Search results for: sensing time
16937 Development of Web Application for Warehouse Management System: A Case Study of Ceramics Factory
Authors: Thanaphat Suwanaklang, Supaporn Suwannarongsri
Abstract:
Presently, there are many industries in Thailand producing various products for both domestic distribution and export to foreign countries. Warehouse is one of the most important areas of business needing to store their products. Such businesses need to have a suitable warehouse management system for reducing the storage time and using the space as much as possible. This paper proposes the development of a web application for a warehouse management system. One of the ceramics factories in Thailand is conducted as a case study. By applying the ABC analysis, fixed location, commodity system, ECRS, and 7-waste theories and principles, the web application for the warehouse management system of the selected ceramics factory is developed to design the optimal storage area for groups of products and design the optimal routes of forklifts. From experimental results, it was found that the warehouse management system developed via the web application can reduce the travel distance of forklifts and the time of searching for storage area by 100% once compared with the conventional method. In addition, the entire storage area can be on-line and real-time monitored.Keywords: warehouse management system, warehouse design method, logistics system, web application
Procedia PDF Downloads 13616936 The Military and Motherhood: Identity and Role Expectation within Two Greedy Institutions
Authors: Maureen Montalban
Abstract:
The military is a predominantly male-dominated organisation that has entrenched hierarchical and patriarchal norms. Since 1975, women have been allowed to continue active service in the Australian Defence Force during pregnancy and after the birth of a child; prior to this time, pregnancy was grounds for automatic termination. The military and family, as institutions, make great demands on individuals with respect to their commitment, loyalty, time and energy. This research explores what it means to serve in the Australian Army as a woman through a gender lens, overlaid during a specific time period of their service; that is, during pregnancy, birth, and being a mother. It investigates the external demands faced by servicewomen who are mothers, whether it be from society, the Army, their teammates, their partners, or their children; and how they internally make sense of that with respect to their own identity and role as a mother, servicewoman, partner and as an individual. It also seeks to uncover how Australian Army servicewomen who are also mothers attempt to manage the dilemma of serving two greedy institutions when both expect and demand so much and whether this is, in fact, an impossible dilemma.Keywords: women's health, gender studies, military culture, identity
Procedia PDF Downloads 10216935 A Combined Error Control with Forward Euler Method for Dynamical Systems
Authors: R. Vigneswaran, S. Thilakanathan
Abstract:
Variable time-stepping algorithms for solving dynamical systems performed poorly for long time computations which pass close to a fixed point. To overcome this difficulty, several authors considered phase space error controls for numerical simulation of dynamical systems. In one generalized phase space error control, a step-size selection scheme was proposed, which allows this error control to be incorporated into the standard adaptive algorithm as an extra constraint at negligible extra computational cost. For this generalized error control, it was already analyzed the forward Euler method applied to the linear system whose coefficient matrix has real and negative eigenvalues. In this paper, this result was extended to the linear system whose coefficient matrix has complex eigenvalues with negative real parts. Some theoretical results were obtained and numerical experiments were carried out to support the theoretical results.Keywords: adaptivity, fixed point, long time simulations, stability, linear system
Procedia PDF Downloads 31216934 Design and Performance Analysis of Resource Management Algorithms in Response to Emergency and Disaster Situations
Authors: Volkan Uygun, H. Birkan Yilmaz, Tuna Tugcu
Abstract:
This study focuses on the development and use of algorithms that address the issue of resource management in response to emergency and disaster situations. The presented system, named Disaster Management Platform (DMP), takes the data from the data sources of service providers and distributes the incoming requests accordingly both to manage load balancing and minimize service time, which results in improved user satisfaction. Three different resource management algorithms, which give different levels of importance to load balancing and service time, are proposed for the study. The first one is the Minimum Distance algorithm, which assigns the request to the closest resource. The second one is the Minimum Load algorithm, which assigns the request to the resource with the minimum load. Finally, the last one is the Hybrid algorithm, which combines the previous two approaches. The performance of the proposed algorithms is evaluated with respect to waiting time, success ratio, and maximum load ratio. The metrics are monitored from simulations, to find the optimal scheme for different loads. Two different simulations are performed in the study, one is time-based and the other is lambda-based. The results indicate that, the Minimum Load algorithm is generally the best in all metrics whereas the Minimum Distance algorithm is the worst in all cases and in all metrics. The leading position in performance is switched between the Minimum Distance and the Hybrid algorithms, as lambda values change.Keywords: emergency and disaster response, resource management algorithm, disaster situations, disaster management platform
Procedia PDF Downloads 33816933 Effect of Temperature and Time on the Yield of Silica from Rice Husk Ash
Authors: Mohammed Adamu Musa, Shehu Saminu Babba
Abstract:
The technological trend towards waste utilization and cost reduction in industrial processing has attracted use of Rice Husk as a value added material. Both rice husk (RH) and Rice Husk Ash (RHA) has been found suitable for wide range of domestic as well as industrial applications. Therefore, the purpose of this research is to produce high grade sodium silicate from rice husk ash by considering the effect of temperature and time of heating as the process variables. The experiment was performed by heating the rice husk at temperatures 500 °C, 600 °C, 700 °C and 800 °C and time 60min, 90min, 120min and 150min were used to obtain the ash. 1.0M of aqueous sodium hydroxide solution was used to dissolve the silicate from the ash, which contained crude sodium silicate. In addition, the ash was neutralized by adding 5M of HCL until the pH reached 3.5 to give silica gel. At 6000C and 120mins, 94.23% silica was obtained from the RHA. At higher temperatures (700 °C and 800 °C) the percentage yield of silica reduced due to surface melting and carbon fixation in the lattice caused by presence of potassium. For this research, 600 °C is considered to be the optimum temperature for silica production from RHA. Silica produced from RHA can generate aggregate value and can be used in areas such as pulp and paper, plastic and rubber reinforcement industries.Keywords: burning, rice husk, rice husk ash, silica, silica gel, temperature
Procedia PDF Downloads 24316932 The Influence of Human Movement on the Formation of Adaptive Architecture
Authors: Rania Raouf Sedky
Abstract:
Adaptive architecture relates to buildings specifically designed to adapt to their residents and their environments. To design a biologically adaptive system, we can observe how living creatures in nature constantly adapt to different external and internal stimuli to be a great inspiration. The issue is not just how to create a system that is capable of change but also how to find the quality of change and determine the incentive to adapt. The research examines the possibilities of transforming spaces using the human body as an active tool. The research also aims to design and build an effective dynamic structural system that can be applied on an architectural scale and integrate them all into the creation of a new adaptive system that allows us to conceive a new way to design, build and experience architecture in a dynamic manner. The main objective was to address the possibility of a reciprocal transformation between the user and the architectural element so that the architecture can adapt to the user, as the user adapts to architecture. The motivation is the desire to deal with the psychological benefits of an environment that can respond and thus empathize with human emotions through its ability to adapt to the user. Adaptive affiliations of kinematic structures have been discussed in architectural research for more than a decade, and these issues have proven their effectiveness in developing kinematic structures, responsive and adaptive, and their contribution to 'smart architecture'. A wide range of strategies have been used in building complex kinetic and robotic systems mechanisms to achieve convertibility and adaptability in engineering and architecture. One of the main contributions of this research is to explore how the physical environment can change its shape to accommodate different spatial displays based on the movement of the user’s body. The main focus is on the relationship between materials, shape, and interactive control systems. The intention is to develop a scenario where the user can move, and the structure interacts without any physical contact. The soft form of shifting language and interaction control technology will provide new possibilities for enriching human-environmental interactions. How can we imagine a space in which to construct and understand its users through physical gestures, visual expressions, and response accordingly? How can we imagine a space whose interaction depends not only on preprogrammed operations but on real-time feedback from its users? The research also raises some important questions for the future. What would be the appropriate structure to show physical interaction with the dynamic world? This study concludes with a strong belief in the future of responsive motor structures. We imagine that they are developing the current structure and that they will radically change the way spaces are tested. These structures have obvious advantages in terms of energy performance and the ability to adapt to the needs of users. The research highlights the interface between remote sensing and a responsive environment to explore the possibility of an interactive architecture that adapts to and responds to user movements. This study ends with a strong belief in the future of responsive motor structures. We envision that it will improve the current structure and that it will bring a fundamental change to the way in which spaces are tested.Keywords: adaptive architecture, interactive architecture, responsive architecture, tensegrity
Procedia PDF Downloads 15716931 Effect of Exercise on Sexual Behavior and Semen Quality of Sahiwal Bulls
Authors: Abdelrasoul, Khalid Ahmed Elrabie
Abstract:
The study was conducted on Sahiwal cattle bulls maintained at the Artificial Breeding Complex, NDRI, Karnal, Hayana, India, to determine the effect of exercise on the sexual behavior and semen quality. Fourteen Sahiwal bulls were classified into two groups of seven each. Group-1, bulls were exercised by walking in a bull exerciser once a week one hour before semen collection, whereas bulls in group-2 were exercised daily. Sexual behavior and semen quality traits studied were: Reaction time (RT), Dismounting time (DMT), Total time taken in mounts (TTTM), Flehmen response (FR), Erection Score (ES), Protrusion Score (PS), Intensity of thrust (ITS), Temperament Score (TS), Libido Score (LS), Semen volume, Physical appearance, Mass activity, Initial progressive motility, Non-eosinophilic spermatozoa count (NESC) and post thaw motility percent. Data were analyzed by least squares technique. Group-2 showed significantly (p < 0.01) higher value in RT (sec), DMT (sec), TTTM (sec), ES, PS, ITS, LS, semen volume, semen color density and mass activity.Keywords: exercise, Sahiwal bulls, semen quality, sexual behavior
Procedia PDF Downloads 32716930 Early Evaluation of Long-Span Suspension Bridges Using Smartphone Accelerometers
Authors: Ekin Ozer, Maria Q. Feng, Rupa Purasinghe
Abstract:
Structural deterioration of bridge systems possesses an ongoing threat to the transportation networks. Besides, landmark bridges’ integrity and safety are more than sole functionality, since they provide a strong presence for the society and nations. Therefore, an innovative and sustainable method to inspect landmark bridges is essential to ensure their resiliency in the long run. In this paper, a recently introduced concept, smartphone-based modal frequency estimation is addressed, and this paper targets to authenticate the fidelity of smartphone-based vibration measurements gathered from three landmark suspension bridges. Firstly, smartphones located at the bridge mid-span are adopted as portable and standalone vibration measurement devices. Then, their embedded accelerometers are utilized to gather vibration response under operational loads, and eventually frequency domain characteristics are deduced. The preliminary analysis results are compared with the reference publications and high-quality monitoring data to validate the usability of smartphones on long-span landmark suspension bridges. If the technical challenges such as high period of vibration, low amplitude excitation, embedded smartphone sensor features, sampling, and citizen engagement are tackled, smartphones can provide a novel and cost-free crowdsourcing tool for maintenance of these landmark structures. This study presents the early phase findings from three signature structures located in the United States.Keywords: smart and mobile sensing, structural health monitoring, suspension bridges, vibration analysis
Procedia PDF Downloads 29216929 Probabilistic Modeling Laser Transmitter
Authors: H. S. Kang
Abstract:
Coupled electrical and optical model for conversion of electrical energy into coherent optical energy for transmitter-receiver link by solid state device is presented. Probability distribution for travelling laser beam switching time intervals and the number of switchings in the time interval is obtained. Selector function mapping is employed to regulate optical data transmission speed. It is established that regulated laser transmission from PhotoActive Laser transmitter follows principal of invariance. This considerably simplifies design of PhotoActive Laser Transmission networks.Keywords: computational mathematics, finite difference Markov chain methods, sequence spaces, singularly perturbed differential equations
Procedia PDF Downloads 43116928 Visual Servoing for Quadrotor UAV Target Tracking: Effects of Target Information Sharing
Authors: Jason R. King, Hugh H. T. Liu
Abstract:
This research presents simulation and experimental work in the visual servoing of a quadrotor Unmanned Aerial Vehicle (UAV) to stabilize overtop of a moving target. Most previous work in the field assumes static or slow-moving, unpredictable targets. In this experiment, the target is assumed to be a friendly ground robot moving freely on a horizontal plane, which shares information with the UAV. This information includes velocity and acceleration information of the ground target to aid the quadrotor in its tracking task. The quadrotor is assumed to have a downward-facing camera which is fixed to the frame of the quadrotor. Only onboard sensing for the quadrotor is utilized for the experiment, with a VICON motion capture system in place used only to measure ground truth and evaluate the performance of the controller. The experimental platform consists of an ArDrone 2.0 and a Create Roomba, communicating using Robot Operating System (ROS). The addition of the target’s information is demonstrated to help the quadrotor in its tracking task using simulations of the dynamic model of a quadrotor in Matlab Simulink. A nested PID control loop is utilized for inner-loop control the quadrotor, similar to previous works at the Flight Systems and Controls Laboratory (FSC) at the University of Toronto Institute for Aerospace Studies (UTIAS). Experiments are performed with ground truth provided by an indoor motion capture system, and the results are analyzed. It is demonstrated that a velocity controller which incorporates the additional information is able to perform better than the controllers which do not have access to the target’s information.Keywords: quadrotor, target tracking, unmanned aerial vehicle, UAV, UAS, visual servoing
Procedia PDF Downloads 34116927 Different Perceptions of Distance and Full-time Teaching Depending on Different Cultural Backgrounds: A Comparative Study
Authors: Daniel Ecler
Abstract:
This paper aims to compare the data obtained using semi-structured questionnaires and find some connections between them, which could help to understand what factors affect the perception of the advantages and disadvantages of distance learning compared to conventional education. The data collected came from respondents from Czech and Chinese university students, and expectations were such that the different cultural environments from which the two groups come would have an impact on different experiences of distance education. With the help of variation-finding comparison, it turned out that Chinese students did not have such difficulties with the transition to distance learning as students from the Czech Republic, as most of them came into contact with some form of distance education in the past. In addition, it has also been shown that Chinese students use modern technology to a much greater extent, which has also made it easier for them to become accustomed to another form of teaching. In conclusion, Chinese students have greater preconditions for easier management of distance learning, while Czech students prefer more personal contact, and thus full-time teaching. It is obvious that both approaches have their pros and cons; now, it is necessary to find out how to use them for maximum efficiency of the educational process.Keywords: Chinese college students, cultural background, Czech college students, distance learning, full-time teaching
Procedia PDF Downloads 15116926 The Improvement of Disease-Modifying Osteoarthritis Drugs Model Uptake and Retention within Two Cartilage Models
Authors: Polina Prokopovich
Abstract:
Disease-modifying osteoarthritis drugs (DMOADs) are a new therapeutic class for OA, preventing or inhibiting OA development. Unfortunately, none of the DMOADs have been clinically approved due to their poor therapeutic effects in clinical trials. The joint environment has played a role in the poor clinical performance of these drugs by limiting the amount of drug effectively delivered as well as the time that the drug spends within the joint space. The current study aims to enhance the cartilage uptake and retention time of the DMOADs-model (licofelone), which showed a significant therapeutic effect against OA progression and is currently in phase III. Licofelone will be covalently conjugated to the hydrolysable, cytocompatible, and cationic poly beta-amino ester polymers (PBAE). The cationic polymers (A16 and A87) can be electrostatically attached to the negatively charged cartilage component (glycosaminoglycan), which will increase the drug penetration through the cartilage and extend the drug time within the cartilage. In the cartilage uptake and retention time studies, an increase of 18 to 37 times of the total conjugated licofelone to A87 and A16 was observed when compared to the free licofelone. Furthermore, the conjugated licofelone to A87 was detectable within the cartilage at 120 minutes, while the free licofelone was not detectable after 60 minutes. Additionally, the A87-licofelone conjugate showed no effect on the chondrocyte viability. In conclusion, the cationic A87 and A16 polymers increased the percentage of licofelone within the cartilage, which could potentially enhance the therapeutic effect and pharmacokinetic performance of licofelone or other DMOADs clinically.Keywords: PBAE, cartilage., osteoarthritis, injectable biomaterials, drug delivery
Procedia PDF Downloads 7416925 Improvement in Drying Characteristics of Raisin by Carbonic Maceration– Process Optimization
Authors: Nursac Akyol, Merve S. Turan, Mustafa Ozcelik, Erdogan Kucukoner, Erkan Karacabey
Abstract:
Traditional raisin production is a long time drying process under sunlight. During this procedure, grapes are open to some environmental effects besides the adverse effects of the long drying period. Thus, there is a need to develop an alternative method being applicable instead of traditional one. To this extent, a combination of a potential pretreatment (carbonic maceration, CM) with convectional oven drying was examined. CM application was used in raisin production (grape drying) as a pretreatment process before oven drying. Pressure, temperature and time were examined as application parameters of CM. In conventional oven drying, the temperature is a process variable. The aim is to find out how CM and convectional drying processes affect the drying characteristics of grapes as well as their physical and chemical properties. For this purpose, the response surface method was used to determine both the effects of the variables and the optimum pretreatment and drying conditions. The optimum conditions of CM for raisin production were 0.3 MPa of pressure value, 4°C of application temperature and 8 hours of application time. The optimized drying temperature was 77°C. The results showed that the application of CM before the drying process improved the drying characteristics. Drying took only 389 minutes for grapes pretreated by CM under optimum conditions and 495 minutes for the control group dried only by the conventional drying process. According to these results, a decrease of 21% was achieved in the time requirement for raisin production. Also, it was observed that the samples dried under optimum conditions had similar physical properties as those the control group had. It was seen that raisin, which was dried under optimum conditions were in better condition in terms of some of the bioactive contents compared to control groups. In light of all results, it is seen that CM has an important potential in the industrial drying of grape samples. The current study was financially supported by TUBITAK, Turkey (Project no: 116R038).Keywords: drying time, pretreatment, response surface methodlogy, total phenolic
Procedia PDF Downloads 13816924 Behaviour and Design of the Candle-Loc Inter-Module Connection in High-Rise Modular Buildings under Seismic Action
Authors: Alessandro Marzucchini, Yie Sue Chua, Andrew Lian, Richard Shonn Mills
Abstract:
A unique, fast and easy installed inter-module connection named Candle-Loc was developed and applied in several high-rise steel and reinforced concrete modular buildings in Singapore and Hong Kong, China. However, its effect on the global behaviour of modular buildings in high seismic zones was not studied. Therefore, the design concept and the structural performance of each component in this connection was investigated through analytical approach. Response spectrum, linear time-history, and nonlinear time-history analyses were conducted to investigate the effects of the different joint models of the Candle-Loc in the global analysis of high-rise buildings under high seismic loads. It is found that it is important to assess the level of plasticity developed in the inter-module connection under high seismic loads. The ductility of the lateral force resisting system influences the amount of load taken by the inter-module connections.Keywords: high-rise, inter-module connection, nonlinear, seismic, time-history analysis
Procedia PDF Downloads 20316923 The Design of a Vehicle Traffic Flow Prediction Model for a Gauteng Freeway Based on an Ensemble of Multi-Layer Perceptron
Authors: Tebogo Emma Makaba, Barnabas Ndlovu Gatsheni
Abstract:
The cities of Johannesburg and Pretoria both located in the Gauteng province are separated by a distance of 58 km. The traffic queues on the Ben Schoeman freeway which connects these two cities can stretch for almost 1.5 km. Vehicle traffic congestion impacts negatively on the business and the commuter’s quality of life. The goal of this paper is to identify variables that influence the flow of traffic and to design a vehicle traffic prediction model, which will predict the traffic flow pattern in advance. The model will unable motorist to be able to make appropriate travel decisions ahead of time. The data used was collected by Mikro’s Traffic Monitoring (MTM). Multi-Layer perceptron (MLP) was used individually to construct the model and the MLP was also combined with Bagging ensemble method to training the data. The cross—validation method was used for evaluating the models. The results obtained from the techniques were compared using predictive and prediction costs. The cost was computed using combination of the loss matrix and the confusion matrix. The predicted models designed shows that the status of the traffic flow on the freeway can be predicted using the following parameters travel time, average speed, traffic volume and day of month. The implications of this work is that commuters will be able to spend less time travelling on the route and spend time with their families. The logistics industry will save more than twice what they are currently spending.Keywords: bagging ensemble methods, confusion matrix, multi-layer perceptron, vehicle traffic flow
Procedia PDF Downloads 34416922 Studies on Affecting Factors of Wheel Slip and Odometry Error on Real-Time of Wheeled Mobile Robots: A Review
Authors: D. Vidhyaprakash, A. Elango
Abstract:
In real-time applications, wheeled mobile robots are increasingly used and operated in extreme and diverse conditions traversing challenging surfaces such as a pitted, uneven terrain, natural flat, smooth terrain, as well as wet and dry surfaces. In order to accomplish such tasks, it is critical that the motion control functions without wheel slip and odometry error during the navigation of the two-wheeled mobile robot (WMR). Wheel slip and odometry error are disrupting factors on overall WMR performance in the form of deviation from desired trajectory, navigation, travel time and budgeted energy consumption. The wheeled mobile robot’s ability to operate at peak performance on various work surfaces without wheel slippage and odometry error is directly connected to four main parameters, which are the range of payload distribution, speed, wheel diameter, and wheel width. This paper analyses the effects of those parameters on overall performance and is concerned with determining the ideal range of parameters for optimum performance.Keywords: wheeled mobile robot, terrain, wheel slippage, odometryerror, trajectory
Procedia PDF Downloads 28416921 Lamb Wave-Based Blood Coagulation Measurement System Using Citrated Plasma
Authors: Hyunjoo Choi, Jeonghun Nam, Chae Seung Lim
Abstract:
Acoustomicrofluidics has gained much attention due to the advantages, such as noninvasiveness and easy integration with other miniaturized systems, for clinical and biological applications. However, a limitation of acoustomicrofluidics is the complicated and costly fabrication process of electrodes. In this study, we propose a low-cost and lithography-free device using Lamb wave for blood analysis. Using a Lamb wave, calcium ion-removed blood plasma and coagulation reagents can be rapidly mixed for blood coagulation test. Due to the coagulation process, the viscosity of the sample increases and the viscosity change can be monitored by internal acoustic streaming of microparticles suspended in the sample droplet. When the acoustic streaming of particles stops by the viscosity increase is defined as the coagulation time. With the addition of calcium ion at 0-25 mM, the coagulation time was measured and compared with the conventional index for blood coagulation analysis, prothrombin time, which showed highly correlated with the correlation coefficient as 0.94. Therefore, our simple and cost-effective Lamb wave-based blood analysis device has the powerful potential to be utilized in clinical settings.Keywords: acoustomicrofluidics, blood analysis, coagulation, lamb wave
Procedia PDF Downloads 34016920 Improved Simultaneous Performance in the Time Domain and in the Frequency Domain
Authors: Azeddine Ghodbane, David Bensoussan, Maher Hammami
Abstract:
An innovative approach for controlling unstable and invertible systems has demonstrated superior performance compared to conventional controllers. It has been successfully applied to a levitation system and drone control. Simulations have yielded satisfactory performances when applied to a satellite antenna controller. This design method, based on sensitivity analysis, has also been extended to handle multivariable unstable and invertible systems that exhibit dominant diagonal characteristics at high frequencies, enabling decentralized control. Furthermore, this control method has been expanded to the realm of adaptive control. In this study, we introduce an alternative adaptive architecture that enhances both time and frequency performance, helpfully mitigating the effects of disturbances from the input plant and external disturbances affecting the output. To facilitate superior performance in both the time and frequency domains, we have developed user-friendly interactive design methods using the GeoGebra platform.Keywords: control theory, decentralized control, sensitivity theory, input-output stability theory, robust multivariable feedback control design
Procedia PDF Downloads 11316919 Optimal Perturbation in an Impulsively Blocked Channel Flow
Authors: Avinash Nayak, Debopam Das
Abstract:
The current work implements the variational principle to find the optimum initial perturbation that provides maximum growth in an impulsively blocked channel flow. The conventional method for studying temporal stability has always been through modal analysis. In most of the transient flows, this modal analysis is still followed with the quasi-steady assumption, i.e. change in base flow is much slower compared to perturbation growth rate. There are other studies where transient analysis on time dependent flows is done by formulating the growth of perturbation as an initial value problem. But the perturbation growth is sensitive to the initial condition. This study intends to find the initial perturbation that provides the maximum growth at a later time. Here, the expression of base flow for blocked channel is derived and the formulation is based on the two dimensional perturbation with stream function representing the perturbation quantity. Hence, the governing equation becomes the Orr-Sommerfeld equation. In the current context, the cost functional is defined as the ratio of disturbance energy at a terminal time 'T' to the initial energy, i.e. G(T) = ||q(T)||2/||q(0)||2 where q is the perturbation and ||.|| defines the norm chosen. The above cost functional needs to be maximized against the initial perturbation distribution. It is achieved with the constraint that perturbation follows the basic governing equation, i.e. Orr-Sommerfeld equation. The corresponding adjoint equation is derived and is solved along with the basic governing equation in an iterative manner to provide the initial spatial shape of the perturbation that provides the maximum growth G (T). The growth rate is plotted against time showing the development of perturbation which achieves an asymptotic shape. The effects of various parameters, e.g. Reynolds number, are studied in the process. Thus, the study emphasizes on the usage of optimal perturbation and its growth to understand the stability characteristics of time dependent flows. The assumption of quasi-steady analysis can be verified against these results for the transient flows like impulsive blocked channel flow.Keywords: blocked channel flow, calculus of variation, hydrodynamic stability, optimal perturbation
Procedia PDF Downloads 42116918 Daily Site Risks Associated with Construction Projects and On-spot Corrective Measurements: Case Study of Revamping Projects in Kuwait Oil Company Fields Area
Authors: Yousef S. Al-Othman
Abstract:
The growth and expansion of the industrial facilities comes proportional to the market increasing demand of products and services. Furthermore, raw material producers such as oil companies usually undergo massive revamping projects to maintain a synchronized supply. These revamping projects are usually delivered through challenging construction projects held and associated with daily site risks related to the construction process. Henceforth, a case study related to these risks and corresponding on-spot corrective measurements has been made on a certain number of construction project contractors at Kuwait Oil Company (KOC) to derive the benefits and overall effectiveness of the on-spot corrective measurements during the construction phase of a project, and how would the same help in avoiding major incidents, ensuring a smooth, cost effective and on time delivery of the project. Findings of this case study shall have an added value to the overall risk management process by minimizing the daily site risks that may affect the project lead time, resulting in an undisturbed on-site construction process.Keywords: oil and gas, risk management, construction projects, project lead time
Procedia PDF Downloads 10716917 An Adaptive Decomposition for the Variability Analysis of Observation Time Series in Geophysics
Authors: Olivier Delage, Thierry Portafaix, Hassan Bencherif, Guillaume Guimbretiere
Abstract:
Most observation data sequences in geophysics can be interpreted as resulting from the interaction of several physical processes at several time and space scales. As a consequence, measurements time series in geophysics have often characteristics of non-linearity and non-stationarity and thereby exhibit strong fluctuations at all time-scales and require a time-frequency representation to analyze their variability. Empirical Mode Decomposition (EMD) is a relatively new technic as part of a more general signal processing method called the Hilbert-Huang transform. This analysis method turns out to be particularly suitable for non-linear and non-stationary signals and consists in decomposing a signal in an auto adaptive way into a sum of oscillating components named IMFs (Intrinsic Mode Functions), and thereby acts as a bank of bandpass filters. The advantages of the EMD technic are to be entirely data driven and to provide the principal variability modes of the dynamics represented by the original time series. However, the main limiting factor is the frequency resolution that may give rise to the mode mixing phenomenon where the spectral contents of some IMFs overlap each other. To overcome this problem, J. Gilles proposed an alternative entitled “Empirical Wavelet Transform” (EWT) which consists in building from the segmentation of the original signal Fourier spectrum, a bank of filters. The method used is based on the idea utilized in the construction of both Littlewood-Paley and Meyer’s wavelets. The heart of the method lies in the segmentation of the Fourier spectrum based on the local maxima detection in order to obtain a set of non-overlapping segments. Because linked to the Fourier spectrum, the frequency resolution provided by EWT is higher than that provided by EMD and therefore allows to overcome the mode-mixing problem. On the other hand, if the EWT technique is able to detect the frequencies involved in the original time series fluctuations, EWT does not allow to associate the detected frequencies to a specific mode of variability as in the EMD technic. Because EMD is closer to the observation of physical phenomena than EWT, we propose here a new technic called EAWD (Empirical Adaptive Wavelet Decomposition) based on the coupling of the EMD and EWT technics by using the IMFs density spectral content to optimize the segmentation of the Fourier spectrum required by EWT. In this study, EMD and EWT technics are described, then EAWD technic is presented. Comparison of results obtained respectively by EMD, EWT and EAWD technics on time series of ozone total columns recorded at Reunion island over [1978-2019] period is discussed. This study was carried out as part of the SOLSTYCE project dedicated to the characterization and modeling of the underlying dynamics of time series issued from complex systems in atmospheric sciencesKeywords: adaptive filtering, empirical mode decomposition, empirical wavelet transform, filter banks, mode-mixing, non-linear and non-stationary time series, wavelet
Procedia PDF Downloads 13716916 Comparison of Gait Variability in Individuals with Trans-Tibial and Trans-Femoral Lower Limb Loss: A Pilot Study
Authors: Hilal Keklicek, Fatih Erbahceci, Elif Kirdi, Ali Yalcin, Semra Topuz, Ozlem Ulger, Gul Sener
Abstract:
Objectives and Goals: The stride-to-stride fluctuations in gait is a determinant of qualified locomotion as known as gait variability. Gait variability is an important predictive factor of fall risk and useful for monitoring the effects of therapeutic interventions and rehabilitation. Comparison of gait variability in individuals with trans-tibial lower limb loss and trans femoral lower limb loss was the aim of the study. Methods: Ten individuals with traumatic unilateral trans femoral limb loss(TF), 12 individuals with traumatic transtibial lower limb loss(TT) and 12 healthy individuals(HI) were the participants of the study. All participants were evaluated with treadmill. Gait characteristics including mean step length, step length variability, ambulation index, time on each foot of participants were evaluated with treadmill. Participants were walked at their preferred speed for six minutes. Data from 4th minutes to 6th minutes were selected for statistical analyses to eliminate learning effect. Results: There were differences between the groups in intact limb step length variation, time on each foot, ambulation index and mean age (p < .05) according to the Kruskal Wallis Test. Pairwise analyses showed that there were differences between the TT and TF in residual limb variation (p=.041), time on intact foot (p=.024), time on prosthetic foot(p=.024), ambulation index(p = .003) in favor of TT group. There were differences between the TT and HI group in intact limb variation (p = .002), time on intact foot (p<.001), time on prosthetic foot (p < .001), ambulation index result (p < .001) in favor of HI group. There were differences between the TF and HI group in intact limb variation (p = .001), time on intact foot (p=.01) ambulation index result (p < .001) in favor of HI group. There was difference between the groups in mean age result from HI group were younger (p < .05).There were similarity between the groups in step lengths (p>.05) and time of prosthesis using in individuals with lower limb loss (p > .05). Conclusions: The pilot study provided basic data about gait stability in individuals with traumatic lower limb loss. Results of the study showed that to evaluate the gait differences between in different amputation level, long-range gait analyses methods may be useful to get more valuable information. On the other hand, similarity in step length may be resulted from effective prosthetic using or effective gait rehabilitation, in conclusion, all participants with lower limb loss were already trained. The differences between the TT and HI; TF and HI may be resulted from the age related features, therefore, age matched population in HI were recommended future studies. Increasing the number of participants and comparison of age-matched groups also recommended to generalize these result.Keywords: lower limb loss, amputee, gait variability, gait analyses
Procedia PDF Downloads 28016915 Fabrication of LiNbO₃ Based Conspicuous Nanomaterials for Renewable Energy Devices
Authors: Riffat Kalsoom, Qurat-Ul-Ain Javed
Abstract:
Optical and dielectric properties of lithium niobates have made them the fascinating materials to be used in optical industry for device formation such as Q and optical switching. Synthesis of lithium niobates was carried out by solvothermal process with and without temperature fluctuation at 200°C for 4 hrs, and behavior of properties for different durations was also examined. Prepared samples of LiNbO₃ were examined in a way as crystallographic phases by using XRD diffractometer, morphology by scanning electron microscope (SEM), absorption by UV-Visible Spectroscopy and dielectric measurement by impedance analyzer. A structural change from trigonal to spherical shape was observed by changing the time of reaction. Crystallite size decreases by the temperature fluctuation and increasing reaction time. Band gap decreases whereas dielectric constant and dielectric loss was increased with increasing time of reaction. Trend of AC conductivity is explained by Joschner’s power law. Due to these significant properties, it finds its applications in devices, such as cells, Q switching and optical switching for laser and gigahertz frequencies, respectively and these applications depend on the industrial demands.Keywords: lithium niobates, renewable energy devices, controlled structure, temperature fluctuations
Procedia PDF Downloads 13116914 Advanced Materials Based on Ethylene-Propylene-Diene Terpolymers and Organically Modified Montmorillonite
Authors: M. D. Stelescu, E. Manaila, G. Pelin, M. Georgescu, M. Sonmez
Abstract:
This paper presents studies on the development and characterization of nanocomposites based on ethylene-propylene terpolymer rubber (EPDM), chlorobutyl rubber (IIR-Cl) and organically modified montmorillonite (OMMT). Mixtures were made containing 0, 3 and 6 phr (parts per 100 parts rubber) OMMT, respectively. They were obtained by melt intercalation in an internal mixer - Plasti-Corder Brabender, in suitable blending parameters, at high temperature for 11 minutes. Curing agents were embedded on a laboratory roller at 70-100 ºC, friction 1:1.1, processing time 5 minutes. Rubber specimens were obtained by compression, using a hydraulic press at 165 ºC and a pressing force of 300 kN. Curing time, determined using the Monsanto rheometer, decreases with the increased amount of OMMT in the mixtures. At the same time, it was noticed that mixtures containing OMMT show improvement in physical-mechanical properties. These types of nanocomposites may be used to obtain rubber seals for the space application or for other areas of application.Keywords: chlorobutyl rubber, ethylene-propylene-diene terpolymers, montmorillonite, rubber seals, space application
Procedia PDF Downloads 17916913 Response of a Bridge Crane during an Earthquake
Authors: F. Fekak, A. Gravouil, M. Brun, B. Depale
Abstract:
During an earthquake, a bridge crane may be subjected to multiple impacts between crane wheels and rail. In order to model such phenomena, a time-history dynamic analysis with a multi-scale approach is performed. The high frequency aspect of the impacts between wheels and rails is taken into account by a Lagrange explicit event-capturing algorithm based on a velocity-impulse formulation to resolve contacts and impacts. An implicit temporal scheme is used for the rest of the structure. The numerical coupling between the implicit and the explicit schemes is achieved with a heterogeneous asynchronous time-integrator.Keywords: bridge crane, earthquake, dynamic analysis, explicit, implicit, impact
Procedia PDF Downloads 30416912 The Big Bang Was Not the Beginning, but a Repeating Pattern of Expansion and Contraction of the Spacetime
Authors: Amrit Ladhani
Abstract:
The cyclic universe theory is a model of cosmic evolution according to which the universe undergoes endless cycles of expansion and cooling, each beginning with a “big bang” and ending in a “big crunch”. In this paper, we propose a unique property of Space-time. This particular and marvelous nature of space shows us that space can stretch, expand, and shrink. This property of space is caused by the size of the universe change over time: growing or shrinking. The observed accelerated expansion, which relates to the stretching of Shrunk space for the new theory, is derived. This theory is based on three underlying notions: First, the Big Bang is not the beginning of Space-time, but rather, at the very beginning fraction of a second, there was an infinite force of infinite Shrunk space in the cosmic singularity that force gave rise to the big bang and caused the rapidly growing of space, and all other forms of energy are transformed into new matter and radiation and a new period of expansion and cooling begins. Second, there was a previous phase leading up to it, with multiple cycles of contraction and expansion that repeat indefinitely. Third, the two principal long-range forces are the gravitational force and the repulsive force generated by shrink space. They are the two most fundamental quantities in the universe that govern cosmic evolution. They may provide the clockwork mechanism that operates our eternal cyclic universe. The universe will not continue to expand forever; no need, however, for dark energy and dark matter. This new model of Space-time and its unique properties enables us to describe a sequence of events from the Big Bang to the Big Crunch.Keywords: dark matter, dark energy, cosmology, big bang and big crunch
Procedia PDF Downloads 7816911 Implementation of a Method of Crater Detection Using Principal Component Analysis in FPGA
Authors: Izuru Nomura, Tatsuya Takino, Yuji Kageyama, Shin Nagata, Hiroyuki Kamata
Abstract:
We propose a method of crater detection from the image of the lunar surface captured by the small space probe. We use the principal component analysis (PCA) to detect craters. Nevertheless, considering severe environment of the space, it is impossible to use generic computer in practice. Accordingly, we have to implement the method in FPGA. This paper compares FPGA and generic computer by the processing time of a method of crater detection using principal component analysis.Keywords: crater, PCA, eigenvector, strength value, FPGA, processing time
Procedia PDF Downloads 55516910 VeriFy: A Solution to Implement Autonomy Safely and According to the Rules
Authors: Michael Naderhirn, Marco Pavone
Abstract:
Problem statement, motivation, and aim of work: So far, the development of control algorithms was done by control engineers in a way that the controller would fit a specification by testing. When it comes to the certification of an autonomous car in highly complex scenarios, the challenge is much higher since such a controller must mathematically guarantee to implement the rules of the road while on the other side guarantee aspects like safety and real time executability. What if it becomes reality to solve this demanding problem by combining Formal Verification and System Theory? The aim of this work is to present a workflow to solve the above mentioned problem. Summary of the presented results / main outcomes: We show the usage of an English like language to transform the rules of the road into system specification for an autonomous car. The language based specifications are used to define system functions and interfaces. Based on that a formal model is developed which formally correctly models the specifications. On the other side, a mathematical model describing the systems dynamics is used to calculate the systems reachability set which is further used to determine the system input boundaries. Then a motion planning algorithm is applied inside the system boundaries to find an optimized trajectory in combination with the formal specification model while satisfying the specifications. The result is a control strategy which can be applied in real time independent of the scenario with a mathematical guarantee to satisfy a predefined specification. We demonstrate the applicability of the method in simulation driving scenarios and a potential certification. Originality, significance, and benefit: To the authors’ best knowledge, it is the first time that it is possible to show an automated workflow which combines a specification in an English like language and a mathematical model in a mathematical formal verified way to synthesizes a controller for potential real time applications like autonomous driving.Keywords: formal system verification, reachability, real time controller, hybrid system
Procedia PDF Downloads 24116909 Environmentally Adaptive Acoustic Echo Suppression for Barge-in Speech Recognition
Authors: Jong Han Joo, Jung Hoon Lee, Young Sun Kim, Jae Young Kang, Seung Ho Choi
Abstract:
In this study, we propose a novel technique for acoustic echo suppression (AES) during speech recognition under barge-in conditions. Conventional AES methods based on spectral subtraction apply fixed weights to the estimated echo path transfer function (EPTF) at the current signal segment and to the EPTF estimated until the previous time interval. We propose a new approach that adaptively updates weight parameters in response to abrupt changes in the acoustic environment due to background noises or double-talk. Furthermore, we devised a voice activity detector and an initial time-delay estimator for barge-in speech recognition in communication networks. The initial time delay is estimated using log-spectral distance measure, as well as cross-correlation coefficients. The experimental results show that the developed techniques can be successfully applied in barge-in speech recognition systems.Keywords: acoustic echo suppression, barge-in, speech recognition, echo path transfer function, initial delay estimator, voice activity detector
Procedia PDF Downloads 37216908 The Fabrication of Stress Sensing Based on Artificial Antibodies to Cortisol by Molecular Imprinted Polymer
Authors: Supannika Klangphukhiew, Roongnapa Srichana, Rina Patramanon
Abstract:
Cortisol has been used as a well-known commercial stress biomarker. A homeostasis response to psychological stress is indicated by an increased level of cortisol produced in hypothalamus-pituitary-adrenal (HPA) axis. Chronic psychological stress contributing to the high level of cortisol relates to several health problems. In this study, the cortisol biosensor was fabricated that mimicked the natural receptors. The artificial antibodies were prepared using molecular imprinted polymer technique that can imitate the performance of natural anti-cortisol antibody with high stability. Cortisol-molecular imprinted polymer (cortisol-MIP) was obtained using the multi-step swelling and polymerization protocol with cortisol as a target molecule combining methacrylic acid:acrylamide (2:1) with bisacryloyl-1,2-dihydroxy-1,2-ethylenediamine and ethylenedioxy-N-methylamphetamine as cross-linkers. Cortisol-MIP was integrated to the sensor. It was coated on the disposable screen-printed carbon electrode (SPCE) for portable electrochemical analysis. The physical properties of Cortisol-MIP were characterized by means of electron microscope techniques. The binding characteristics were evaluated via covalent patterns changing in FTIR spectra which were related to voltammetry response. The performance of cortisol-MIP modified SPCE was investigated in terms of detection range, high selectivity with a detection limit of 1.28 ng/ml. The disposable cortisol biosensor represented an application of MIP technique to recognize steroids according to their structures with feasibility and cost-effectiveness that can be developed to use in point-of-care.Keywords: stress biomarker, cortisol, molecular imprinted polymer, screen-printed carbon electrode
Procedia PDF Downloads 273