-MSC for 48h in hypoxia and normoxia and tested for their direct trophic effect on β cell survival. The WJ MSCs themselves secreted insulin upon glucose challenge and expressed the pancreatic markers at both transcription and translational level (C-peptide, Insulin, Glucagon and Glut 2). Direct contact of MSCs with ICAs facilitate the highest viability under hypoxia as evidenced by fluorescein diacetate/propidium iodide and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The cytokine analysis of the co-cultured ICAs revealed amplification of anti-inflammatory cytokine-like TGFβ and TNFα accompanied by depletion of pro-inflammatory cytokines. The increment in VEGF and PDGFa was also seen showing their ability to vascularize upon transplantation. This was further accompanied by reduction in total reactive oxygen species, nitric oxide, and super oxide ions and down-regulation of Caspase3, Caspase8, p53 and up regulation of Bcl2 confirming prevention of apoptosis in ICAs. There was a significant reduction in the expression of p38 protein in the presence of MSCs making the ICAs responsive to glucose. Taken together our data demonstrate for the first time that the WJ-MSC expressed pancreatic markers and their supplementation protected engineered islets against hypoxia, oxidative stress, and inflammatory cytokines by inhibiting p38 MAPK protein.

Keywords: hypoxia, islet-like cell aggregates, inflammatory cytokines, oxidative stress

Procedia PDF Downloads 261
350 Use of Waste Glass as Coarse Aggregate in Concrete: A Possibility towards Sustainable Building Construction

Authors: T. S. Serniabat, M. N. N. Khan, M. F. M. Zain

Abstract:

As climate change and environmental pressures are now well established as major international issues, to which governments, businesses and consumers have to respond through more environmentally friendly and aware practices, products and policies; the need to develop alternative sustainable construction materials, reduce greenhouse gas emissions, save energy, look to renewable energy sources and recycled materials, and reduce waste are just some of the pressures impacting significantly on the construction industry. The utilization of waste materials (slag, fly ash, glass beads, plastic and so on) in concrete manufacturing is significant due to engineering, financial, environmental and ecological importance. Thus, utilization of waste materials in concrete production is very much helpful to reach the goal of the sustainable construction. Therefore, this study intends to use glass beads in concrete production. The paper reports on the performance of 9 different concrete mixes containing different ratios of glass crushed to 5 mm - 20 mm maximum size and glass marble of 20 mm size as coarse aggregate .Ordinary Portland cement type 1 and fine sand less than 0.5 mm were used to produce standard concrete cylinders. Compressive strength tests were carried out on concrete specimens at various ages. Test results indicated that the mix having the balanced ratio of glass beads and round marbles possess maximum compressive strength which is 3888.68 psi, as glass beads perform better in bond formation but have lower strength, on the other hand marbles are strong in themselves but not good in bonding. These mixes were prepared following a specific W/C and aggregate ratio; more strength can be expected to achieve from different W/C, aggregate ratios, adding admixtures like strength increasing agents, ASR inhibitor agents etc.

Keywords: waste glass, recycling, environmentally friendly, glass aggregate, strength development

Procedia PDF Downloads 386
349 Knowledge of Nature through the Ultimate Methodology of Buddhism and Philosophy of Karmic Consequence to Uproot through the Buddha’s Perspective

Authors: Pushpa Debnath

Abstract:

Buddhism implies the ultimate methodology to obtain the acknowledgment to get out from cycling existence applied by the sutras. The Buddha’s natural methodology is the highest way of cessation from suffering existence. To be out of it, one must know the suffering before having tentativeness. According to the Buddha’s methodology, one can observe every being suffer from chronologically grasping craving. It is because lack of knowledge that the Buddha finds the four noble truths which are the basic states. These are suffering, the origin of suffering, cessation of suffering, and the path leading to the cessation of suffering. The Buddha describes that birth is suffering, aging is suffering, sickness is suffering, death is suffering, association with the unexpected is suffering, separation from the pleasant is suffering, and not receiving what one desires is suffering, In brief, the five aggregates of clinging are suffering. As the five aggregates are form, feeling, perception, mental formation, and consciousness. These are known as the matter that we identify with “You, Me” or “He.” The second truth cause of suffering is craving which has three types: craving for sense pleasures, craving for existence, and craving for non-existence. The third truth is the obliteration of craving, suffering can be eliminated to attain the Nibbana. The fourth truth is the path of liberation is the noble eight-fold path consisting of the right view, right intention, right speech, right action, right livelihood, right effort, right mindfulness, and right concentration. The six senses are the media of the eye, ear, nose, tongue, body, and mind sense faculties relating with the five aggregates and the six senses objects visual objects, sounds, smells, tastes, touch, and mind-objects that are contained by every visible being. The first five internal sense bases are material while the mind is a non-material phenomenon. Contact with the external world maintains by receiving through the six senses; visual objects through the eye, sounds through the ear, smells through the nose, tastes through the tongue, touch through the body, and mind-objects through sense faculties. These are the six senses a living being experiences by craving. Everything is conglomerated with all senses faculties through the natural phenomenon which are earth, water, fire, and air element. In this analysis, it is believed that beings are well adapted to the natural phenomenon. Everybody has fear of life because we have hatred, delusion, and anger which are the primary resources of falling into (Samsara) continuously that is the continuity of the natural way. These are the reasons for the suffering that chronically self-diluting through the threefold way. These are the roots of the entire beings suffering so the Buddha finds the enlightenment to uproot from cycling existence and the understanding of the natural consequence. When one could uproot ignorance, one could able to realize the ultimate happiness of Nirvana. From the craving of ignorance, everything starts to be present to the future which gives us mental agonies in existence.

Keywords: purification, morality, natural phenomenon, analysis, development of mind, observatory, Nirvana

Procedia PDF Downloads 82