Search results for: observational learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7585

Search results for: observational learning

5545 The Roles of Parental Involvement in the Teaching-Learning Process of Students with Special Needs: Perceptions of Special Needs Education Teachers

Authors: Chassel T. Paras, Tryxzy Q. Dela Cruz, Ma. Carmela Lousie V. Goingco, Pauline L. Tolentino, Carmela S. Dizon

Abstract:

In implementing inclusive education, parental involvement is measured to be an irreplaceable contributing factor. Parental involvement is described as an indispensable aspect of the teaching-learning process and has a remarkable effect on the student's academic performance. However, there are still differences in the viewpoints, expectations, and needs of both parents and teachers that are not yet fully conveyed in their relationship; hence, the perceptions of SNED teachers are essential in their collaboration with parents. This qualitative study explored how SNED teachers perceive the roles of parental involvement in the teaching-learning process of students with special needs. To answer this question, one-on-one face-to-face semi-structured interviews with three SNED teachers in a selected public school in Angeles City, Philippines, that offer special needs education services were conducted. The gathered data are then analyzed using Interpretative Phenomenological Analysis (IPA). The results revealed four superordinate themes, which include: (1) roles of parental involvement, (2) parental involvement opportunities, (3) barriers to parental involvement, and (4) parent-teacher collaboration practices. These results indicate that SNED teachers are aware of the roles and importance of parental involvement; however, despite parent-teacher collaboration, there are still barriers that impede parental involvement. Also, SNED teachers acknowledge the big roles of parents as they serve as main figures in the teaching-learning process of their children with special needs. Lastly, these results can be used as input in developing a school-facilitated parenting involvement framework that encompasses the contribution of SNED teachers in planning, developing, and evaluating parental involvement programs, which future researchers can also use in their studies

Keywords: parental involvement, special needs education, teaching-learning process, teachers’ perceptions, special needs education teachers, interpretative phenomenological analysis

Procedia PDF Downloads 117
5544 Exploring the Difficulties of Acceleration Concept from the Perspective of Historical Textual Analysis

Authors: Yun-Ju Chiu, Feng-Yi Chen

Abstract:

Kinematics is the beginning to learn mechanics in physics course. The concept of acceleration plays an important role in learning kinematics. Teachers usually instruct the conception through the formulas and graphs of kinematics and the well-known law F = ma. However, over the past few decades, a lot of researchers reveal numerous students’ difficulties in learning acceleration. One of these difficulties is that students frequently confuse acceleration with velocity and force. Why is the concept of acceleration so difficult to learn? The aim of this study is to understand the conceptual evolution of acceleration through the historical textual analysis. Text analysis and one-to-one interviews with high school students and teachers are used in this study. This study finds the history of science constructed from textbooks is usually quite different from the real evolution of history. For example, most teachers and students believe that the best-known law F = ma was written down by Newton. The expression of the second law is not F = ma in Newton’s best-known book Principia in 1687. Even after more than one hundred years, a famous Cambridge textbook titled An Elementary Treatise on Mechanics by Whewell of Trinity College did not express this law as F = ma. At that time of Whewell, the early mid-nineteenth century Britain, the concept of acceleration was not only ambiguous but also confused with the concept of force. The process of learning the concept of acceleration is analogous to its conceptual development in history. The study from the perspective of historical textual analysis will promote the understanding of the concept learning difficulties, the development of professional physics teaching, and the improvement of the context of physics textbooks.

Keywords: acceleration, textbooks, mechanics, misconception, history of science

Procedia PDF Downloads 254
5543 Safe and Efficient Deep Reinforcement Learning Control Model: A Hydroponics Case Study

Authors: Almutasim Billa A. Alanazi, Hal S. Tharp

Abstract:

Safe performance and efficient energy consumption are essential factors for designing a control system. This paper presents a reinforcement learning (RL) model that can be applied to control applications to improve safety and reduce energy consumption. As hardware constraints and environmental disturbances are imprecise and unpredictable, conventional control methods may not always be effective in optimizing control designs. However, RL has demonstrated its value in several artificial intelligence (AI) applications, especially in the field of control systems. The proposed model intelligently monitors a system's success by observing the rewards from the environment, with positive rewards counting as a success when the controlled reference is within the desired operating zone. Thus, the model can determine whether the system is safe to continue operating based on the designer/user specifications, which can be adjusted as needed. Additionally, the controller keeps track of energy consumption to improve energy efficiency by enabling the idle mode when the controlled reference is within the desired operating zone, thus reducing the system energy consumption during the controlling operation. Water temperature control for a hydroponic system is taken as a case study for the RL model, adjusting the variance of disturbances to show the model’s robustness and efficiency. On average, the model showed safety improvement by up to 15% and energy efficiency improvements by 35%- 40% compared to a traditional RL model.

Keywords: control system, hydroponics, machine learning, reinforcement learning

Procedia PDF Downloads 188
5542 The Effect of Physical Guidance on Learning a Tracking Task in Children with Cerebral Palsy

Authors: Elham Azimzadeh, Hamidollah Hassanlouei, Hadi Nobari, Georgian Badicu, Jorge Pérez-Gómez, Luca Paolo Ardigò

Abstract:

Children with cerebral palsy (CP) have weak physical abilities and their limitations may have an effect on performing everyday motor activities. One of the most important and common debilitating factors in CP is the malfunction in the upper extremities to perform motor skills and there is strong evidence that task-specific training may lead to improve general upper limb function among this population. However, augmented feedback enhances the acquisition and learning of a motor task. Practice conditions may alter the difficulty, e.g., the reduced frequency of PG could be more challenging for this population to learn a motor task. So, the purpose of this study was to investigate the effect of physical guidance (PG) on learning a tracking task in children with cerebral palsy (CP). Twenty-five independently ambulant children with spastic hemiplegic CP aged 7-15 years were assigned randomly to five groups. After the pre-test, experimental groups participated in an intervention for eight sessions, 12 trials during each session. The 0% PG group received no PG; the 25% PG group received PG for three trials; the 50% PG group received PG for six trials; the 75% PG group received PG for nine trials; and the 100% PG group, received PG for all 12 trials. PG consisted of placing the experimenter's hand around the children's hand, guiding them to stay on track and complete the task. Learning was inferred by acquisition and delayed retention tests. The tests involved two blocks of 12 trials of the tracking task without any PG being performed by all participants. They were asked to make the movement as accurate as possible (i.e., fewer errors) and the number of total touches (errors) in 24 trials was calculated as the scores of the tests. The results showed that the higher frequency of PG led to more accurate performance during the practice phase. However, the group that received 75% PG had significantly better performance compared to the other groups in the retention phase. It is concluded that the optimal frequency of PG played a critical role in learning a tracking task in children with CP and likely this population may benefit from an optimal level of PG to get the appropriate amount of information confirming the challenge point framework (CPF), which state that too much or too little information will retard learning a motor skill. Therefore, an optimum level of PG may help these children to identify appropriate patterns of motor skill using extrinsic information they receive through PG and improve learning by activating the intrinsic feedback mechanisms.

Keywords: cerebral palsy, challenge point framework, motor learning, physical guidance, tracking task

Procedia PDF Downloads 73
5541 ANOVA-Based Feature Selection and Machine Learning System for IoT Anomaly Detection

Authors: Muhammad Ali

Abstract:

Cyber-attacks and anomaly detection on the Internet of Things (IoT) infrastructure is emerging concern in the domain of data-driven intrusion. Rapidly increasing IoT risk is now making headlines around the world. denial of service, malicious control, data type probing, malicious operation, DDos, scan, spying, and wrong setup are attacks and anomalies that can affect an IoT system failure. Everyone talks about cyber security, connectivity, smart devices, and real-time data extraction. IoT devices expose a wide variety of new cyber security attack vectors in network traffic. For further than IoT development, and mainly for smart and IoT applications, there is a necessity for intelligent processing and analysis of data. So, our approach is too secure. We train several machine learning models that have been compared to accurately predicting attacks and anomalies on IoT systems, considering IoT applications, with ANOVA-based feature selection with fewer prediction models to evaluate network traffic to help prevent IoT devices. The machine learning (ML) algorithms that have been used here are KNN, SVM, NB, D.T., and R.F., with the most satisfactory test accuracy with fast detection. The evaluation of ML metrics includes precision, recall, F1 score, FPR, NPV, G.M., MCC, and AUC & ROC. The Random Forest algorithm achieved the best results with less prediction time, with an accuracy of 99.98%.

Keywords: machine learning, analysis of variance, Internet of Thing, network security, intrusion detection

Procedia PDF Downloads 127
5540 Deep Q-Network for Navigation in Gazebo Simulator

Authors: Xabier Olaz Moratinos

Abstract:

Drone navigation is critical, particularly during the initial phases, such as the initial ascension, where pilots may fail due to strong external interferences that could potentially lead to a crash. In this ongoing work, a drone has been successfully trained to perform an ascent of up to 6 meters at speeds with external disturbances pushing it up to 24 mph, with the DQN algorithm managing external forces affecting the system. It has been demonstrated that the system can control its height, position, and stability in all three axes (roll, pitch, and yaw) throughout the process. The learning process is carried out in the Gazebo simulator, which emulates interferences, while ROS is used to communicate with the agent.

Keywords: machine learning, DQN, Gazebo, navigation

Procedia PDF Downloads 81
5539 From the Classroom to Digital Learning Environments: An Action Research on Pedagogical Practices in Higher Education

Authors: Marie Alexandre, Jean Bernatchez

Abstract:

This paper focuses on the complexity of the face-to-face-to-distance learning transition process. Our research action aims to support the process of transition from classroom to distance learning for teachers in higher education with regard to pedagogical practices that can meet the various needs of students using digital learning environments. In Quebec and elsewhere in the world, the advent of digital education is helping to transform teaching, which is significantly changing the role of teachers. While distance education implies a dissociation of teaching and learning to a variable degree in space and time, distance education (DE) is becoming more and increasingly becoming a preferred option for maintaining the delivery of certain programs and providing access to programs and to provide access to quality activities throughout Quebec. Given the impact of teaching practices on educational success, this paper reports on the results of three research objectives: 1) To document teachers' knowledge of teaching in distance education through the design, experimentation and production of a repertoire of the determinants of pedagogical practices in response to students' needs. 2) Explain, according to a gendered logic, the adequacy between the pedagogical practices implemented in distance learning and the response to the profiles and needs expressed by students using digital learning environments; 3) Produce a model of a support approach during the process of transition from classroom to distance learning at the college level. A mixed methodology, i.e., a quantitative component (questionnaire survey) and a qualitative component (explanatory interviews and living lab) was used in cycles that were part of an ongoing validation process. The intervention includes the establishment of a professional collaboration group, webinars training webinars for the participating teachers on the didactic issue of knowledge-teaching in FAD, the didactic use of technologies, and the differentiated socialization models of educational success in college education. All of the tools developed will be used by partners in the target environment as well as by all teacher educators, students in initial teacher training, practicing teachers, and the general public. The results show that access to training leading to qualifications and commitment to educational success reflects the existing links between the people in the educational community. The relational stakes of being present in distance education take on multiple configurations and different dimensions of learning testify to needs and realities that are sometimes distinct depending on the life cycle. This project will be of interest to partners in the targeted field as well as to all teacher trainers, students in initial teacher training, practicing college teachers, and to university professors. The entire educational community will benefit from digital resources in education. The scientific knowledge resulting from this action research will benefit researchers in the fields of pedagogy, didactics, teacher training and pedagogy in higher education in a digital context.

Keywords: action research, didactics, digital learning environment, distance learning, higher education, pedagogy technological, pedagogical content knowledge

Procedia PDF Downloads 90
5538 Hierarchical Tree Long Short-Term Memory for Sentence Representations

Authors: Xiuying Wang, Changliang Li, Bo Xu

Abstract:

A fixed-length feature vector is required for many machine learning algorithms in NLP field. Word embeddings have been very successful at learning lexical information. However, they cannot capture the compositional meaning of sentences, which prevents them from a deeper understanding of language. In this paper, we introduce a novel hierarchical tree long short-term memory (HTLSTM) model that learns vector representations for sentences of arbitrary syntactic type and length. We propose to split one sentence into three hierarchies: short phrase, long phrase and full sentence level. The HTLSTM model gives our algorithm the potential to fully consider the hierarchical information and long-term dependencies of language. We design the experiments on both English and Chinese corpus to evaluate our model on sentiment analysis task. And the results show that our model outperforms several existing state of the art approaches significantly.

Keywords: deep learning, hierarchical tree long short-term memory, sentence representation, sentiment analysis

Procedia PDF Downloads 350
5537 Creative Thinking through Mindful Practices: A Business Class Case Study

Authors: Malavika Sundararajan

Abstract:

This study introduces the use of mindfulness techniques in the classroom to make individuals aware of how the creative thinking process works, resulting in more constructive learning and application. Case observation method was utilized within a classroom setting in a graduate class in the Business School. It entailed, briefing the student participants about the use of a template called the dots and depths map, and having them complete it for themselves, compare it to their team members and reflect on the outputs. Finally, they were debriefed about the use of the template and its value to their learning and creative application process. The major finding is the increase in awareness levels of the participants following the use of the template, leading to a subsequent pursuit of diverse knowledge and acquisition of relevant information and not jumping to solutions directly, which increased their overall creative outputs for the given assignment. The significant value of this study is that it can be applied to any classroom on any subject as a powerful mindfulness tool which increases creative problem solving through constructive knowledge building.

Keywords: connecting dots, mindful awareness, constructive knowledge building, learning creatively

Procedia PDF Downloads 153
5536 Testing Supportive Feedback Strategies in Second/Foreign Language Vocabulary Acquisition between Typically Developing Children and Children with Learning Disabilities

Authors: Panagiota A. Kotsoni, George S. Ypsilandis

Abstract:

Learning an L2 is a demanding process for all students and in particular for those with learning disabilities (LD) who demonstrate an inability to catch up with their classmates’ progress in a given period of time. This area of study, i.e. examining children with learning disabilities in L2 has not (yet) attracted the growing interest that is registered in L1 and thus remains comparatively neglected. It is this scientific field that this study wishes to contribute to. The longitudinal purpose of this study is to locate effective Supportive Feedback Strategies (SFS) and add to the quality of learning in second language vocabulary in both typically developing (TD) and LD children. Specifically, this study aims at investigating and comparing the performance of TD with LD children on two different types of SFSs related to vocabulary short and long-term retention. In this study two different SFSs have been examined to a total of ten (10) unknown vocabulary items. Both strategies provided morphosyntactic clarifications upon new contextualized vocabulary items. The traditional SFS (direct) provided the information only in one hypertext page with a selection on the relevant item. The experimental SFS (engaging) provided the exact same split information in three successive hypertext pages in the form of a hybrid dialogue asking from the subjects to move on to the next page by selecting the relevant link. It was hypothesized that this way the subjects would engage in their own learning process by actively asking for more information which would further lead to their better retention. The participants were fifty-two (52) foreign language learners (33 TD and 19 LD) aged from 9 to 12, attending an English language school at the level of A1 (CEFR). The design of the study followed a typical pre-post-post test procedure after an hour and after a week. The results indicated statistically significant group differences with TD children performing significantly better than the LD group in both short and long-term memory measurements and in both SFSs. As regards the effectiveness of one SFS over another the initial hypothesis was not supported by the evidence as the traditional SFS was more effective compared to the experimental one in both TD and LD children. This difference proved to be statistically significant only in the long-term memory measurement and only in the TD group. It may be concluded that the human brain seems to adapt to different SFS although it shows a small preference when information is provided in a direct manner.

Keywords: learning disabilities, memory, second/foreign language acquisition, supportive feedback

Procedia PDF Downloads 285
5535 Amharic Text News Classification Using Supervised Learning

Authors: Misrak Assefa

Abstract:

The Amharic language is the second most widely spoken Semitic language in the world. There are several new overloaded on the web. Searching some useful documents from the web on a specific topic, which is written in the Amharic language, is a challenging task. Hence, document categorization is required for managing and filtering important information. In the classification of Amharic text news, there is still a gap in the domain of information that needs to be launch. This study attempts to design an automatic Amharic news classification using a supervised learning mechanism on four un-touch classes. To achieve this research, 4,182 news articles were used. Naive Bayes (NB) and Decision tree (j48) algorithms were used to classify the given Amharic dataset. In this paper, k-fold cross-validation is used to estimate the accuracy of the classifier. As a result, it shows those algorithms can be applicable in Amharic news categorization. The best average accuracy result is achieved by j48 decision tree and naïve Bayes is 95.2345 %, and 94.6245 % respectively using three categories. This research indicated that a typical decision tree algorithm is more applicable to Amharic news categorization.

Keywords: text categorization, supervised machine learning, naive Bayes, decision tree

Procedia PDF Downloads 213
5534 Improved Rare Species Identification Using Focal Loss Based Deep Learning Models

Authors: Chad Goldsworthy, B. Rajeswari Matam

Abstract:

The use of deep learning for species identification in camera trap images has revolutionised our ability to study, conserve and monitor species in a highly efficient and unobtrusive manner, with state-of-the-art models achieving accuracies surpassing the accuracy of manual human classification. The high imbalance of camera trap datasets, however, results in poor accuracies for minority (rare or endangered) species due to their relative insignificance to the overall model accuracy. This paper investigates the use of Focal Loss, in comparison to the traditional Cross Entropy Loss function, to improve the identification of minority species in the “255 Bird Species” dataset from Kaggle. The results show that, although Focal Loss slightly decreased the accuracy of the majority species, it was able to increase the F1-score by 0.06 and improve the identification of the bottom two, five and ten (minority) species by 37.5%, 15.7% and 10.8%, respectively, as well as resulting in an improved overall accuracy of 2.96%.

Keywords: convolutional neural networks, data imbalance, deep learning, focal loss, species classification, wildlife conservation

Procedia PDF Downloads 195
5533 A Readiness Framework for Digital Innovation in Education: The Context of Academics and Policymakers in Higher Institutions of Learning to Assess the Preparedness of Their Institutions to Adopt and Incorporate Digital Innovation

Authors: Lufungula Osembe

Abstract:

The field of education has witnessed advances in technology and digital transformation. The methods of teaching have undergone significant changes in recent years, resulting in effects on various areas such as pedagogies, curriculum design, personalized teaching, gamification, data analytics, cloud-based learning applications, artificial intelligence tools, advanced plug-ins in LMS, and the emergence of multimedia creation and design. The field of education has not been immune to the changes brought about by digital innovation in recent years, similar to other fields such as engineering, health, science, and technology. There is a need to look at the variables/elements that digital innovation brings to education and develop a framework for higher institutions of learning to assess their readiness to create a viable environment for digital innovation to be successfully adopted. Given the potential benefits of digital innovation in education, it is essential to develop a framework that can assist academics and policymakers in higher institutions of learning to evaluate the effectiveness of adopting and adapting to the evolving landscape of digital innovation in education. The primary research question addressed in this study is to establish the preparedness of higher institutions of learning to adopt and adapt to the evolving landscape of digital innovation. This study follows a Design Science Research (DSR) paradigm to develop a framework for academics and policymakers in higher institutions of learning to evaluate the readiness of their institutions to adopt digital innovation in education. The Design Science Research paradigm is proposed to aid in developing a readiness framework for digital innovation in education. This study intends to follow the Design Science Research (DSR) methodology, which includes problem awareness, suggestion, development, evaluation, and conclusion. One of the major contributions of this study will be the development of the framework for digital innovation in education. Given the various opportunities offered by digital innovation in recent years, the need to create a readiness framework for digital innovation will play a crucial role in guiding academics and policymakers in their quest to align with emerging technologies facilitated by digital innovation in education.

Keywords: digital innovation, DSR, education, opportunities, research

Procedia PDF Downloads 72
5532 Principal Component Analysis Combined Machine Learning Techniques on Pharmaceutical Samples by Laser Induced Breakdown Spectroscopy

Authors: Kemal Efe Eseller, Göktuğ Yazici

Abstract:

Laser-induced breakdown spectroscopy (LIBS) is a rapid optical atomic emission spectroscopy which is used for material identification and analysis with the advantages of in-situ analysis, elimination of intensive sample preparation, and micro-destructive properties for the material to be tested. LIBS delivers short pulses of laser beams onto the material in order to create plasma by excitation of the material to a certain threshold. The plasma characteristics, which consist of wavelength value and intensity amplitude, depends on the material and the experiment’s environment. In the present work, medicine samples’ spectrum profiles were obtained via LIBS. Medicine samples’ datasets include two different concentrations for both paracetamol based medicines, namely Aferin and Parafon. The spectrum data of the samples were preprocessed via filling outliers based on quartiles, smoothing spectra to eliminate noise and normalizing both wavelength and intensity axis. Statistical information was obtained and principal component analysis (PCA) was incorporated to both the preprocessed and raw datasets. The machine learning models were set based on two different train-test splits, which were 70% training – 30% test and 80% training – 20% test. Cross-validation was preferred to protect the models against overfitting; thus the sample amount is small. The machine learning results of preprocessed and raw datasets were subjected to comparison for both splits. This is the first time that all supervised machine learning classification algorithms; consisting of Decision Trees, Discriminant, naïve Bayes, Support Vector Machines (SVM), k-NN(k-Nearest Neighbor) Ensemble Learning and Neural Network algorithms; were incorporated to LIBS data of paracetamol based pharmaceutical samples, and their different concentrations on preprocessed and raw dataset in order to observe the effect of preprocessing.

Keywords: machine learning, laser-induced breakdown spectroscopy, medicines, principal component analysis, preprocessing

Procedia PDF Downloads 91
5531 Multi-Level Air Quality Classification in China Using Information Gain and Support Vector Machine

Authors: Bingchun Liu, Pei-Chann Chang, Natasha Huang, Dun Li

Abstract:

Machine Learning and Data Mining are the two important tools for extracting useful information and knowledge from large datasets. In machine learning, classification is a wildly used technique to predict qualitative variables and is generally preferred over regression from an operational point of view. Due to the enormous increase in air pollution in various countries especially China, Air Quality Classification has become one of the most important topics in air quality research and modelling. This study aims at introducing a hybrid classification model based on information theory and Support Vector Machine (SVM) using the air quality data of four cities in China namely Beijing, Guangzhou, Shanghai and Tianjin from Jan 1, 2014 to April 30, 2016. China's Ministry of Environmental Protection has classified the daily air quality into 6 levels namely Serious Pollution, Severe Pollution, Moderate Pollution, Light Pollution, Good and Excellent based on their respective Air Quality Index (AQI) values. Using the information theory, information gain (IG) is calculated and feature selection is done for both categorical features and continuous numeric features. Then SVM Machine Learning algorithm is implemented on the selected features with cross-validation. The final evaluation reveals that the IG and SVM hybrid model performs better than SVM (alone), Artificial Neural Network (ANN) and K-Nearest Neighbours (KNN) models in terms of accuracy as well as complexity.

Keywords: machine learning, air quality classification, air quality index, information gain, support vector machine, cross-validation

Procedia PDF Downloads 238
5530 Modern Scotland Yard: Improving Surveillance Policies Using Adversarial Agent-Based Modelling and Reinforcement Learning

Authors: Olaf Visker, Arnout De Vries, Lambert Schomaker

Abstract:

Predictive policing refers to the usage of analytical techniques to identify potential criminal activity. It has been widely implemented by various police departments. Being a relatively new area of research, there are, to the author’s knowledge, no absolute tried, and true methods and they still exhibit a variety of potential problems. One of those problems is closely related to the lack of understanding of how acting on these prediction influence crime itself. The goal of law enforcement is ultimately crime reduction. As such, a policy needs to be established that best facilitates this goal. This research aims to find such a policy by using adversarial agent-based modeling in combination with modern reinforcement learning techniques. It is presented here that a baseline model for both law enforcement and criminal agents and compare their performance to their respective reinforcement models. The experiments show that our smart law enforcement model is capable of reducing crime by making more deliberate choices regarding the locations of potential criminal activity. Furthermore, it is shown that the smart criminal model presents behavior consistent with popular crime theories and outperforms the baseline model in terms of crimes committed and time to capture. It does, however, still suffer from the difficulties of capturing long term rewards and learning how to handle multiple opposing goals.

Keywords: adversarial, agent based modelling, predictive policing, reinforcement learning

Procedia PDF Downloads 150
5529 Educational Innovation through Coaching and Mentoring in Thailand: A Mixed Method Evaluation of the Training Outcomes

Authors: Kanu Priya Mohan

Abstract:

Innovation in education is one of the essential pathways to achieve both educational, and development goals in today’s dynamically changing world. Over the last decade, coaching and mentoring have been applied in the field of education as positive intervention techniques for fostering teaching and learning reforms in the developed countries. The context of this research was Thailand’s educational reform process, wherein a project on coaching and mentoring (C&M) was launched in 2014. The C&M project endeavored to support the professional development of the school teachers in the various provinces of Thailand, and to also enable them to apply C&M for teaching innovative instructional techniques. This research aimed to empirically investigate the learning outcomes for the master trainers, who trained for coaching and mentoring as the first step in the process to train the school teachers. A mixed method study was used for evaluating the learning outcomes of training in terms of cognitive- behavioral-affective dimensions. In the first part of the research a quantitative research design was incorporated to evaluate the effects of learner characteristics and instructional techniques, on the learning outcomes. In the second phase, a qualitative method of in-depth interviews was used to find details about the training outcomes, as well as the perceived barriers and enablers of the training process. Sample size constraints were there, yet these exploratory results, integrated from both methods indicated the significance of evaluating training outcomes from the three dimensions, and the perceived role of other factors in the training. Findings are discussed in terms of their implications for the training of C&M, and also their impact in fostering positive education through innovative educational techniques in the developing countries.

Keywords: cognitive-behavioral-affective learning outcomes, mixed method research, teachers in Thailand, training evaluation

Procedia PDF Downloads 276
5528 Review of Different Machine Learning Algorithms

Authors: Syed Romat Ali Shah, Bilal Shoaib, Saleem Akhtar, Munib Ahmad, Shahan Sadiqui

Abstract:

Classification is a data mining technique, which is recognizedon Machine Learning (ML) algorithm. It is used to classifythe individual articlein a knownofinformation into a set of predefinemodules or group. Web mining is also a portion of that sympathetic of data mining methods. The main purpose of this paper to analysis and compare the performance of Naïve Bayse Algorithm, Decision Tree, K-Nearest Neighbor (KNN), Artificial Neural Network (ANN)and Support Vector Machine (SVM). This paper consists of different ML algorithm and their advantages and disadvantages and also define research issues.

Keywords: Data Mining, Web Mining, classification, ML Algorithms

Procedia PDF Downloads 304
5527 Teaching Health in an Online 3D Virtual Learning Environment

Authors: Nik Siti Hanifah Nik Ahmad

Abstract:

This research discuss about teaching cupping therapy or hijama by using an online 3D Virtual Learning Environment. The experimental platform was using of flash and Second Life as 2D and 3D comparison. 81 samples have been used in three experiments with 21 in the first and 30 in each second and third. The design of the presentation was tested in five categories such as effectiveness, ease of use, efficacy, aesthetic and users’ satisfaction. The results from three experiments had shown promising outcome for usage of the technique to be implement in teaching Cupping Therapy as well as other alternative or conventional medicine knowledge especially for training.

Keywords: medical and health, cupping therapy or hijama, second life, online 3D VLE, virtual worlds

Procedia PDF Downloads 423
5526 Infusing Social Business Skills into the Curriculum of Higher Learning Institutions with Special Reference to Albukhari International University

Authors: Abdi Omar Shuriye

Abstract:

A social business is a business designed to address socio-economic problems to enhance the welfare of the communities involved. Lately, social business, with its focus on innovative ideas, is capturing the interest of educational institutions, governments, and non-governmental organizations. Social business uses a business model to achieve a social goal, and in the last few decades, the idea of imbuing social business into the education system of higher learning institutions has spurred much excitement. This is due to the belief that it will lead to job creation and increased social resilience. One of the higher learning institutions which have invested immensely in the idea is Albukhari International University; it is a private education institution, on a state-of-the-art campus, providing an advantageous learning ecosystem. The niche area of this institution is social business, and it graduates job creators, not job seekers; this Malaysian institution is unique and one of its kind. The objective of this paper is to develop a work plan, direction, and milestone as well as the focus area for the infusion of social business into higher learning institutions with special reference to Al-Bukhari International University. The purpose is to develop a prototype and model full-scale to enable higher learning education institutions to construct the desired curriculum fermented with social business. With this model, major predicaments faced by these institutions could be overcome. The paper sets forth an educational plan and will spell out the basic tenets of social business, focusing on the nature and implementational aspects of the curriculum. It will also evaluate the mechanisms applied by these educational institutions. Currently, since research in this area remains scarce, institutions adopt the process of experimenting with various methods to find the best way to reach the desired result on the matter. The author is of the opinion that social business in education is the main tool to educate holistic future leaders; hence educational institutions should inspire students in the classroom to start up their own businesses by adopting creative and proactive teaching methods. This proposed model is a contribution in that direction.

Keywords: social business, curriculum, skills, university

Procedia PDF Downloads 95
5525 Children’s (re)actions in the Scaffolding Process Using Digital Technologies

Authors: Davoud Masoumi, Maryam Bourbour

Abstract:

By characterizing children’s actions in the scaffolding process, which is often undermined and ignored in the studies reviewed, this study aimed to examine children’s different (re)actions in relation to the teachers’ actions in a context where digital technologies are used. Over five months, 22 children aged 4-6 with five preschool teachers were video observed. The study brought in rich details of the children’s actions in relation to the teacher’s actions in the scaffolding process. The findings of the study reveal thirteen (re)actions, including Giving short response; Explaining; Participating in the activities; Examining; Smiling and laughing; Pointing and showing; Working together; Challenging each other; Problem-solving skills; Developing vocabulary; Choosing the activity; Expressing of the emotions; and Identifying the similarities and differences. Our findings expanded and deepened the understanding of the scaffolding process, which can contribute to the notion of scaffolding and help us to gain further understanding about scaffolding of children’s learning. Characterizing the children’s (re)action in relation to teacher’s scaffolding actions further can contribute to ongoing discussions about how teachers can scaffold children’s learning using digital technologies in the learning process.

Keywords: children’ (re)actions, scaffolding process, technologies, preschools

Procedia PDF Downloads 85
5524 FlexPoints: Efficient Algorithm for Detection of Electrocardiogram Characteristic Points

Authors: Daniel Bulanda, Janusz A. Starzyk, Adrian Horzyk

Abstract:

The electrocardiogram (ECG) is one of the most commonly used medical tests, essential for correct diagnosis and treatment of the patient. While ECG devices generate a huge amount of data, only a small part of them carries valuable medical information. To deal with this problem, many compression algorithms and filters have been developed over the past years. However, the rapid development of new machine learning techniques poses new challenges. To address this class of problems, we created the FlexPoints algorithm that searches for characteristic points on the ECG signal and ignores all other points that do not carry relevant medical information. The conducted experiments proved that the presented algorithm can significantly reduce the number of data points which represents ECG signal without losing valuable medical information. These sparse but essential characteristic points (flex points) can be a perfect input for some modern machine learning models, which works much better using flex points as an input instead of raw data or data compressed by many popular algorithms.

Keywords: characteristic points, electrocardiogram, ECG, machine learning, signal compression

Procedia PDF Downloads 166
5523 Comparison of Deep Learning and Machine Learning Algorithms to Diagnose and Predict Breast Cancer

Authors: F. Ghazalnaz Sharifonnasabi, Iman Makhdoom

Abstract:

Breast cancer is a serious health concern that affects many people around the world. According to a study published in the Breast journal, the global burden of breast cancer is expected to increase significantly over the next few decades. The number of deaths from breast cancer has been increasing over the years, but the age-standardized mortality rate has decreased in some countries. It’s important to be aware of the risk factors for breast cancer and to get regular check- ups to catch it early if it does occur. Machin learning techniques have been used to aid in the early detection and diagnosis of breast cancer. These techniques, that have been shown to be effective in predicting and diagnosing the disease, have become a research hotspot. In this study, we consider two deep learning approaches including: Multi-Layer Perceptron (MLP), and Convolutional Neural Network (CNN). We also considered the five-machine learning algorithm titled: Decision Tree (C4.5), Naïve Bayesian (NB), Support Vector Machine (SVM), K-Nearest Neighbors (KNN) Algorithm and XGBoost (eXtreme Gradient Boosting) on the Breast Cancer Wisconsin Diagnostic dataset. We have carried out the process of evaluating and comparing classifiers involving selecting appropriate metrics to evaluate classifier performance and selecting an appropriate tool to quantify this performance. The main purpose of the study is predicting and diagnosis breast cancer, applying the mentioned algorithms and also discovering of the most effective with respect to confusion matrix, accuracy and precision. It is realized that CNN outperformed all other classifiers and achieved the highest accuracy (0.982456). The work is implemented in the Anaconda environment based on Python programing language.

Keywords: breast cancer, multi-layer perceptron, Naïve Bayesian, SVM, decision tree, convolutional neural network, XGBoost, KNN

Procedia PDF Downloads 80
5522 WebAppShield: An Approach Exploiting Machine Learning to Detect SQLi Attacks in an Application Layer in Run-time

Authors: Ahmed Abdulla Ashlam, Atta Badii, Frederic Stahl

Abstract:

In recent years, SQL injection attacks have been identified as being prevalent against web applications. They affect network security and user data, which leads to a considerable loss of money and data every year. This paper presents the use of classification algorithms in machine learning using a method to classify the login data filtering inputs into "SQLi" or "Non-SQLi,” thus increasing the reliability and accuracy of results in terms of deciding whether an operation is an attack or a valid operation. A method Web-App auto-generated twin data structure replication. Shielding against SQLi attacks (WebAppShield) that verifies all users and prevents attackers (SQLi attacks) from entering and or accessing the database, which the machine learning module predicts as "Non-SQLi" has been developed. A special login form has been developed with a special instance of data validation; this verification process secures the web application from its early stages. The system has been tested and validated, up to 99% of SQLi attacks have been prevented.

Keywords: SQL injection, attacks, web application, accuracy, database

Procedia PDF Downloads 154
5521 Connecting Lives Inside and Outside the Classroom: Why and How to Implement Technology in the Language Learning Classroom

Authors: Geoffrey Sinha

Abstract:

This paper is primarily addressed to teachers who stand on the threshold of bringing technology and new media into their classrooms. Technology and new media, such as smart phones and tablets have changed the face of communication in general and of language teaching more specifically. New media has widespread appeal among young people in particular, so it is in the teacher’s best interests to bring new media into their lessons. It is the author’s firm belief that technology will never replace the teacher, but it is without question that the twenty-first century teacher must employ technology and new media in some form, or run the risk of failure. The level that one chooses to incorporate new media within their class is entirely in their hands.

Keywords: new media, social media, technology, education, language learning

Procedia PDF Downloads 335
5520 Information and Communication Technology Application in the Face of COVID-19 Pandemic in Effective Service Delivery in Schools

Authors: Odigie Veronica

Abstract:

The paper focused on the application of Information and Communication Technology (ICT) in effective service delivery in view of the ongoing COVID-19 experience. It adopted the exploratory research method with three research objectives captured. Consequently, the objectives were to ascertain the meaning of online education, understand the concept of COVID-19 and to determine the relevance of online education in effective service delivery in institutions of learning. It is evident from the findings that through ICT, online mode of learning can be adopted in schools which helps greatly in promoting continual education. Online mode of education is practiced online; it brings both the teacher and learners from different places together, without any physical boundary/contact (at least 75%); and has helped greatly in human development in countries where it has been practiced. It is also a welcome development owing to its many benefits such as exposure to digital learning, having access to works of great teachers and educationists such as Socrates, Plato, Dewey, R.S. Peters, J. J. Rosseau, Nnamdi Azikwe, Carol Gilligan, J. I. Omoregbe, Jane Roland Martin, Jean Piaget, among others; and the facilitation of uninterrupted learning for class promotion and graduation of students. Developing the learners all round is part of human development which helps in developing a nation. These and many more are some benefits online education offers which make ICT very relevant in our contemporary society

Keywords: online education, COVID-19 pandemic, effective service delivery, human development

Procedia PDF Downloads 102
5519 Aligning Informatics Study Programs with Occupational and Qualifications Standards

Authors: Patrizia Poscic, Sanja Candrlic, Danijela Jaksic

Abstract:

The University of Rijeka, Department of Informatics participated in the Stand4Info project, co-financed by the European Union, with the main idea of an alignment of study programs with occupational and qualifications standards in the field of Informatics. A brief overview of our research methodology, goals and deliverables is shown. Our main research and project objectives were: a) development of occupational standards, qualification standards and study programs based on the Croatian Qualifications Framework (CROQF), b) higher education quality improvement in the field of information and communication sciences, c) increasing the employability of students of information and communication technology (ICT) and science, and d) continuously improving competencies of teachers in accordance with the principles of CROQF. CROQF is a reform instrument in the Republic of Croatia for regulating the system of qualifications at all levels through qualifications standards based on learning outcomes and following the needs of the labor market, individuals and society. The central elements of CROQF are learning outcomes - competences acquired by the individual through the learning process and proved afterward. The place of each acquired qualification is set by the level of the learning outcomes belonging to that qualification. The placement of qualifications at respective levels allows the comparison and linking of different qualifications, as well as linking of Croatian qualifications' levels to the levels of the European Qualifications Framework and the levels of the Qualifications framework of the European Higher Education Area. This research has made 3 proposals of occupational standards for undergraduate study level (System Analyst, Developer, ICT Operations Manager), and 2 for graduate (master) level (System Architect, Business Architect). For each occupational standard employers have provided a list of key tasks and associated competencies necessary to perform them. A set of competencies required for each particular job in the workplace was defined and each set of competencies as described in more details by its individual competencies. Based on sets of competencies from occupational standards, sets of learning outcomes were defined and competencies from the occupational standard were linked with learning outcomes. For each learning outcome, as well as for the set of learning outcomes, it was necessary to specify verification method, material, and human resources. The task of the project was to suggest revision and improvement of the existing study programs. It was necessary to analyze existing programs and determine how they meet and fulfill defined learning outcomes. This way, one could see: a) which learning outcomes from the qualifications standards are covered by existing courses, b) which learning outcomes have yet to be covered, c) are they covered by mandatory or elective courses, and d) are some courses unnecessary or redundant. Overall, the main research results are: a) completed proposals of qualification and occupational standards in the field of ICT, b) revised curricula of undergraduate and master study programs in ICT, c) sustainable partnership and association stakeholders network, d) knowledge network - informing the public and stakeholders (teachers, students, and employers) about the importance of CROQF establishment, and e) teachers educated in innovative methods of teaching.

Keywords: study program, qualification standard, occupational standard, higher education, informatics and computer science

Procedia PDF Downloads 144
5518 Best Practices in Designing a Mentoring Programme for Soft Skills Development

Authors: D. Kokt, T. F. Dreyer

Abstract:

The main objective of the study was to design a mentoring programme aimed at developing the soft skills of mentors. The mentors are all employed by a multinational corporation. The company had a mentoring plan in place that did not yield the required results, especially related to the development of soft skills. This prompted the researchers to conduct an extensive literature review followed by a mixed methods approach to ascertain the best practices in developing the soft skills of mentors. The outcomes of the study led to the development of a structured mentoring programme using 25 modules to be completed by mentors. The design incorporated a blended modular approach using both face-to-face teaching and teaching supported by Information Communication Technology (ICT). Blended learning was ideal as the ICT component helped to minimise instructor-mentor physical contact as part of the health measures during the Covid-19 pandemic. The blended learning approach also allowed instructors and mentors an online or offline mode, so that mentors could have more time for creative and cooperative exercises. A range of delivery methodologies were spread out across the different modules to ensure mentor engagement and accelerate mentor development. This included concept development through in-person instructor-led training sessions, concept development through virtual instructor-led training sessions, simulations, case studies, e-learning, role plays, interactive learning using mentoring toolkits, and experiential learning through application. The mentor development journey included formal modular competency assessments. All modules contained post-competency assessment consisting of 10 questions (comprising of a combination of explanatory questions and multiple-choice questions) to ensure understanding and deal with identified competency gaps. The minimum pass mark for all modular competency assessments was 80%. Mentors were allowed to retake the assessment if they scored less than 80% until they demonstrated understanding at the required level.

Keywords: mentor, mentee, soft skills, mentor development, blended learning, modular approach

Procedia PDF Downloads 32
5517 Improvement of Autism Diagnostic Observation Schedule Scores after Comprehensive Intensive Early Interventions in a Clinical Setting

Authors: Nils Haglund, Svenolof Dahlgren, Maria Rastam, Peik Gustafsson, Karin Kalien

Abstract:

In Sweden, like in most developed countries, there is a substantial increase of children diagnosed with autism and other conditions within the autism spectrum (ASD). The rapid increase of ASD rates stresses the importance of developing care programs to provide support and comprehensive interventions for affected families. The current observational study was conducted in order to evaluate an ongoing Comprehensive Intensive Early Intervention (CIEI) program for children with autism in southern Sweden. The change in autism symptoms among children participating in CIEI (intervention group, n=67) was compared with children who received traditional habilitation services only (comparison group, n=27). Children of parents who accepted the offered CIEI-program, constituted the intervention group, whereas children, whose parents (for some reason) were not interested in the offered CIEI-program, constituted the comparison group. The CIEI-program was individualized to each child by experienced applied behavior analysis (ABA) specialists with different backgrounds as psychologists, speech pathologists or special education teachers, in cooperation with parents and preschool staff. Due to the individualization, the intervention could vary in intensity and techniques. The intensity was calculated to 15-25 hours each week at home and the preschool altogether. Each child was assigned one 'trainer', who was often employed as a preschool teacher but could have another educational background. An agreement between supervisor- parents and preschool staff was reached to confirm the intensity and content of the CIEI- program over an approximately two-year intervention period. Symptom changes were measured as evaluation-ADOS-2-scores, total- and severity-scores, minus the corresponding baseline-scores, divided by the time between baseline and evaluation. The difference between the study-groups regarding change of ADOS-2-scores was estimated using ANCOVA. In the current study, children in the CIEI-group improved their ADOS-2-total scores between baseline and evaluation (-0.8 scores per year; 95%CI: -1.2 to -0.4), whereas no such improvement was detected in the comparison group (+0.1 scores per year; 95%CI: -0.7 to +0.9). The change difference (change in the CIEI-group vs. change in the comparison group) was statistically significant, both crude and after adjusting for possible confounders (-1.1; 95%CI -1.9 to -0.4). Children in the CIEI-group also significantly improved their ADOS-calibrated severity scores, but not significantly differently so from the comparison group. The results from the current study indicate that the CIEI program significantly improves social and communicative skills among children with autism and that children with developmental delay could benefit to a similar degree as other children. The results support earlier studies reporting on the improvement of autism symptoms after early intensive interventions. The results from observational studies are difficult to interpret, but it is nevertheless of uttermost importance to evaluate costly autism intervention programs. Such results may be of immediate importance to healthcare organizations when allocating the already strained resources to different patient groups. Albeit the obvious limitation of the current naturalistic study, the results support previous positive studies and indicate that children with autism benefit from participating in early comprehensive, intensive programs and that investments in these programs may be highly justifiable.

Keywords: autism symptoms, ADOS-scores, evaluation, intervention program

Procedia PDF Downloads 146
5516 The Development of Educational Video Games Aimed at Enhancing Academic Motivation and Learning Among African American Males

Authors: Kenneth Philip Jones

Abstract:

This dissertation investigates the potential of developing educational-based video games to motivate and engage African American males. The study employed a qualitative methodological approach by investigating African American males who are avid video game players and are currently enrolled at a college or university. The participants were individually and collectively video and audio recorded during the interviews and observations. Situated Learning theory analyzed how motivation and engagement can transfer from a video game to an educational context. The research aims to address the disparities in our educational systems when it comes to providing a culture, climate, and atmosphere that will enable the academic development of African American males. The primary objective of the findings is based on the participants’ responses and the data collected to provide recommendations to educators and scholars on how to address the issues that have demoralized African American males in education and provide a platform that will allow for equality in educational development and advancement.

Keywords: video games, motivation, behavioral, learning transfer

Procedia PDF Downloads 124