Search results for: Tabu search
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1886

Search results for: Tabu search

1706 Search for New Design Elements in Time-Honoured Shops in Tainan — On Curriculum Practice about Culture Creative Industry

Authors: Ya-Ling Huang, Ming-Chun Tsai, Fan Hsu, Kai-Ru Hsieh

Abstract:

This paper mainly discusses the research and practice process of a laboratory curriculum by leading students to perform field investigation into time-honoured shops that have existed for more than 50 years in the downtown area of Tainan, Taiwan, and then search again for design elements and completing the design. The participants are juniors from the Department of Visual Communication Design, Kun Shan University. The duration of research and practice is two months. Operators of these shops are invited to jointly appraise the final achievements. 9 works out of 27 are chosen for final exhibition and commercialization.

Keywords: culture creative industry, visual communication design, curriculum experimental, visual arts

Procedia PDF Downloads 355
1705 An Analysis System for Integrating High-Throughput Transcript Abundance Data with Metabolic Pathways in Green Algae

Authors: Han-Qin Zheng, Yi-Fan Chiang-Hsieh, Chia-Hung Chien, Wen-Chi Chang

Abstract:

As the most important non-vascular plants, algae have many research applications, including high species diversity, biofuel sources, adsorption of heavy metals and, following processing, health supplements. With the increasing availability of next-generation sequencing (NGS) data for algae genomes and transcriptomes, an integrated resource for retrieving gene expression data and metabolic pathway is essential for functional analysis and systems biology in algae. However, gene expression profiles and biological pathways are displayed separately in current resources, and making it impossible to search current databases directly to identify the cellular response mechanisms. Therefore, this work develops a novel AlgaePath database to retrieve gene expression profiles efficiently under various conditions in numerous metabolic pathways. AlgaePath, a web-based database, integrates gene information, biological pathways, and next-generation sequencing (NGS) datasets in Chlamydomonasreinhardtii and Neodesmus sp. UTEX 2219-4. Users can identify gene expression profiles and pathway information by using five query pages (i.e. Gene Search, Pathway Search, Differentially Expressed Genes (DEGs) Search, Gene Group Analysis, and Co-Expression Analysis). The gene expression data of 45 and 4 samples can be obtained directly on pathway maps in C. reinhardtii and Neodesmus sp. UTEX 2219-4, respectively. Genes that are differentially expressed between two conditions can be identified in Folds Search. Furthermore, the Gene Group Analysis of AlgaePath includes pathway enrichment analysis, and can easily compare the gene expression profiles of functionally related genes in a map. Finally, Co-Expression Analysis provides co-expressed transcripts of a target gene. The analysis results provide a valuable reference for designing further experiments and elucidating critical mechanisms from high-throughput data. More than an effective interface to clarify the transcript response mechanisms in different metabolic pathways under various conditions, AlgaePath is also a data mining system to identify critical mechanisms based on high-throughput sequencing.

Keywords: next-generation sequencing (NGS), algae, transcriptome, metabolic pathway, co-expression

Procedia PDF Downloads 407
1704 Literature Review on the Antibacterial Effects of Salvia officinalis L.

Authors: Benguerine Zohra, Merzak Siham, Pr. Chelghoum

Abstract:

Introduction: The widespread production and consumption of antibiotics have raised significant concerns due to various adverse effects and the development of bacterial resistance. This increasing resistance to currently available antibiotics necessitates the search for new antibacterial agents. One alternative strategy to combat antibiotic-resistant bacteria is the use of natural antimicrobial substances such as plant extracts. This study aims to provide an overview of the antibacterial effects of Salvia officinalis (sage), a plant native to the Middle East and Mediterranean regions. Materials and Methods: This review was conducted by searching studies in databases such as PubMed, Scopus, JSTOR, and SpringerLink. The search terms were “Salvia officinalis L.” and “antibacterial effects.” Only studies that met our inclusion criteria (in English, focusing on the antibacterial effects of Salvia officinalis L., and primarily dated from 2012 to 2023) were considered for further review. Results and Discussion: The initial search strategy identified approximately 78 references, of which only 13 articles were included in this review. The synthesis of these articles revealed that multiple data sources confirm the antimicrobial effects of S. officinalis. Its essential oil and alcoholic extract exhibit strong bactericidal and bacteriostatic effects against both Gram-positive and Gram-negative bacteria. Conclusion: The significant value of the extract, oil, and leaves of S. officinalis demands further studies on other useful and unknown properties of this multipurpose plant.

Keywords: salvia officinalis, literature review, antibacterial., botany

Procedia PDF Downloads 30
1703 Improving Search Engine Performance by Removing Indexes to Malicious URLs

Authors: Durga Toshniwal, Lokesh Agrawal

Abstract:

As the web continues to play an increasing role in information exchange, and conducting daily activities, computer users have become the target of miscreants which infects hosts with malware or adware for financial gains. Unfortunately, even a single visit to compromised web site enables the attacker to detect vulnerabilities in the user’s applications and force the downloading of multitude of malware binaries. We provide an approach to effectively scan the so-called drive-by downloads on the Internet. Drive-by downloads are result of URLs that attempt to exploit their visitors and cause malware to be installed and run automatically. To scan the web for malicious pages, the first step is to use a crawler to collect URLs that live on the Internet, and then to apply fast prefiltering techniques to reduce the amount of pages that are needed to be examined by precise, but slower, analysis tools (such as honey clients or antivirus programs). Although the technique is effective, it requires a substantial amount of resources. A main reason is that the crawler encounters many pages on the web that are legitimate and needs to be filtered. In this paper, to characterize the nature of this rising threat, we present implementation of a web crawler on Python, an approach to search the web more efficiently for pages that are likely to be malicious, filtering benign pages and passing remaining pages to antivirus program for detection of malwares. Our approaches starts from an initial seed of known, malicious web pages. Using these seeds, our system generates search engines queries to identify other malicious pages that are similar to the ones in the initial seed. By doing so, it leverages the crawling infrastructure of search engines to retrieve URLs that are much more likely to be malicious than a random page on the web. The results shows that this guided approach is able to identify malicious web pages more efficiently when compared to random crawling-based approaches.

Keywords: web crawler, malwares, seeds, drive-by-downloads, security

Procedia PDF Downloads 229
1702 Comparative Performance of Artificial Bee Colony Based Algorithms for Wind-Thermal Unit Commitment

Authors: P. K. Singhal, R. Naresh, V. Sharma

Abstract:

This paper presents the three optimization models, namely New Binary Artificial Bee Colony (NBABC) algorithm, NBABC with Local Search (NBABC-LS), and NBABC with Genetic Crossover (NBABC-GC) for solving the Wind-Thermal Unit Commitment (WTUC) problem. The uncertain nature of the wind power is incorporated using the Weibull probability density function, which is used to calculate the overestimation and underestimation costs associated with the wind power fluctuation. The NBABC algorithm utilizes a mechanism based on the dissimilarity measure between binary strings for generating the binary solutions in WTUC problem. In NBABC algorithm, an intelligent scout bee phase is proposed that replaces the abandoned solution with the global best solution. The local search operator exploits the neighboring region of the current solutions, whereas the integration of genetic crossover with the NBABC algorithm increases the diversity in the search space and thus avoids the problem of local trappings encountered with the NBABC algorithm. These models are then used to decide the units on/off status, whereas the lambda iteration method is used to dispatch the hourly load demand among the committed units. The effectiveness of the proposed models is validated on an IEEE 10-unit thermal system combined with a wind farm over the planning period of 24 hours.

Keywords: artificial bee colony algorithm, economic dispatch, unit commitment, wind power

Procedia PDF Downloads 375
1701 A Hybrid Algorithm Based on Greedy Randomized Adaptive Search Procedure and Chemical Reaction Optimization for the Vehicle Routing Problem with Hard Time Windows

Authors: Imen Boudali, Marwa Ragmoun

Abstract:

The Vehicle Routing Problem with Hard Time Windows (VRPHTW) is a basic distribution management problem that models many real-world problems. The objective of the problem is to deliver a set of customers with known demands on minimum-cost vehicle routes while satisfying vehicle capacity and hard time windows for customers. In this paper, we propose to deal with our optimization problem by using a new hybrid stochastic algorithm based on two metaheuristics: Chemical Reaction Optimization (CRO) and Greedy Randomized Adaptive Search Procedure (GRASP). The first method is inspired by the natural process of chemical reactions enabling the transformation of unstable substances with excessive energy to stable ones. During this process, the molecules interact with each other through a series of elementary reactions to reach minimum energy for their existence. This property is embedded in CRO to solve the VRPHTW. In order to enhance the population diversity throughout the search process, we integrated the GRASP in our method. Simulation results on the base of Solomon’s benchmark instances show the very satisfactory performances of the proposed approach.

Keywords: Benchmark Problems, Combinatorial Optimization, Vehicle Routing Problem with Hard Time Windows, Meta-heuristics, Hybridization, GRASP, CRO

Procedia PDF Downloads 411
1700 Unstructured-Data Content Search Based on Optimized EEG Signal Processing and Multi-Objective Feature Extraction

Authors: Qais M. Yousef, Yasmeen A. Alshaer

Abstract:

Over the last few years, the amount of data available on the globe has been increased rapidly. This came up with the emergence of recent concepts, such as the big data and the Internet of Things, which have furnished a suitable solution for the availability of data all over the world. However, managing this massive amount of data remains a challenge due to their large verity of types and distribution. Therefore, locating the required file particularly from the first trial turned to be a not easy task, due to the large similarities of names for different files distributed on the web. Consequently, the accuracy and speed of search have been negatively affected. This work presents a method using Electroencephalography signals to locate the files based on their contents. Giving the concept of natural mind waves processing, this work analyses the mind wave signals of different people, analyzing them and extracting their most appropriate features using multi-objective metaheuristic algorithm, and then classifying them using artificial neural network to distinguish among files with similar names. The aim of this work is to provide the ability to find the files based on their contents using human thoughts only. Implementing this approach and testing it on real people proved its ability to find the desired files accurately within noticeably shorter time and retrieve them as a first choice for the user.

Keywords: artificial intelligence, data contents search, human active memory, mind wave, multi-objective optimization

Procedia PDF Downloads 175
1699 Diversifying Income Streams in Portuguese Higher Education – a Multiple Case Study

Authors: Ana Nascimento

Abstract:

For several reasons and in different countries worldwide, there is an increasing difficulty of the States to finance higher education. However, most societies consider education as a public good, so it should be a State obligation to provide this service to citizens. In Portugal, over the last decades, state has diminished its contribution to public higher education and the public higher education institutions started to look for alternative incoming sources, namely charging student’s taxes and fees, provision of services to companies, production of applied research, search for sponsors, configuring new forms of fundraising. This financial policy can raise some concerns to the scientific and pedagogical autonomy of these institutions as well as concerns in access and equity in higher education. For these reasons and in the scope of a PhD research in the area of Economy of Education, a survey is taking place in all public higher education institutions in the Great Lisbon area that intends to analyze and discuss the policy measures in each institution in the search for external financing. The research aims to understand what these measures are and what implications they might have in the institution’s autonomy as well as in higher education access by students from less favored backgrounds. The research uses a qualitative approach, namely through semi-structured interviews to presidents, directors and rectors of each institution, totalizing 50 interviews. In this paper are discussed some of the results from the interviews made so far that present the subjects opinion about higher education finance, the right to education, the search for fundraising and the possible consequences to the institution’s autonomy as well as some literature on the state of the art.

Keywords: autonomy, finance, higher education, public goods

Procedia PDF Downloads 665
1698 Optimization of FGM Sandwich Beams Using Imperialist Competitive Algorithm

Authors: Saeed Kamarian, Mahmoud Shakeri

Abstract:

Sandwich structures are used in a variety of engineering applications including aircraft, construction and transportation where strong, stiff and light structures are required. In this paper, frequency maximization of Functionally Graded Sandwich (FGS) beams resting on Pasternak foundations is investigated. A generalized power-law distribution with four parameters is considered for material distribution through the thicknesses of face layers. Since the search space is large, the optimization processes becomes so complicated and too much time consuming. Thus a novel meta–heuristic called Imperialist Competitive Algorithm (ICA) which is a socio-politically motivated global search strategy is implemented to improve the speed of optimization process. Results show the success of applying ICA for engineering problems especially for design optimization of FGM sandwich beams.

Keywords: sandwich beam, functionally graded materials, optimization, imperialist competitive algorithm

Procedia PDF Downloads 569
1697 BeamGA Median: A Hybrid Heuristic Search Approach

Authors: Ghada Badr, Manar Hosny, Nuha Bintayyash, Eman Albilali, Souad Larabi Marie-Sainte

Abstract:

The median problem is significantly applied to derive the most reasonable rearrangement phylogenetic tree for many species. More specifically, the problem is concerned with finding a permutation that minimizes the sum of distances between itself and a set of three signed permutations. Genomes with equal number of genes but different order can be represented as permutations. In this paper, an algorithm, namely BeamGA median, is proposed that combines a heuristic search approach (local beam) as an initialization step to generate a number of solutions, and then a Genetic Algorithm (GA) is applied in order to refine the solutions, aiming to achieve a better median with the smallest possible reversal distance from the three original permutations. In this approach, any genome rearrangement distance can be applied. In this paper, we use the reversal distance. To the best of our knowledge, the proposed approach was not applied before for solving the median problem. Our approach considers true biological evolution scenario by applying the concept of common intervals during the GA optimization process. This allows us to imitate a true biological behavior and enhance genetic approach time convergence. We were able to handle permutations with a large number of genes, within an acceptable time performance and with same or better accuracy as compared to existing algorithms.

Keywords: median problem, phylogenetic tree, permutation, genetic algorithm, beam search, genome rearrangement distance

Procedia PDF Downloads 265
1696 Literature Review of the Antibacterial Effects of Salvia Officinalis L.

Authors: Benguerine Zohra, Merzak Siham, Bouziane Cheimaa, Si Tayeb Fatima, Jou Siham, Belkessam

Abstract:

Introduction: Antibiotics, widely produced and consumed in large quantities, have proven problematic due to various types of side effects. The development of bacterial resistance to currently available antibiotics has made the search for new antibacterial agents necessary. One alternative strategy to combat antibiotic-resistant bacteria is the use of natural antimicrobial substances such as plant extracts. The objective of this study is to provide an overview of the antibacterial effects of a plant native to the Middle East and Mediterranean regions, Salvia officinalis (sage). Materials and Methods: This review article was conducted by searching studies in the PubMed, Scopus, JSTOR, and SpringerLink databases. The search terms were "Salvia officinalis L." and "antibacterial effects." Only studies that met our inclusion criteria (in English, antibacterial effects of Salvia officinalis L., and primarily dating from 2012 to 2023) were accepted for further review. Results and Discussion: The initial search strategy identified approximately 78 references, with only 13 articles included in this review. The synthesis of the articles revealed that several data sources confirm the antimicrobial effects of S. officinalis. Its essential oil and alcoholic extract exhibit strong bactericidal and bacteriostatic effects against both Gram-positive and Gram-negative bacteria. Conclusion: The significant value of the extract, oil, and leaves of S. officinalis calls for further studies on the other useful and unknown properties of this multi-purpose plant.

Keywords: salvia officinalis, literature review, antibacterial, effects

Procedia PDF Downloads 38
1695 Optimum Design of Steel Space Frames by Hybrid Teaching-Learning Based Optimization and Harmony Search Algorithms

Authors: Alper Akin, Ibrahim Aydogdu

Abstract:

This study presents a hybrid metaheuristic algorithm to obtain optimum designs for steel space buildings. The optimum design problem of three-dimensional steel frames is mathematically formulated according to provisions of LRFD-AISC (Load and Resistance factor design of American Institute of Steel Construction). Design constraints such as the strength requirements of structural members, the displacement limitations, the inter-story drift and the other structural constraints are derived from LRFD-AISC specification. In this study, a hybrid algorithm by using teaching-learning based optimization (TLBO) and harmony search (HS) algorithms is employed to solve the stated optimum design problem. These algorithms are two of the recent additions to metaheuristic techniques of numerical optimization and have been an efficient tool for solving discrete programming problems. Using these two algorithms in collaboration creates a more powerful tool and mitigates each other’s weaknesses. To demonstrate the powerful performance of presented hybrid algorithm, the optimum design of a large scale steel building is presented and the results are compared to the previously obtained results available in the literature.

Keywords: optimum structural design, hybrid techniques, teaching-learning based optimization, harmony search algorithm, minimum weight, steel space frame

Procedia PDF Downloads 545
1694 The Sublimation Of Personal Drama Into Mythological Tale: ‘‘The Search Of Golden Fleece’’ By Alexander Mcqueen, Givenchy

Authors: Ani Hambardzumyan

Abstract:

The influence of Greek culture and Greek mythology on the fashion industry is enormous. The first reason behind this is that Greek culture is one of the core elements to form the clothing tradition in Europe. French fashion houses have always been considered one of the leading cloth representatives in the world. As we could perceive in the first chapter, they are among the first ones to get inspired from Greek cultural heritage and apply it while creating their garments. The French fashion industry has kept traditional classical elements in clothes for decades. However, from the second half of the 20th century, this idea started to alter step by step. Society was transforming its vision with the influence of avant-garde movements. Hence, the fashion industry needed to transform its conception as well. However, it should be mentioned that fashion brands never stopped looking at the past when creating a new perspective or vision. Paradoxically, Greek mythology and clothing tradition continued to be applied even in the search of new ideas or new interpretations. In 1997 Alexander McQueen presents his first Haute Couture collection for French fashion house Givenchy, inspired by Greek mythology and titled ‘‘Search for The Golden Fleece.’’ Perhaps, this was one of the most controversial Haute Couture shows that French audience could expect to see and French media could capture and write about. The paper discuss Spring/Summer 1997 collection ‘‘The Search of Golden Fleece’’ by Alexander McQueen. It should be mentioned that there has not been yet conducted researches to analyze the mythological and archetypal nature of the collection, as well as general observations that go beyond traditional historical reviews are few in number. Here we will observe designer’s transformative new approach regarding Greek heritage and the media’s perception of it while collection was presented. On top of that, we will observe Alexander McQueen life in the parallel line with the fashion show since the collection is nothing else but the sublimation of his personal journey and drama.

Keywords: mythology, mcqueen, the argonaut, french fashion, golden fleece, givenchy

Procedia PDF Downloads 116
1693 A Review of Type 2 Diabetes and Diabetes-Related Cardiovascular Disease in Zambia

Authors: Mwenya Mubanga, Sula Mazimba

Abstract:

Background: In Zambia, much of the focus on nutrition and health has been on reducing micronutrient deficiencies, wasting and underweight malnutrition and not on the rising global projections of trends in obesity and type 2 diabetes. The aim of this review was to identify and collate studies on the prevalence of obesity, diabetes and diabetes-related cardiovascular disease conducted in Zambia, to summarize their findings and to identify areas that need further research. Methods: The Medical Literature Analysis and Retrieval System (MEDLINE) database was searched for peer-reviewed articles on the prevalence of, and factors associated with obesity, type 2 diabetes, and diabetes-related cardiovascular disease amongst Zambian residents using a combination of search terms. The period of search was from 1 January 2000 to 31 December 2016. We expanded the search terms to include all possible synonyms and spellings obtained in the search strategy. Additionally, we performed a manual search for other articles and references of peer-reviewed articles. Results: In Zambia, the current prevalence of Obesity and Type 2 diabetes is estimated at 13%-16% and 2.0 – 3.0% respectively. Risk factors such as the adoption of western dietary habits, the social stigmatization associated with rapid weight loss due to Tuberculosis and/ or the human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS) and rapid urbanization have all been blamed for fueling the increased risk of obesity and type 2 diabetes. However, unlike traditional Western populations, those with no formal education were less likely to be obese than those who attained secondary or tertiary level education. Approximately 30% of those surveyed were unaware of their diabetes diagnosis and more than 60% were not on treatment despite a known diabetic status. Socio-demographic factors such as older age, female sex, urban dwelling, lack of tobacco use and marital status were associated with an increased risk of obesity, impaired glucose tolerance and type 2 diabetes. We were unable to identify studies that specifically looked at diabetes-related cardiovascular disease. Conclusion: Although the prevalence of Obesity and Type 2 diabetes in Zambia appears low, more representative studies focusing on parts of the country outside of the main industrial zone need to be conducted. There also needs to be research on diabetes-related cardiovascular disease. National surveillance, monitoring and evaluation on all non-communicable diseases need to be prioritized and policies that address underweight, obesity and type 2 diabetes developed.

Keywords: type 2 diabetes, Zambia, obesity, cardiovascular disease

Procedia PDF Downloads 252
1692 Lecture Video Indexing and Retrieval Using Topic Keywords

Authors: B. J. Sandesh, Saurabha Jirgi, S. Vidya, Prakash Eljer, Gowri Srinivasa

Abstract:

In this paper, we propose a framework to help users to search and retrieve the portions in the lecture video of their interest. This is achieved by temporally segmenting and indexing the lecture video using the topic keywords. We use transcribed text from the video and documents relevant to the video topic extracted from the web for this purpose. The keywords for indexing are found by applying the non-negative matrix factorization (NMF) topic modeling techniques on the web documents. Our proposed technique first creates indices on the transcribed documents using the topic keywords, and these are mapped to the video to find the start and end time of the portions of the video for a particular topic. This time information is stored in the index table along with the topic keyword which is used to retrieve the specific portions of the video for the query provided by the users.

Keywords: video indexing and retrieval, lecture videos, content based video search, multimodal indexing

Procedia PDF Downloads 250
1691 TikTok as a Search Engine for Selecting Traveling Destinations and Its Relation to Nation’s Destinations Branding: Comparative Study Between Gen-Y and Gen-Z in the Egyptian Community

Authors: Ghadeer Aly, Yasmeen Hanafy

Abstract:

The way we research travel options and decide where to go has substantially changed in the digital age. Atypical search engines like social networking sites like TikTok have evolved, influencing the preferences of various generations. The influence of TikTok use as a search engine for choosing travel locations and its effect on a country's destination branding are both examined in this study. The study specifically focuses on the comparative preferences and actions of Generations Y and Z within the Egyptian community, shedding light on how these generations interact with travel related TikTok content and how it influences their perceptions of various destinations. It also investigates how TikTok Accounts use tourism branding techniques to promote a country's tourist destination. The investigation of how social media platforms are changing as unconventional search engines has theoretical relevance. This study can advance our knowledge of how digital platforms alter information-seeking behaviors and affect the way people make decisions. Furthermore, investigating the relationship between TikTok video and destination branding might shed light on the intricate interplay between social media, perceptions of locations, and travel preferences, enhancing theories about consumer behavior and communication in the digital age. Regarding the methodology of the research, the study is conducted in two stages: first, both generations are polled, and from the results, the top three destinations are chosen to be subjected to content analysis. As for the research's theoretical framework, it incorporates the tourism destination branding model as well as the conceptual model of nation branding. Through the use of the survey as a quantitative approach and the qualitative content analysis, the research will rely on both quantitative and qualitative methods. When it comes to the theoretical framework, both the Nation Branding Model and the Tourism Branding Model can offer useful frameworks for analyzing and comprehending the dynamics of using TikTok as a search engine to choose travel destinations, especially in the context of Generation Y and Generation Z in the Egyptian community. Additionally, the sample will be drawn specifically from both Gen-Y and Gen-Z. 100 members of Gen Z and 100 members of Gen Y will be chosen from TikTok users and followers of travel-related accounts, and the sample for the content analysis will be chosen based on the survey's results.

Keywords: tiktok, nation image, egyptian community, tourism branding

Procedia PDF Downloads 76
1690 Hybrid Wind Solar Gas Reliability Optimization Using Harmony Search under Performance and Budget Constraints

Authors: Meziane Rachid, Boufala Seddik, Hamzi Amar, Amara Mohamed

Abstract:

Today’s energy industry seeks maximum benefit with maximum reliability. In order to achieve this goal, design engineers depend on reliability optimization techniques. This work uses a harmony search algorithm (HS) meta-heuristic optimization method to solve the problem of wind-Solar-Gas power systems design optimization. We consider the case where redundant electrical components are chosen to achieve a desirable level of reliability. The electrical power components of the system are characterized by their cost, capacity and reliability. The reliability is considered in this work as the ability to satisfy the consumer demand which is represented as a piecewise cumulative load curve. This definition of the reliability index is widely used for power systems. The proposed meta-heuristic seeks for the optimal design of series-parallel power systems in which a multiple choice of wind generators, transformers and lines are allowed from a list of product available in the market. Our approach has the advantage to allow electrical power components with different parameters to be allocated in electrical power systems. To allow fast reliability estimation, a universal moment generating function (UMGF) method is applied. A computer program has been developed to implement the UMGF and the HS algorithm. An illustrative example is presented.

Keywords: reliability optimization, harmony search optimization (HSA), universal generating function (UMGF)

Procedia PDF Downloads 576
1689 An Improvement Study for Mattress Manufacturing Line with a Simulation Model

Authors: Murat Sarı, Emin Gundogar, Mumtaz Ipek

Abstract:

Nowadays, in a furniture sector, competition of market share (portion) and production variety and changeability enforce the firm to reengineer operations on manufacturing line to increase the productivity. In this study, spring mattress manufacturing line of the furniture manufacturing firm is analyzed analytically. It’s intended to search and find the bottlenecks of production to balance the semi-finished material flow. There are four base points required to investigate in bottleneck elimination process. These are bottlenecks of Method, Material, Machine and Man (work force) resources, respectively. Mentioned bottlenecks are investigated and varied scenarios are created for recruitment of manufacturing system. Probable near optimal alternatives are determined by system models built in Arena simulation software.

Keywords: bottleneck search, buffer stock, furniture sector, simulation

Procedia PDF Downloads 359
1688 Understanding Resilience in Vulnerable Business Settings: Systematic Literature Review in Small and Medium Enterprises

Authors: Muhammedamin Hussen Saad, Geoffrey Haagler, Onno Omta, Gerben Van Der Velde

Abstract:

Unfolding chaos and persistent disruptions pose threats to companies’ performance especially in vulnerable settings of SME’s particularly in developing countries. Attention for resilience research in the academic world has increased considerably during the last decade looking at the number of papers published. As we are interested in adding to the understanding of the foundation and development of the concept of resilience, we focus especially on structuring the literature of business resilience in those vulnerable settings. A well-structured systematic search & review procedure was deployed. First, we defined key search terms and applied these to multiple databases (Scopus, Web of Science, Google Scholar, Emerald, and Science Direct). To make our literature search more encompassing, we augmented with co-citation, reference checking including hand searching techniques. The paper offers (1) an overview of SMEs resilience literature from 2000 up to March 2017 comprising 88 articles, and (2) special attention, within that overview, to developing countries. This review concludes that resilience literature is very much diverse in definitions and its measurements, and is inconclusive about its influencing factors. Furthermore, resilience literature is based predominantly on research in the developed world. On the bases of how the concept resilience emerges from the literature we describe distinct features of resilience, give options to extend the theoretical bases of research into resilience and describe concrete ideas for further research.

Keywords: business resilience, systematic review, SMEs, developing countries

Procedia PDF Downloads 172
1687 Enhanced Planar Pattern Tracking for an Outdoor Augmented Reality System

Authors: L. Yu, W. K. Li, S. K. Ong, A. Y. C. Nee

Abstract:

In this paper, a scalable augmented reality framework for handheld devices is presented. The presented framework is enabled by using a server-client data communication structure, in which the search for tracking targets among a database of images is performed on the server-side while pixel-wise 3D tracking is performed on the client-side, which, in this case, is a handheld mobile device. Image search on the server-side adopts a residual-enhanced image descriptors representation that gives the framework a scalability property. The tracking algorithm on the client-side is based on a gravity-aligned feature descriptor which takes the advantage of a sensor-equipped mobile device and an optimized intensity-based image alignment approach that ensures the accuracy of 3D tracking. Automatic content streaming is achieved by using a key-frame selection algorithm, client working phase monitoring and standardized rules for content communication between the server and client. The recognition accuracy test performed on a standard dataset shows that the method adopted in the presented framework outperforms the Bag-of-Words (BoW) method that has been used in some of the previous systems. Experimental test conducted on a set of video sequences indicated the real-time performance of the tracking system with a frame rate at 15-30 frames per second. The presented framework is exposed to be functional in practical situations with a demonstration application on a campus walk-around.

Keywords: augmented reality framework, server-client model, vision-based tracking, image search

Procedia PDF Downloads 275
1686 Islamophobia, Years After 9/11: An Assessment of the American Media

Authors: Nasa'i Muhammad Gwadabe

Abstract:

This study seeks to find the extent to which the old Islamophobic prejudice was tilted towards a more negative direction in the United States following the 9/11 terrorist attacks. It is hypothesized that, the 9/11 attacks in the United States reshaped the old Islamophobic prejudice through the reinforcement of a strong social identity construction of Muslims as “out-group”. The “social identity” and “discourse representation” theories are used as framework for analysis. To test the hypothesis, two categories were created: the prejudice (out-group) and the tolerance (in-group) categories. The Prejudice (out-group) against Muslims category was coded to include six attributes: (Terrorist, Threat, Women's Rights violation, Undemocratic, Backward and Intolerant); while the tolerance (In-group) for Muslims category was also coded to include six attributes: (Peaceful, civilized, educated, partners trustworthy and honest). Data are generated from the archives of three American newspapers: The Los Angeles Times, New York Times and USA Today using specific search terms and specific date range; from 9/11/1996 to 9/11/2006, that is five years before and five years after the 9/11. An aggregate of 20595 articles were generated from the search of the three newspapers throughout the search periods. Conclusively, for both pre and post 9/11 periods, the articles generated under the category of prejudice (out-group) against Muslims revealed a higher frequency, against that of tolerance (in-group) for them, which is lesser. Finally, The comparison between the pre and post 9/11 periods showed that, the increased Prejudice (out-group) against Muslims was most influenced through libeling them as terrorist, which signaled a skyrocketed increase from pre to post 9/11.

Keywords: in-group, Islam, Islamophobia, Muslims, out-group, prejudice, terrorism, the 9/11 and tolerance

Procedia PDF Downloads 305
1685 Motion Estimator Architecture with Optimized Number of Processing Elements for High Efficiency Video Coding

Authors: Seongsoo Lee

Abstract:

Motion estimation occupies the heaviest computation in HEVC (high efficiency video coding). Many fast algorithms such as TZS (test zone search) have been proposed to reduce the computation. Still the huge computation of the motion estimation is a critical issue in the implementation of HEVC video codec. In this paper, motion estimator architecture with optimized number of PEs (processing element) is presented by exploiting early termination. It also reduces hardware size by exploiting parallel processing. The presented motion estimator architecture has 8 PEs, and it can efficiently perform TZS with very high utilization of PEs.

Keywords: motion estimation, test zone search, high efficiency video coding, processing element, optimization

Procedia PDF Downloads 363
1684 GA3C for Anomalous Radiation Source Detection

Authors: Chia-Yi Liu, Bo-Bin Xiao, Wen-Bin Lin, Hsiang-Ning Wu, Liang-Hsun Huang

Abstract:

In order to reduce the risk of radiation damage that personnel may suffer during operations in the radiation environment, the use of automated guided vehicles to assist or replace on-site personnel in the radiation environment has become a key technology and has become an important trend. In this paper, we demonstrate our proof of concept for autonomous self-learning radiation source searcher in an unknown environment without a map. The research uses GPU version of Asynchronous Advantage Actor-Critic network (GA3C) of deep reinforcement learning to search for radiation sources. The searcher network, based on GA3C architecture, has self-directed learned and improved how search the anomalous radiation source by training 1 million episodes under three simulation environments. In each episode of training, the radiation source position, the radiation source intensity, starting position, are all set randomly in one simulation environment. The input for searcher network is the fused data from a 2D laser scanner and a RGB-D camera as well as the value of the radiation detector. The output actions are the linear and angular velocities. The searcher network is trained in a simulation environment to accelerate the learning process. The well-performance searcher network is deployed to the real unmanned vehicle, Dashgo E2, which mounts LIDAR of YDLIDAR G4, RGB-D camera of Intel D455, and radiation detector made by Institute of Nuclear Energy Research. In the field experiment, the unmanned vehicle is enable to search out the radiation source of the 18.5MBq Na-22 by itself and avoid obstacles simultaneously without human interference.

Keywords: deep reinforcement learning, GA3C, source searching, source detection

Procedia PDF Downloads 114
1683 Improving Similarity Search Using Clustered Data

Authors: Deokho Kim, Wonwoo Lee, Jaewoong Lee, Teresa Ng, Gun-Ill Lee, Jiwon Jeong

Abstract:

This paper presents a method for improving object search accuracy using a deep learning model. A major limitation to provide accurate similarity with deep learning is the requirement of huge amount of data for training pairwise similarity scores (metrics), which is impractical to collect. Thus, similarity scores are usually trained with a relatively small dataset, which comes from a different domain, causing limited accuracy on measuring similarity. For this reason, this paper proposes a deep learning model that can be trained with a significantly small amount of data, a clustered data which of each cluster contains a set of visually similar images. In order to measure similarity distance with the proposed method, visual features of two images are extracted from intermediate layers of a convolutional neural network with various pooling methods, and the network is trained with pairwise similarity scores which is defined zero for images in identical cluster. The proposed method outperforms the state-of-the-art object similarity scoring techniques on evaluation for finding exact items. The proposed method achieves 86.5% of accuracy compared to the accuracy of the state-of-the-art technique, which is 59.9%. That is, an exact item can be found among four retrieved images with an accuracy of 86.5%, and the rest can possibly be similar products more than the accuracy. Therefore, the proposed method can greatly reduce the amount of training data with an order of magnitude as well as providing a reliable similarity metric.

Keywords: visual search, deep learning, convolutional neural network, machine learning

Procedia PDF Downloads 215
1682 Improved Artificial Bee Colony Algorithm for Non-Convex Economic Power Dispatch Problem

Authors: Badr M. Alshammari, T. Guesmi

Abstract:

This study presents a modified version of the artificial bee colony (ABC) algorithm by including a local search technique for solving the non-convex economic power dispatch problem. The local search step is incorporated at the end of each iteration. Total system losses, valve-point loading effects and prohibited operating zones have been incorporated in the problem formulation. Thus, the problem becomes highly nonlinear and with discontinuous objective function. The proposed technique is validated using an IEEE benchmark system with ten thermal units. Simulation results demonstrate that the proposed optimization algorithm has better convergence characteristics in comparison with the original ABC algorithm.

Keywords: economic power dispatch, artificial bee colony, valve-point loading effects, prohibited operating zones

Procedia PDF Downloads 257
1681 Identification of Bayesian Network with Convolutional Neural Network

Authors: Mohamed Raouf Benmakrelouf, Wafa Karouche, Joseph Rynkiewicz

Abstract:

In this paper, we propose an alternative method to construct a Bayesian Network (BN). This method relies on a convolutional neural network (CNN classifier), which determinates the edges of the network skeleton. We train a CNN on a normalized empirical probability density distribution (NEPDF) for predicting causal interactions and relationships. We have to find the optimal Bayesian network structure for causal inference. Indeed, we are undertaking a search for pair-wise causality, depending on considered causal assumptions. In order to avoid unreasonable causal structure, we consider a blacklist and a whitelist of causality senses. We tested the method on real data to assess the influence of education on the voting intention for the extreme right-wing party. We show that, with this method, we get a safer causal structure of variables (Bayesian Network) and make to identify a variable that satisfies the backdoor criterion.

Keywords: Bayesian network, structure learning, optimal search, convolutional neural network, causal inference

Procedia PDF Downloads 176
1680 A Comprehensive Review of Artificial Intelligence Applications in Sustainable Building

Authors: Yazan Al-Kofahi, Jamal Alqawasmi.

Abstract:

In this study, a comprehensive literature review (SLR) was conducted, with the main goal of assessing the existing literature about how artificial intelligence (AI), machine learning (ML), deep learning (DL) models are used in sustainable architecture applications and issues including thermal comfort satisfaction, energy efficiency, cost prediction and many others issues. For this reason, the search strategy was initiated by using different databases, including Scopus, Springer and Google Scholar. The inclusion criteria were used by two research strings related to DL, ML and sustainable architecture. Moreover, the timeframe for the inclusion of the papers was open, even though most of the papers were conducted in the previous four years. As a paper filtration strategy, conferences and books were excluded from database search results. Using these inclusion and exclusion criteria, the search was conducted, and a sample of 59 papers was selected as the final included papers in the analysis. The data extraction phase was basically to extract the needed data from these papers, which were analyzed and correlated. The results of this SLR showed that there are many applications of ML and DL in Sustainable buildings, and that this topic is currently trendy. It was found that most of the papers focused their discussions on addressing Environmental Sustainability issues and factors using machine learning predictive models, with a particular emphasis on the use of Decision Tree algorithms. Moreover, it was found that the Random Forest repressor demonstrates strong performance across all feature selection groups in terms of cost prediction of the building as a machine-learning predictive model.

Keywords: machine learning, deep learning, artificial intelligence, sustainable building

Procedia PDF Downloads 67
1679 Effectiveness of Metacognitive Skills in Comprehension Instruction for Elementary Students

Authors: Mahdi Taheri Asl

Abstract:

Using a variety of strategies to read text plays an important role to make students strategic independent, strategic, and metacognitive readers. Given the importance of comprehension instruction (CI), it is essential to support the fostering comprehension skills at elementary age students, particularly those who struggle with or dislike reading. One of the main components of CI is activating metacognitive skills, which double function of elementary students. Thus, it’s important to evaluate the implemented comprehension interventions to inform reading specialist and teachers. There has been limited review research in the area of CI, so the conduction review research is required. The purpose of this review is to examine the effectiveness of metacognitive reading strategies in a regular classroom environment with elementary aged students. We develop five inclusion criteria to identify researches relevant to our research. First, the article had to be published in a peer-reviewed journal from 2000 to 2023. second, the study had to include participants in elementary school it could include of special education students. Third, the intervention needed to be involved with metacognitive strategies. Fourth, the articles had to use experimental or quasi experimental design. The last one needed to include measurement of reading performance in pre and post intervention. We used computer data-based site like Eric, PsychoINFO, and google scholar to search for articles that met these criteria. we used the following search terms: comprehension instruction, meta cognitive strategies, and elementary school. The next step was to do an ancestral search that get in reviewing the relevant studies cited in the articles that were found in the database search. We identified 30studies in the initial searches. After coding agreement, we synthesized 13 with respect to the participant, setting, research design, dependent variables, measures, the intervention used by instructors, and general outcomes. The finding show metacognitive strategies were effective to empower student’s comprehension skills. It also showed that linguistic instruction will be effective if got mixed with metacognitive strategies. The research provides a useful view into reading intervention. Despite the positive effect of metacognitive instruction on students’ comprehension skills, it is not widely used in classroom.

Keywords: comprehension instruction, metacogntion, metacognitive skills, reading intervention

Procedia PDF Downloads 72
1678 Underneath Vehicle Inspection Using Fuzzy Logic, Subsumption, and Open Cv-Library

Authors: Hazim Abdulsada

Abstract:

The inspection of underneath vehicle system has been given significant attention by governments after the threat of terrorism become more prevalent. New technologies such as mobile robots and computer vision are led to have more secure environment. This paper proposed that a mobile robot like Aria robot can be used to search and inspect the bombs under parking a lot vehicle. This robot is using fuzzy logic and subsumption algorithms to control the robot that movies underneath the vehicle. An OpenCV library and laser Hokuyo are added to Aria robot to complete the experiment for under vehicle inspection. This experiment was conducted at the indoor environment to demonstrate the efficiency of our methods to search objects and control the robot movements under vehicle. We got excellent results not only by controlling the robot movement but also inspecting object by the robot camera at same time. This success allowed us to know the requirement to construct a new cost effective robot with more functionality.

Keywords: fuzzy logic, mobile robots, Opencv, subsumption, under vehicle inspection

Procedia PDF Downloads 472
1677 Estimating Current Suicide Rates Using Google Trends

Authors: Ladislav Kristoufek, Helen Susannah Moat, Tobias Preis

Abstract:

Data on the number of people who have committed suicide tends to be reported with a substantial time lag of around two years. We examine whether online activity measured by Google searches can help us improve estimates of the number of suicide occurrences in England before official figures are released. Specifically, we analyse how data on the number of Google searches for the terms “depression” and “suicide” relate to the number of suicides between 2004 and 2013. We find that estimates drawing on Google data are significantly better than estimates using previous suicide data alone. We show that a greater number of searches for the term “depression” is related to fewer suicides, whereas a greater number of searches for the term “suicide” is related to more suicides. Data on suicide related search behaviour can be used to improve current estimates of the number of suicide occurrences.

Keywords: nowcasting, search data, Google Trends, official statistics

Procedia PDF Downloads 357