Search results for: multi-temporal image classification
2518 A Qualitative Research of Online Fraud Decision-Making Process
Authors: Semire Yekta
Abstract:
Many online retailers set up manual review teams to overcome the limitations of automated online fraud detection systems. This study critically examines the strategies they adapt in their decision-making process to set apart fraudulent individuals from non-fraudulent online shoppers. The study uses a mix method research approach. 32 in-depth interviews have been conducted alongside with participant observation and auto-ethnography. The study found out that all steps of the decision-making process are significantly affected by a level of subjectivity, personal understandings of online fraud, preferences and judgments and not necessarily by objectively identifiable facts. Rather clearly knowing who the fraudulent individuals are, the team members have to predict whether they think the customer might be a fraudster. Common strategies used are relying on the classification and fraud scorings in the automated fraud detection systems, weighing up arguments for and against the customer and making a decision, using cancellation to test customers’ reaction and making use of personal experiences and “the sixth sense”. The interaction in the team also plays a significant role given that some decisions turn into a group discussion. While customer data represent the basis for the decision-making, fraud management teams frequently make use of Google search and Google Maps to find out additional information about the customer and verify whether the customer is the person they claim to be. While this, on the one hand, raises ethical concerns, on the other hand, Google Street View on the address and area of the customer puts customers living in less privileged housing and areas at a higher risk of being classified as fraudsters. Phone validation is used as a final measurement to make decisions for or against the customer when previous strategies and Google Search do not suffice. However, phone validation is also characterized by individuals’ subjectivity, personal views and judgment on customer’s reaction on the phone that results in a final classification as genuine or fraudulent.Keywords: online fraud, data mining, manual review, social construction
Procedia PDF Downloads 3432517 Enhanced Acquisition Time of a Quantum Holography Scheme within a Nonlinear Interferometer
Authors: Sergio Tovar-Pérez, Sebastian Töpfer, Markus Gräfe
Abstract:
The work proposes a technique that decreases the detection acquisition time of quantum holography schemes down to one-third; this allows the possibility to image moving objects. Since its invention, quantum holography with undetected photon schemes has gained interest in the scientific community. This is mainly due to its ability to tailor the detected wavelengths according to the needs of the scheme implementation. Yet this wavelength flexibility grants the scheme a wide range of possible applications; an important matter was yet to be addressed. Since the scheme uses digital phase-shifting techniques to retrieve the information of the object out of the interference pattern, it is necessary to acquire a set of at least four images of the interference pattern along with well-defined phase steps to recover the full object information. Hence, the imaging method requires larger acquisition times to produce well-resolved images. As a consequence, the measurement of moving objects remains out of the reach of the imaging scheme. This work presents the use and implementation of a spatial light modulator along with a digital holographic technique called quasi-parallel phase-shifting. This technique uses the spatial light modulator to build a structured phase image consisting of a chessboard pattern containing the different phase steps for digitally calculating the object information. Depending on the reduction in the number of needed frames, the acquisition time reduces by a significant factor. This technique opens the door to the implementation of the scheme for moving objects. In particular, the application of this scheme in imaging alive specimens comes one step closer.Keywords: quasi-parallel phase shifting, quantum imaging, quantum holography, quantum metrology
Procedia PDF Downloads 1142516 Histopathological Features of Basal Cell Carcinoma: A Ten Year Retrospective Statistical Study in Egypt
Authors: Hala M. El-hanbuli, Mohammed F. Darweesh
Abstract:
The incidence rates of any tumor vary hugely with geographical location. Basal Cell Carcinoma (BCC) is one of the most common skin cancer that has many histopathologic subtypes. Objective: The aim was to study the histopathological features of BCC cases that were received in the Pathology Department, Kasr El-Aini hospital, Cairo University, Egypt during the period from Jan 2004 to Dec 2013 and to evaluate the clinical characters through the patient data available in the request sheets. Methods: Slides and data of BCC cases were collected from the archives of the pathology department, Kasr El-Aini hospital. Revision of all available slides and histological classification of BCC according to WHO (2006) was done. Results: A total number of 310 cases of BCC representing about 65% from the total number of malignant skin tumors examined during the 10-years duration in the department. The age ranged from 8 to 84 years, the mean age was (55.7 ± 15.5). Most of the patients (85%) were above the age of 40 years. There was a slight male predominance (55%). Ulcerated BCC was the most common gross picture (60%), followed by nodular lesion (30%) and finally the ulcerated nodule (10%). Most of the lesions situated in the high-risk sites (77%) where the nose was the most common site (35%) followed by the periocular area (22%), then periauricular (15%) and finally perioral (5%). No lesion was reported outside the head. The tumor size was less than 2 centimeters in 65% of cases, and from 2-5 centimeters in the lesions' greatest dimension in the rest of cases. Histopathological reclassification revealed that the nodular BCC was the most common (68%) followed by the pigmented nodular (18.75%). The histologic high-risk groups represented (7.5%) about half of them (3.75%) being basosquamous carcinoma. The total incidence for multiple BCC and 2nd primary was 12%. Recurrent BCC represented 8%. All of the recurrent lesions of BCC belonged to the histologic high-risk group. Conclusion: Basal Cell Carcinoma is the most common skin cancer in the 10-year survey. Histopathological diagnosis and classification of BCC cases are essential for the determination of the tumor type and its biological behavior.Keywords: basal cell carcinoma, high risk, histopathological features, statistical analysis
Procedia PDF Downloads 1492515 A Methodology for Developing New Technology Ideas to Avoid Patent Infringement: F-Term Based Patent Analysis
Authors: Kisik Song, Sungjoo Lee
Abstract:
With the growing importance of intangible assets recently, the impact of patent infringement on the business of a company has become more evident. Accordingly, it is essential for firms to estimate the risk of patent infringement risk before developing a technology and create new technology ideas to avoid the risk. Recognizing the needs, several attempts have been made to help develop new technology opportunities and most of them have focused on identifying emerging vacant technologies from patent analysis. In these studies, the IPC (International Patent Classification) system or keywords from text-mining application to patent documents was generally used to define vacant technologies. Unlike those studies, this study adopted F-term, which classifies patent documents according to the technical features of the inventions described in them. Since the technical features are analyzed by various perspectives by F-term, F-term provides more detailed information about technologies compared to IPC while more systematic information compared to keywords. Therefore, if well utilized, it can be a useful guideline to create a new technology idea. Recognizing the potential of F-term, this paper aims to suggest a novel approach to developing new technology ideas to avoid patent infringement based on F-term. For this purpose, we firstly collected data about F-term and then applied text-mining to the descriptions about classification criteria and attributes. From the text-mining results, we could identify other technologies with similar technical features of the existing one, the patented technology. Finally, we compare the technologies and extract the technical features that are commonly used in other technologies but have not been used in the existing one. These features are presented in terms of “purpose”, “function”, “structure”, “material”, “method”, “processing and operation procedure” and “control means” and so are useful for creating new technology ideas that help avoid infringing patent rights of other companies. Theoretically, this is one of the earliest attempts to adopt F-term to patent analysis; the proposed methodology can show how to best take advantage of F-term with the wealth of technical information. In practice, the proposed methodology can be valuable in the ideation process for successful product and service innovation without infringing the patents of other companies.Keywords: patent infringement, new technology ideas, patent analysis, F-term
Procedia PDF Downloads 2692514 Effect of Al on Glancing Angle Deposition Synthesized In₂O₃ Nanocolumn for Photodetector Application
Authors: Chitralekha Ngangbam, Aniruddha Mondal, Naorem Khelchand Singh
Abstract:
Aluminium (Al) doped In2O3 (Indium Oxide) nanocolumn array was synthesized by glancing angle deposition (GLAD) technique on Si (n-type) substrate for photodetector application. The sample was characterized by scanning electron microscopy (SEM). The average diameter of the nanocolumn was calculated from the top view of the SEM image and found to be ∼80 nm. The length of the nanocolumn (~500 nm) was calculated from cross sectional SEM image and it shows that the nanocolumns are perpendicular to the substrate. The EDX analysis confirmed the presence of Al (Aluminium), In (Indium), O (Oxygen) elements in the samples. The XRD patterns of the Al-doped In2O3 nanocolumn show the presence of different phases of the Al doped In2O3 nanocolumn i.e. (222) and (622). Three different peaks were observed from the PL analysis of Al doped In2O3 nanocolumn at 365 nm, 415 nm and 435 nm respectively. The peak at PL emission at 365 nm can be attributed to the near band gap transition of In2O3 whereas the peaks at 415 nm and 435 nm can be attributed to the trap state emissions due to oxygen vacancies and oxygen–indium vacancy centre in Al doped In2O3 nanocolumn. The current-voltage (I–V) characteristics of the Al doped In2O3 nanocolumn based detector was measured through the Au Schottky contact. The devices were then examined under the halogen light (20 W) illumination for photocurrent measurement. The Al-doped In2O3 nanocolumn based optical detector showed high conductivity and low turn on voltage at 0.69 V under white light illumination. A maximum photoresponsivity of 82 A/W at 380 nm was observed for the device. The device shows a high internal gain of ~267 at UV region (380 nm) and ∼127 at visible region (760 nm). Also the rise time and fall time for the device at 650 nm is 0.15 and 0.16 sec respectively which makes it suitable for fast response detector.Keywords: glancing angle deposition, nanocolumn, semiconductor, photodetector, indium oxide
Procedia PDF Downloads 1802513 Methodology and Credibility of Unmanned Aerial Vehicle-Based Cadastral Mapping
Authors: Ajibola Isola, Shattri Mansor, Ojogbane Sani, Olugbemi Tope
Abstract:
The cadastral map is the rationale behind city management planning and development. For years, cadastral maps have been produced by ground and photogrammetry platforms. Recent evolution in photogrammetry and remote sensing sensors ignites the use of Unmanned Aerial Vehicle systems (UAVs) for cadastral mapping. Despite the time-saving and multi-dimensional cost-effectiveness of the UAV platform, issues related to cadastral map accuracy are a hindrance to the wide applicability of UAVs' cadastral mapping. This study aims to present an approach leading to the generation and assessing the credibility of UAV cadastral mapping. Different sets of Red, Green, and Blue (RGB) photos were obtained from the Tarot 680-hexacopter UAV platform flown over the Universiti Putra Malaysia campus sports complex at an altitude range of 70 m, 100 m, and 250. Before flying the UAV, twenty-eight ground control points were evenly established in the study area with a real-time kinematic differential global positioning system. The second phase of the study utilizes an image-matching algorithm for photos alignment wherein camera calibration parameters and ten of the established ground control points were used for estimating the inner, relative, and absolute orientations of the photos. The resulting orthoimages are exported to ArcGIS software for digitization. Visual, tabular, and graphical assessments of the resulting cadastral maps showed a different level of accuracy. The results of the study show a gradual approach for generating UAV cadastral mapping and that the cadastral map acquired at 70 m altitude produced better results.Keywords: aerial mapping, orthomosaic, cadastral map, flying altitude, image processing
Procedia PDF Downloads 822512 Adjusting Mind and Heart to Ovarian Cancer: Correlational Study on Italian Women
Authors: Chiara Cosentino, Carlo Pruneti, Carla Merisio, Domenico Sgromo
Abstract:
Introduction – Psychoneuroimmunology as approach clearly showed how psychological features can influence health through specific physiological pathways linked to the stress reaction. This can be true also in cancer, in its latter conceptualization seen as a chronic disease. Therefore, it is still not clear how the psychological features can combine with a physiological specific path, for a better adjustment to cancer. The aim of this study is identifying how in Italian survivors, perceived social support, body image, coping and quality of life correlate with or influence Heart Rate Variability (HRV), the physiological parameter that can mirror a condition of chronic stress or a good relaxing capability. Method - The study had an exploratory transversal design. The final sample was made of 38 ovarian cancer survivors aged from 29 to 80 (M= 56,08; SD=12,76) following a program for Ovarian Cancer at the Oncological Clinic, University Hospital of Parma, Italy. Participants were asked to fill: Multidimensional Scale of Perceived Social Support (MSPSS); Derridford Appearance Scale-59 (DAS-59); Mental Adjustment to Cancer (MAC); Quality of Life Questionnaire (EORTC). For each participant was recorded Short-Term HRV (5 minutes) using emWavePro. Results– Data showed many interesting correlations within the psychological features. EORTC scores have a significant correlation with DAS-59 (r =-.327 p <.05), MSPSS (r =.411 p<.05), and MAC scores, in particular with the strategy Fatalism (r =.364 p<.05). A good social support improves HRV (F(1,33)= 4.27 p<.05). Perceiving themselves as effective in their environment, preserving a good role functioning (EORTC), positively affects HRV (F(1,33)=9.810 p<.001). Women admitting concerns towards body image seem prone to emotive disclosure, reducing emotional distress and improving HRV (β=.453); emotional avoidance worsens HRV (β=-.391). Discussion and conclusion - Results showed a strong relationship between body image and Quality of Life. These data suggest that higher concerns on body image, in particular, the negative self-concept linked to appearance, was linked to the worst functioning in everyday life. The relation between the negative self-concept and a reduction in emotional functioning is understandable in terms of possible distress deriving from the perception of body appearance. The relationship between a high perceived social support and a better functioning in everyday life was also confirmed. In this sample fatalism, was associated with a better physical, role and emotional functioning. In these women, the presence of a good support may activate the physiological Social Engagement System improving their HRV. Perceiving themselves effective in their environment, preserving a good role functioning, also positively affects HRV, probably following the same physiological pathway. A higher presence of concerns about appearance contributes to a higher HRV. Probably women admitting more body concerns are prone to a better emotive disclosure. This could reduce emotional distress improving HRV and global health. This study reached preliminary demonstration of an ‘Integrated Model of Defense’ in these cancer survivors. In these model, psychological features interact building a better quality of life and a condition of psychological well-being that is associated and influence HRV, then the physiological condition.Keywords: cancer survivors, heart rate variability, ovarian cancer, psychophysiological adjustment
Procedia PDF Downloads 1882511 Study and Analysis of the Factors Affecting Road Safety Using Decision Tree Algorithms
Authors: Naina Mahajan, Bikram Pal Kaur
Abstract:
The purpose of traffic accident analysis is to find the possible causes of an accident. Road accidents cannot be totally prevented but by suitable traffic engineering and management the accident rate can be reduced to a certain extent. This paper discusses the classification techniques C4.5 and ID3 using the WEKA Data mining tool. These techniques use on the NH (National highway) dataset. With the C4.5 and ID3 technique it gives best results and high accuracy with less computation time and error rate.Keywords: C4.5, ID3, NH(National highway), WEKA data mining tool
Procedia PDF Downloads 3382510 Fault-Tolerant Control Study and Classification: Case Study of a Hydraulic-Press Model Simulated in Real-Time
Authors: Jorge Rodriguez-Guerra, Carlos Calleja, Aron Pujana, Iker Elorza, Ana Maria Macarulla
Abstract:
Society demands more reliable manufacturing processes capable of producing high quality products in shorter production cycles. New control algorithms have been studied to satisfy this paradigm, in which Fault-Tolerant Control (FTC) plays a significant role. It is suitable to detect, isolate and adapt a system when a harmful or faulty situation appears. In this paper, a general overview about FTC characteristics are exposed; highlighting the properties a system must ensure to be considered faultless. In addition, a research to identify which are the main FTC techniques and a classification based on their characteristics is presented in two main groups: Active Fault-Tolerant Controllers (AFTCs) and Passive Fault-Tolerant Controllers (PFTCs). AFTC encompasses the techniques capable of re-configuring the process control algorithm after the fault has been detected, while PFTC comprehends the algorithms robust enough to bypass the fault without further modifications. The mentioned re-configuration requires two stages, one focused on detection, isolation and identification of the fault source and the other one in charge of re-designing the control algorithm by two approaches: fault accommodation and control re-design. From the algorithms studied, one has been selected and applied to a case study based on an industrial hydraulic-press. The developed model has been embedded under a real-time validation platform, which allows testing the FTC algorithms and analyse how the system will respond when a fault arises in similar conditions as a machine will have on factory. One AFTC approach has been picked up as the methodology the system will follow in the fault recovery process. In a first instance, the fault will be detected, isolated and identified by means of a neural network. In a second instance, the control algorithm will be re-configured to overcome the fault and continue working without human interaction.Keywords: fault-tolerant control, electro-hydraulic actuator, fault detection and isolation, control re-design, real-time
Procedia PDF Downloads 1772509 Spectroscopic Study of Tb³⁺ Doped Calcium Aluminozincate Phosphor for Display and Solid-State Lighting Applications
Authors: Sumandeep Kaur, Allam Srinivasa Rao, Mula Jayasimhadri
Abstract:
In recent years, rare earth (RE) ions doped inorganic luminescent materials are seeking great attention due to their excellent physical and chemical properties. These materials offer high thermal and chemical stability and exhibit good luminescence properties due to the presence of RE ions. The luminescent properties of these materials are attributed to their intra-configurational f-f transitions in RE ions. A series of Tb³⁺ doped calcium aluminozincate has been synthesized via sol-gel method. The structural and morphological studies have been carried out by recording X-ray diffraction patterns and SEM image. The luminescent spectra have been recorded for a comprehensive study of their luminescence properties. The XRD profile reveals the single-phase orthorhombic crystal structure with an average crystallite size of 65 nm as calculated by using DebyeScherrer equation. The SEM image exhibits completely random, irregular morphology of micron size particles of the prepared samples. The optimization of luminescence has been carried out by varying the dopant Tb³⁺ concentration within the range from 0.5 to 2.0 mol%. The as-synthesized phosphors exhibit intense emission at 544 nm pumped at 478 nm excitation wavelength. The optimized Tb³⁺ concentration has been found to be 1.0 mol% in the present host lattice. The decay curves show bi-exponential fitting for the as-synthesized phosphor. The colorimetric studies show green emission with CIE coordinates (0.334, 0.647) lying in green region for the optimized Tb³⁺ concentration. This report reveals the potential utility of Tb³⁺ doped calcium aluminozincate phosphors for display and solid-state lighting devices.Keywords: concentration quenching, phosphor, photoluminescence, XRD
Procedia PDF Downloads 1542508 Mondoc: Informal Lightweight Ontology for Faceted Semantic Classification of Hypernymy
Authors: M. Regina Carreira-Lopez
Abstract:
Lightweight ontologies seek to concrete union relationships between a parent node, and a secondary node, also called "child node". This logic relation (L) can be formally defined as a triple ontological relation (LO) equivalent to LO in ⟨LN, LE, LC⟩, and where LN represents a finite set of nodes (N); LE is a set of entities (E), each of which represents a relationship between nodes to form a rooted tree of ⟨LN, LE⟩; and LC is a finite set of concepts (C), encoded in a formal language (FL). Mondoc enables more refined searches on semantic and classified facets for retrieving specialized knowledge about Atlantic migrations, from the Declaration of Independence of the United States of America (1776) and to the end of the Spanish Civil War (1939). The model looks forward to increasing documentary relevance by applying an inverse frequency of co-ocurrent hypernymy phenomena for a concrete dataset of textual corpora, with RMySQL package. Mondoc profiles archival utilities implementing SQL programming code, and allows data export to XML schemas, for achieving semantic and faceted analysis of speech by analyzing keywords in context (KWIC). The methodology applies random and unrestricted sampling techniques with RMySQL to verify the resonance phenomena of inverse documentary relevance between the number of co-occurrences of the same term (t) in more than two documents of a set of texts (D). Secondly, the research also evidences co-associations between (t) and their corresponding synonyms and antonyms (synsets) are also inverse. The results from grouping facets or polysemic words with synsets in more than two textual corpora within their syntagmatic context (nouns, verbs, adjectives, etc.) state how to proceed with semantic indexing of hypernymy phenomena for subject-heading lists and for authority lists for documentary and archival purposes. Mondoc contributes to the development of web directories and seems to achieve a proper and more selective search of e-documents (classification ontology). It can also foster on-line catalogs production for semantic authorities, or concepts, through XML schemas, because its applications could be used for implementing data models, by a prior adaptation of the based-ontology to structured meta-languages, such as OWL, RDF (descriptive ontology). Mondoc serves to the classification of concepts and applies a semantic indexing approach of facets. It enables information retrieval, as well as quantitative and qualitative data interpretation. The model reproduces a triple tuple ⟨LN, LE, LT, LCF L, BKF⟩ where LN is a set of entities that connect with other nodes to concrete a rooted tree in ⟨LN, LE⟩. LT specifies a set of terms, and LCF acts as a finite set of concepts, encoded in a formal language, L. Mondoc only resolves partial problems of linguistic ambiguity (in case of synonymy and antonymy), but neither the pragmatic dimension of natural language nor the cognitive perspective is addressed. To achieve this goal, forthcoming programming developments should target at oriented meta-languages with structured documents in XML.Keywords: hypernymy, information retrieval, lightweight ontology, resonance
Procedia PDF Downloads 1252507 Computer-Aided Detection of Liver and Spleen from CT Scans using Watershed Algorithm
Authors: Belgherbi Aicha, Bessaid Abdelhafid
Abstract:
In the recent years a great deal of research work has been devoted to the development of semi-automatic and automatic techniques for the analysis of abdominal CT images. The first and fundamental step in all these studies is the semi-automatic liver and spleen segmentation that is still an open problem. In this paper, a semi-automatic liver and spleen segmentation method by the mathematical morphology based on watershed algorithm has been proposed. Our algorithm is currency in two parts. In the first, we seek to determine the region of interest by applying the morphological to extract the liver and spleen. The second step consists to improve the quality of the image gradient. In this step, we propose a method for improving the image gradient to reduce the over-segmentation problem by applying the spatial filters followed by the morphological filters. Thereafter we proceed to the segmentation of the liver, spleen. The aim of this work is to develop a method for semi-automatic segmentation liver and spleen based on watershed algorithm, improve the accuracy and the robustness of the liver and spleen segmentation and evaluate a new semi-automatic approach with the manual for liver segmentation. To validate the segmentation technique proposed, we have tested it on several images. Our segmentation approach is evaluated by comparing our results with the manual segmentation performed by an expert. The experimental results are described in the last part of this work. The system has been evaluated by computing the sensitivity and specificity between the semi-automatically segmented (liver and spleen) contour and the manually contour traced by radiological experts. Liver segmentation has achieved the sensitivity and specificity; sens Liver=96% and specif Liver=99% respectively. Spleen segmentation achieves similar, promising results sens Spleen=95% and specif Spleen=99%.Keywords: CT images, liver and spleen segmentation, anisotropic diffusion filter, morphological filters, watershed algorithm
Procedia PDF Downloads 3252506 The Effects of Lithofacies on Oil Enrichment in Lucaogou Formation Fine-Grained Sedimentary Rocks in Santanghu Basin, China
Authors: Guoheng Liu, Zhilong Huang
Abstract:
For more than the past ten years, oil and gas production from marine shale such as the Barnett shale. In addition, in recent years, major breakthroughs have also been made in lacustrine shale gas exploration, such as the Yanchang Formation of the Ordos Basin in China. Lucaogou Formation shale, which is also lacustrine shale, has also yielded a high production in recent years, for wells such as M1, M6, and ML2, yielding a daily oil production of 5.6 tons, 37.4 tons and 13.56 tons, respectively. Lithologic identification and classification of reservoirs are the base and keys to oil and gas exploration. Lithology and lithofacies obviously control the distribution of oil and gas in lithological reservoirs, so it is of great significance to describe characteristics of lithology and lithofacies of reservoirs finely. Lithofacies is an intrinsic property of rock formed under certain conditions of sedimentation. Fine-grained sedimentary rocks such as shale formed under different sedimentary conditions display great particularity and distinctiveness. Hence, to our best knowledge, no constant and unified criteria and methods exist for fine-grained sedimentary rocks regarding lithofacies definition and classification. Consequently, multi-parameters and multi-disciplines are necessary. A series of qualitative descriptions and quantitative analysis were used to figure out the lithofacies characteristics and its effect on oil accumulation of Lucaogou formation fine-grained sedimentary rocks in Santanghu basin. The qualitative description includes core description, petrographic thin section observation, fluorescent thin-section observation, cathode luminescence observation and scanning electron microscope observation. The quantitative analyses include X-ray diffraction, total organic content analysis, ROCK-EVAL.II Methodology, soxhlet extraction, porosity and permeability analysis and oil saturation analysis. Three types of lithofacies were mainly well-developed in this study area, which is organic-rich massive shale lithofacies, organic-rich laminated and cloddy hybrid sedimentary lithofacies and organic-lean massive carbonate lithofacies. Organic-rich massive shale lithofacies mainly include massive shale and tuffaceous shale, of which quartz and clay minerals are the major components. Organic-rich laminated and cloddy hybrid sedimentary lithofacies contain lamina and cloddy structure. Rocks from this lithofacies chiefly consist of dolomite and quartz. Organic-lean massive carbonate lithofacies mainly contains massive bedding fine-grained carbonate rocks, of which fine-grained dolomite accounts for the main part. Organic-rich massive shale lithofacies contain the highest content of free hydrocarbon and solid organic matter. Moreover, more pores were developed in organic-rich massive shale lithofacies. Organic-lean massive carbonate lithofacies contain the lowest content solid organic matter and develop the least amount of pores. Organic-rich laminated and cloddy hybrid sedimentary lithofacies develop the largest number of cracks and fractures. To sum up, organic-rich massive shale lithofacies is the most favorable type of lithofacies. Organic-lean massive carbonate lithofacies is impossible for large scale oil accumulation.Keywords: lithofacies classification, tuffaceous shale, oil enrichment, Lucaogou formation
Procedia PDF Downloads 2202505 Reconnaissance Investigation of Thermal Springs in the Middle Benue Trough, Nigeria by Remote Sensing
Authors: N. Tochukwu, M. Mukhopadhyay, A. Mohamed
Abstract:
It is no new that Nigeria faces a continual power shortage problem due to its vast population power demand and heavy reliance on nonrenewable forms of energy such as thermal power or fossil fuel. Many researchers have recommended using geothermal energy as an alternative; however, Past studies focus on the geophysical & geochemical investigation of this energy in the sedimentary and basement complex; only a few studies incorporated the remote sensing methods. Therefore, in this study, the preliminary examination of geothermal resources in the Middle Benue was carried out using satellite imagery in ArcMap. Landsat 8 scene (TIR, NIR, Red spectral bands) was used to estimate the Land Surface Temperature (LST). The Maximum Likelihood Classification (MLC) technique was used to classify sites with very low, low, moderate, and high LST. The intermediate and high classification happens to be possible geothermal zones, and they occupy 49% of the study area (38077km2). Riverline were superimposed on the LST layer, and the identification tool was used to locate high temperate sites. Streams that overlap on the selected sites were regarded as geothermal springs as. Surprisingly, the LST results show lower temperatures (<36°C) at the famous thermal springs (Awe & Wukari) than some unknown rivers/streams found in Kwande (38°C), Ussa, (38°C), Gwer East (37°C), Yola Cross & Ogoja (36°C). Studies have revealed that temperature increases with depth. However, this result shows excellent geothermal resources potential as it is expected to exceed the minimum geothermal gradient of 25.47 with an increase in depth. Therefore, further investigation is required to estimate the depth of the causative body, geothermal gradients, and the sustainability of the reservoirs by geophysical and field exploration. This method has proven to be cost-effective in locating geothermal resources in the study area. Consequently, the same procedure is recommended to be applied in other regions of the Precambrian basement complex and the sedimentary basins in Nigeria to save a preliminary field survey cost.Keywords: ArcMap, geothermal resources, Landsat 8, LST, thermal springs, MLC
Procedia PDF Downloads 1902504 The Genre Narrative in Beethoven's E-Flat Piano Sonata, Op.31/3
Authors: Yan Zou
Abstract:
Approach to the theory of Musical Narrative, as well as the three criteria of the 'explicit narrative', 'potential narrative' and 'image narrative' which are used to analyze the music, the author put Beethoven’s Piano Sonata in E-flat major, Op.31/3, into the context of the music genre and Western music history, and interpreted the programmatic contents that were embodied and hid in the special music genres.Keywords: analysis, genre, narrative, rhetoric
Procedia PDF Downloads 3692503 Constructing a Semi-Supervised Model for Network Intrusion Detection
Authors: Tigabu Dagne Akal
Abstract:
While advances in computer and communications technology have made the network ubiquitous, they have also rendered networked systems vulnerable to malicious attacks devised from a distance. These attacks or intrusions start with attackers infiltrating a network through a vulnerable host and then launching further attacks on the local network or Intranet. Nowadays, system administrators and network professionals can attempt to prevent such attacks by developing intrusion detection tools and systems using data mining technology. In this study, the experiments were conducted following the Knowledge Discovery in Database Process Model. The Knowledge Discovery in Database Process Model starts from selection of the datasets. The dataset used in this study has been taken from Massachusetts Institute of Technology Lincoln Laboratory. After taking the data, it has been pre-processed. The major pre-processing activities include fill in missed values, remove outliers; resolve inconsistencies, integration of data that contains both labelled and unlabelled datasets, dimensionality reduction, size reduction and data transformation activity like discretization tasks were done for this study. A total of 21,533 intrusion records are used for training the models. For validating the performance of the selected model a separate 3,397 records are used as a testing set. For building a predictive model for intrusion detection J48 decision tree and the Naïve Bayes algorithms have been tested as a classification approach for both with and without feature selection approaches. The model that was created using 10-fold cross validation using the J48 decision tree algorithm with the default parameter values showed the best classification accuracy. The model has a prediction accuracy of 96.11% on the training datasets and 93.2% on the test dataset to classify the new instances as normal, DOS, U2R, R2L and probe classes. The findings of this study have shown that the data mining methods generates interesting rules that are crucial for intrusion detection and prevention in the networking industry. Future research directions are forwarded to come up an applicable system in the area of the study.Keywords: intrusion detection, data mining, computer science, data mining
Procedia PDF Downloads 2962502 Faster Pedestrian Recognition Using Deformable Part Models
Authors: Alessandro Preziosi, Antonio Prioletti, Luca Castangia
Abstract:
Deformable part models achieve high precision in pedestrian recognition, but all publicly available implementations are too slow for real-time applications. We implemented a deformable part model algorithm fast enough for real-time use by exploiting information about the camera position and orientation. This implementation is both faster and more precise than alternative DPM implementations. These results are obtained by computing convolutions in the frequency domain and using lookup tables to speed up feature computation. This approach is almost an order of magnitude faster than the reference DPM implementation, with no loss in precision. Knowing the position of the camera with respect to horizon it is also possible prune many hypotheses based on their size and location. The range of acceptable sizes and positions is set by looking at the statistical distribution of bounding boxes in labelled images. With this approach it is not needed to compute the entire feature pyramid: for example higher resolution features are only needed near the horizon. This results in an increase in mean average precision of 5% and an increase in speed by a factor of two. Furthermore, to reduce misdetections involving small pedestrians near the horizon, input images are supersampled near the horizon. Supersampling the image at 1.5 times the original scale, results in an increase in precision of about 4%. The implementation was tested against the public KITTI dataset, obtaining an 8% improvement in mean average precision over the best performing DPM-based method. By allowing for a small loss in precision computational time can be easily brought down to our target of 100ms per image, reaching a solution that is faster and still more precise than all publicly available DPM implementations.Keywords: autonomous vehicles, deformable part model, dpm, pedestrian detection, real time
Procedia PDF Downloads 2812501 Integration of an Augmented Reality System for the Visualization of the HRMAS NMR Analysis of Brain Biopsy Specimens Using the Brainlab Cranial Navigation System
Authors: Abdelkrim Belhaoua, Jean-Pierre Radoux, Mariana Kuras, Vincent Récamier, Martial Piotto, Karim Elbayed, François Proust, Izzie Namer
Abstract:
This paper proposes an augmented reality system dedicated to neurosurgery in order to assist the surgeon during an operation. This work is part of the ExtempoRMN project (Funded by Bpifrance) which aims at analyzing during a surgical operation the metabolic content of tumoral brain biopsy specimens by HRMAS NMR. Patients affected with a brain tumor (gliomas) frequently need to undergo an operation in order to remove the tumoral mass. During the operation, the neurosurgeon removes biopsy specimens using image-guided surgery. The biopsy specimens removed are then sent for HRMAS NMR analysis in order to obtain a better diagnosis and prognosis. Image-guided refers to the use of MRI images and a computer to precisely locate and target a lesion (abnormal tissue) within the brain. This is performed using preoperative MRI images and the BrainLab neuro-navigation system. With the patient MRI images loaded on the Brainlab Cranial neuro-navigation system in the operating theater, surgeons can better identify their approach before making an incision. The Brainlab neuro-navigation tool tracks in real time the position of the instruments and displays their position on the patient MRI data. The results of the biopsy analysis by 1H HRMAS NMR are then sent back to the operating theater and superimposed on the 3D localization system directly on the MRI images. The method we have developed to communicate between the HRMAS NMR analysis software and Brainlab makes use of a combination of C++, VTK and the Insight Toolkit using OpenIGTLink protocol.Keywords: neuro-navigation, augmented reality, biopsy, BrainLab, HR-MAS NMR
Procedia PDF Downloads 3632500 Real Fictions: Converging Landscapes and Imagination in an English Village
Authors: Edoardo Lomi
Abstract:
A problem of central interest in anthropology concerns the ethnographic displacement of modernity’s conceptual sovereignty over that of native collectives worldwide. Part of this critical project has been the association of Western modernity with a dualist, naturalist ontology. Despite its demonstrated value for comparative work, this association often comes at the cost of reproducing ideas that lack an empirical ethnographic basis. This paper proposes a way forward by bringing to bear some of the results produced by an ethnographic study of a village in Wiltshire, South England. Due to its picturesque qualities, this village has served for decades as a ready-made set for fantasy movies and a backdrop to fictional stories. These forms of mediation have in turn generated some apparent paradoxes, such as fictitious characters that affect actual material changes, films that become more real than history, and animated stories that, while requiring material grounds to unfold, inhabit a time and space in other respects distinct from that of material processes. Drawing on ongoing fieldwork and interviews with locals and tourists, this paper considers the ways villagers engage with fiction as part of their everyday lives. The resulting image is one of convergence, in the same landscape, of people and things having different ontological status. This study invites reflection on the implications of this image for diversifying our imagery of Western lifeworlds. To this end, the notion of ‘real fictions’ is put forth, connecting the ethnographic blurring of modernist distinctions–such as sign and signified, mind and matter, materiality and immateriality–with discussions on anthropology’s own reliance on fictions for critical comparative work.Keywords: England, ethnography, landscape, modernity, mediation, ontology, post-structural theory
Procedia PDF Downloads 1212499 Unsupervised Detection of Burned Area from Remote Sensing Images Using Spatial Correlation and Fuzzy Clustering
Authors: Tauqir A. Moughal, Fusheng Yu, Abeer Mazher
Abstract:
Land-cover and land-use change information are important because of their practical uses in various applications, including deforestation, damage assessment, disasters monitoring, urban expansion, planning, and land management. Therefore, developing change detection methods for remote sensing images is an important ongoing research agenda. However, detection of change through optical remote sensing images is not a trivial task due to many factors including the vagueness between the boundaries of changed and unchanged regions and spatial dependence of the pixels to its neighborhood. In this paper, we propose a binary change detection technique for bi-temporal optical remote sensing images. As in most of the optical remote sensing images, the transition between the two clusters (change and no change) is overlapping and the existing methods are incapable of providing the accurate cluster boundaries. In this regard, a methodology has been proposed which uses the fuzzy c-means clustering to tackle the problem of vagueness in the changed and unchanged class by formulating the soft boundaries between them. Furthermore, in order to exploit the neighborhood information of the pixels, the input patterns are generated corresponding to each pixel from bi-temporal images using 3×3, 5×5 and 7×7 window. The between images and within image spatial dependence of the pixels to its neighborhood is quantified by using Pearson product moment correlation and Moran’s I statistics, respectively. The proposed technique consists of two phases. At first, between images and within image spatial correlation is calculated to utilize the information that the pixels at different locations may not be independent. Second, fuzzy c-means technique is used to produce two clusters from input feature by not only taking care of vagueness between the changed and unchanged class but also by exploiting the spatial correlation of the pixels. To show the effectiveness of the proposed technique, experiments are conducted on multispectral and bi-temporal remote sensing images. A subset (2100×1212 pixels) of a pan-sharpened, bi-temporal Landsat 5 thematic mapper optical image of Los Angeles, California, is used in this study which shows a long period of the forest fire continued from July until October 2009. Early forest fire and later forest fire optical remote sensing images were acquired on July 5, 2009 and October 25, 2009, respectively. The proposed technique is used to detect the fire (which causes change on earth’s surface) and compared with the existing K-means clustering technique. Experimental results showed that proposed technique performs better than the already existing technique. The proposed technique can be easily extendable for optical hyperspectral images and is suitable for many practical applications.Keywords: burned area, change detection, correlation, fuzzy clustering, optical remote sensing
Procedia PDF Downloads 1692498 The Concept of Female Beauty in Contemporary (2000-2020) Fine Arts and Design
Authors: Maria Ukolova
Abstract:
Social and cultural processes over the past decades have largely affected the understanding of conventional female beauty all over the world. Fine arts and design tendencies could not remain unchanged and show a dynamic interplay with female rights, gender equality, and other social processes. As of now, the area lacks comprehensive academic research on the tendencies of understanding female beauty in contemporary art. This article makes an attempt to outline and analyse the main tendencies of contemporary works of art that turn to the image of a woman, including photography, digital art, and various forms of design. The research bases itself on paintings, performing arts, photography, digital art, and various forms of design, mainly on the principle of the most broadly resonated in society, as an empirical basis, and on existing researches in the sphere. The results of the research show a general trend that the concept of female beauty in art is either challenged as such or its understanding has shifted to individuality, diversity, and the state of mental health. However, some categories of art, such as digital art in the gaming industry, remain resistant to change and retain the appearance-based understanding of beauty. Specific tendencies are, firstly, aestheticization of all types of appearances; secondly, a ubiquitous interest in mental health issues and understanding the state of mental health as a part of beauty; thirdly, a certain infantilization of the image of the woman is observed as compared to previous decades. The significance of the findings of the research is to contribute to a scientific understanding of the concept of beauty in contemporary art and to give ground for prospective further related research in sociology, phycology, etc. The findings might be perceived not only by academics but also by artists and practitioners in the spheres of art and society.Keywords: fine arts, history of art, contemporary art, concept of beauty
Procedia PDF Downloads 862497 Recurrent Neural Networks for Classifying Outliers in Electronic Health Record Clinical Text
Authors: Duncan Wallace, M-Tahar Kechadi
Abstract:
In recent years, Machine Learning (ML) approaches have been successfully applied to an analysis of patient symptom data in the context of disease diagnosis, at least where such data is well codified. However, much of the data present in Electronic Health Records (EHR) are unlikely to prove suitable for classic ML approaches. Furthermore, as scores of data are widely spread across both hospitals and individuals, a decentralized, computationally scalable methodology is a priority. The focus of this paper is to develop a method to predict outliers in an out-of-hours healthcare provision center (OOHC). In particular, our research is based upon the early identification of patients who have underlying conditions which will cause them to repeatedly require medical attention. OOHC act as an ad-hoc delivery of triage and treatment, where interactions occur without recourse to a full medical history of the patient in question. Medical histories, relating to patients contacting an OOHC, may reside in several distinct EHR systems in multiple hospitals or surgeries, which are unavailable to the OOHC in question. As such, although a local solution is optimal for this problem, it follows that the data under investigation is incomplete, heterogeneous, and comprised mostly of noisy textual notes compiled during routine OOHC activities. Through the use of Deep Learning methodologies, the aim of this paper is to provide the means to identify patient cases, upon initial contact, which are likely to relate to such outliers. To this end, we compare the performance of Long Short-Term Memory, Gated Recurrent Units, and combinations of both with Convolutional Neural Networks. A further aim of this paper is to elucidate the discovery of such outliers by examining the exact terms which provide a strong indication of positive and negative case entries. While free-text is the principal data extracted from EHRs for classification, EHRs also contain normalized features. Although the specific demographical features treated within our corpus are relatively limited in scope, we examine whether it is beneficial to include such features among the inputs to our neural network, or whether these features are more successfully exploited in conjunction with a different form of a classifier. In this section, we compare the performance of randomly generated regression trees and support vector machines and determine the extent to which our classification program can be improved upon by using either of these machine learning approaches in conjunction with the output of our Recurrent Neural Network application. The output of our neural network is also used to help determine the most significant lexemes present within the corpus for determining high-risk patients. By combining the confidence of our classification program in relation to lexemes within true positive and true negative cases, with an inverse document frequency of the lexemes related to these cases, we can determine what features act as the primary indicators of frequent-attender and non-frequent-attender cases, providing a human interpretable appreciation of how our program classifies cases.Keywords: artificial neural networks, data-mining, machine learning, medical informatics
Procedia PDF Downloads 1312496 A Methodology Based on Image Processing and Deep Learning for Automatic Characterization of Graphene Oxide
Authors: Rafael do Amaral Teodoro, Leandro Augusto da Silva
Abstract:
Originated from graphite, graphene is a two-dimensional (2D) material that promises to revolutionize technology in many different areas, such as energy, telecommunications, civil construction, aviation, textile, and medicine. This is possible because its structure, formed by carbon bonds, provides desirable optical, thermal, and mechanical characteristics that are interesting to multiple areas of the market. Thus, several research and development centers are studying different manufacturing methods and material applications of graphene, which are often compromised by the scarcity of more agile and accurate methodologies to characterize the material – that is to determine its composition, shape, size, and the number of layers and crystals. To engage in this search, this study proposes a computational methodology that applies deep learning to identify graphene oxide crystals in order to characterize samples by crystal sizes. To achieve this, a fully convolutional neural network called U-net has been trained to segment SEM graphene oxide images. The segmentation generated by the U-net is fine-tuned with a standard deviation technique by classes, which allows crystals to be distinguished with different labels through an object delimitation algorithm. As a next step, the characteristics of the position, area, perimeter, and lateral measures of each detected crystal are extracted from the images. This information generates a database with the dimensions of the crystals that compose the samples. Finally, graphs are automatically created showing the frequency distributions by area size and perimeter of the crystals. This methodological process resulted in a high capacity of segmentation of graphene oxide crystals, presenting accuracy and F-score equal to 95% and 94%, respectively, over the test set. Such performance demonstrates a high generalization capacity of the method in crystal segmentation, since its performance considers significant changes in image extraction quality. The measurement of non-overlapping crystals presented an average error of 6% for the different measurement metrics, thus suggesting that the model provides a high-performance measurement for non-overlapping segmentations. For overlapping crystals, however, a limitation of the model was identified. To overcome this limitation, it is important to ensure that the samples to be analyzed are properly prepared. This will minimize crystal overlap in the SEM image acquisition and guarantee a lower error in the measurements without greater efforts for data handling. All in all, the method developed is a time optimizer with a high measurement value, considering that it is capable of measuring hundreds of graphene oxide crystals in seconds, saving weeks of manual work.Keywords: characterization, graphene oxide, nanomaterials, U-net, deep learning
Procedia PDF Downloads 1602495 Intervening into the World of a Cyber-Bully
Authors: Aanshika Puri, Sakshi Mehrotra
Abstract:
Technology has always been a double edged sword. The constant rut of updating oneself to a better and newer version is the new norm. ‘Being Online’ is the latest addition to one’s everyday routine. Availability of various social online platforms being served on a platter topped with easy and cheap access to the internet makes it simple and doable for people of all social backgrounds. Interestingly, in India, a recent development is the line of demarcation between people from varied backgrounds, doing the vanishing act. One finds everybody on at least one, if not more, social platforms in a desire to stay connected. For instance, this ranges from sending a ‘WhatsApp’ message to a vegetable vendor for ordering your daily needs to vendors and small entrepreneurs. Even a rickshaw puller now has access to a mobile phone, an internet connection and apps/ platforms to stay connected. Recent observations show the extent to which everyone is hooked on to their mobile phones/ tabs/ laptops/ etc. Young mothers use them to distract their children and keep them busy while they finish the task at hand. Exposure to this part of the technology at such a tender age requires responsible and careful handling. Talking of adolescents, their self- image depends on their online social image to a large extent. There is a desire to be liked and accepted by the peer group at all times. Cyber-bullying is a by-product of the 24/7 availability of these resources. There is enough research-based evidence to prove the psychosocial and emotional impact on the development and well-being of the victim. The present paper attempts to understand the dynamics of cyber bullying vis-à-vis the developmental and mental health issues faced by the bully.Keywords: Developmental Psychology, Empathy & Resilience Based Interventions, Mental Well-Being of Cyber Bully, Positive Psychology
Procedia PDF Downloads 2522494 Myanmar Consonants Recognition System Based on Lip Movements Using Active Contour Model
Authors: T. Thein, S. Kalyar Myo
Abstract:
Human uses visual information for understanding the speech contents in noisy conditions or in situations where the audio signal is not available. The primary advantage of visual information is that it is not affected by the acoustic noise and cross talk among speakers. Using visual information from the lip movements can improve the accuracy and robustness of automatic speech recognition. However, a major challenge with most automatic lip reading system is to find a robust and efficient method for extracting the linguistically relevant speech information from a lip image sequence. This is a difficult task due to variation caused by different speakers, illumination, camera setting and the inherent low luminance and chrominance contrast between lip and non-lip region. Several researchers have been developing methods to overcome these problems; the one is lip reading. Moreover, it is well known that visual information about speech through lip reading is very useful for human speech recognition system. Lip reading is the technique of a comprehensive understanding of underlying speech by processing on the movement of lips. Therefore, lip reading system is one of the different supportive technologies for hearing impaired or elderly people, and it is an active research area. The need for lip reading system is ever increasing for every language. This research aims to develop a visual teaching method system for the hearing impaired persons in Myanmar, how to pronounce words precisely by identifying the features of lip movement. The proposed research will work a lip reading system for Myanmar Consonants, one syllable consonants (င (Nga)၊ ည (Nya)၊ မ (Ma)၊ လ (La)၊ ၀ (Wa)၊ သ (Tha)၊ ဟ (Ha)၊ အ (Ah) ) and two syllable consonants ( က(Ka Gyi)၊ ခ (Kha Gway)၊ ဂ (Ga Nge)၊ ဃ (Ga Gyi)၊ စ (Sa Lone)၊ ဆ (Sa Lain)၊ ဇ (Za Gwe) ၊ ဒ (Da Dway)၊ ဏ (Na Gyi)၊ န (Na Nge)၊ ပ (Pa Saug)၊ ဘ (Ba Gone)၊ ရ (Ya Gaug)၊ ဠ (La Gyi) ). In the proposed system, there are three subsystems, the first one is the lip localization system, which localizes the lips in the digital inputs. The next one is the feature extraction system, which extracts features of lip movement suitable for visual speech recognition. And the final one is the classification system. In the proposed research, Two Dimensional Discrete Cosine Transform (2D-DCT) and Linear Discriminant Analysis (LDA) with Active Contour Model (ACM) will be used for lip movement features extraction. Support Vector Machine (SVM) classifier is used for finding class parameter and class number in training set and testing set. Then, experiments will be carried out for the recognition accuracy of Myanmar consonants using the only visual information on lip movements which are useful for visual speech of Myanmar languages. The result will show the effectiveness of the lip movement recognition for Myanmar Consonants. This system will help the hearing impaired persons to use as the language learning application. This system can also be useful for normal hearing persons in noisy environments or conditions where they can find out what was said by other people without hearing voice.Keywords: feature extraction, lip reading, lip localization, Active Contour Model (ACM), Linear Discriminant Analysis (LDA), Support Vector Machine (SVM), Two Dimensional Discrete Cosine Transform (2D-DCT)
Procedia PDF Downloads 2862493 A Kruskal Based Heuxistic for the Application of Spanning Tree
Authors: Anjan Naidu
Abstract:
In this paper we first discuss the minimum spanning tree, then we use the Kruskal algorithm to obtain minimum spanning tree. Based on Kruskal algorithm we propose Kruskal algorithm to apply an application to find minimum cost applying the concept of spanning tree.Keywords: Minimum Spanning tree, algorithm, Heuxistic, application, classification of Sub 97K90
Procedia PDF Downloads 4442492 Motivation of Doctors and its Impact on the Quality of Working Life
Authors: E. V. Fakhrutdinova, K. R. Maksimova, P. B. Chursin
Abstract:
At the present stage of the society progress the health care is an integral part of both the economic system and social, while in the second case the medicine is a major component of a number of basic and necessary social programs. Since the foundation of the health system are highly qualified health professionals, it is logical proposition that increase of doctor`s professionalism improves the effectiveness of the system as a whole. Professionalism of the doctor is a collection of many components, essential role played by such personal-psychological factors as honesty, willingness and desire to help people, and motivation. A number of researchers consider motivation as an expression of basic human needs that have passed through the “filter” which is a worldview and values learned in the process of socialization by the individual, to commit certain actions designed to achieve the expected result. From this point of view a number of researchers propose the following classification of highly skilled employee’s needs: 1. the need for confirmation the competence (setting goals that meet the professionalism and receipt of positive emotions in their decision), 2. The need for independence (the ability to make their own choices in contentious situations arising in the process carry out specialist functions), 3. The need for ownership (in the case of health care workers, to the profession and accordingly, high in the eyes of the public status of the doctor). Nevertheless, it is important to understand that in a market economy a significant motivator for physicians (both legal and natural persons) is to maximize its own profits. In the case of health professionals duality motivational structure creates an additional contrast, as in the public mind the image of the ideal physician; usually a altruistically minded person thinking is not primarily about their own benefit, and to assist others. In this context, the question of the real motivation of health workers deserves special attention. The survey conducted by the American researcher Harrison Terni for the magazine "Med Tech" in 2010 revealed the opinion of more than 200 medical students starting courses, and the primary motivation in a profession choice is "desire to help people", only 15% said that they want become a doctor, "to earn a lot". From the point of view of most of the classical theories of motivation this trend can be called positive, as intangible incentives are more effective. However, it is likely that over time the opinion of the respondents may change in the direction of mercantile motives. Thus, it is logical to assume that well-designed system of motivation of doctor`s labor should be based on motivational foundations laid during training in higher education.Keywords: motivation, quality of working life, health system, personal-psychological factors, motivational structure
Procedia PDF Downloads 3582491 Towards Learning Query Expansion
Authors: Ahlem Bouziri, Chiraz Latiri, Eric Gaussier
Abstract:
The steady growth in the size of textual document collections is a key progress-driver for modern information retrieval techniques whose effectiveness and efficiency are constantly challenged. Given a user query, the number of retrieved documents can be overwhelmingly large, hampering their efficient exploitation by the user. In addition, retaining only relevant documents in a query answer is of paramount importance for an effective meeting of the user needs. In this situation, the query expansion technique offers an interesting solution for obtaining a complete answer while preserving the quality of retained documents. This mainly relies on an accurate choice of the added terms to an initial query. Interestingly enough, query expansion takes advantage of large text volumes by extracting statistical information about index terms co-occurrences and using it to make user queries better fit the real information needs. In this respect, a promising track consists in the application of data mining methods to extract dependencies between terms, namely a generic basis of association rules between terms. The key feature of our approach is a better trade off between the size of the mining result and the conveyed knowledge. Thus, face to the huge number of derived association rules and in order to select the optimal combination of query terms from the generic basis, we propose to model the problem as a classification problem and solve it using a supervised learning algorithm such as SVM or k-means. For this purpose, we first generate a training set using a genetic algorithm based approach that explores the association rules space in order to find an optimal set of expansion terms, improving the MAP of the search results. The experiments were performed on SDA 95 collection, a data collection for information retrieval. It was found that the results were better in both terms of MAP and NDCG. The main observation is that the hybridization of text mining techniques and query expansion in an intelligent way allows us to incorporate the good features of all of them. As this is a preliminary attempt in this direction, there is a large scope for enhancing the proposed method.Keywords: supervised leaning, classification, query expansion, association rules
Procedia PDF Downloads 3252490 Reading High Rise Residential Development in Istanbul on the Theory of Globalization
Authors: Tuba Sari
Abstract:
One of the major transformations caused by the industrial revolution, technological developments and globalization is undoubtedly acceleration of urbanization process. Globalization, in particular, is one of the major factors that trigger this transformation. In this context, as a result of the global metropolitan city system, multifunctional rising structure forms are becoming undeniable fact of the world’s leading metropolises as the manifestation of prestige and power with different life choices, easy accessibility to services related to the era of technology. The scope of research deals with five different urban centers in İstanbul where high-rise housing is increasing dramatically after 2000’s. Therefore, the research regards multi-centered urban residential pattern being created by high-rise housing structures in the city. The methodology of the research is based on two main issue, one of them is related to sampling method of high-rise housing projects in İstanbul, while the other method of the research is based on the model of Semantics. In the framework of research hypothesis, it is aimed to prove that the character of vertical intensive structuring in Istanbul is based on seeking of different forms and images in the expressive quality, considering the production of existing high-rise buildings in residential areas in recent years. In respect to rising discourse of 'World City' in the globalizing world, it is very important to state the place of Istanbul in other developing world metropolises. In the perspective of 'World City' discourse, Istanbul has different projects concerning with globalization, international finance companies, cultural activities, mega projects, etc. In brief, the aim of this research is examining transformation forms of high-rise housing development in Istanbul within the frame of developing world cities, searching and analyzing discourse and image related to these projects.Keywords: globalization, high-rise, housing, image
Procedia PDF Downloads 2852489 Human Gait Recognition Using Moment with Fuzzy
Authors: Jyoti Bharti, Navneet Manjhi, M. K.Gupta, Bimi Jain
Abstract:
A reliable gait features are required to extract the gait sequences from an images. In this paper suggested a simple method for gait identification which is based on moments. Moment values are extracted on different number of frames of gray scale and silhouette images of CASIA database. These moment values are considered as feature values. Fuzzy logic and nearest neighbour classifier are used for classification. Both achieved higher recognition.Keywords: gait, fuzzy logic, nearest neighbour, recognition rate, moments
Procedia PDF Downloads 758