Search results for: minimum patch size
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7557

Search results for: minimum patch size

5517 An Inquiry about Perception of Autonomous Academe and Accountable Leadership on University Governance: A Case of Bangladesh

Authors: Monjur E-Khoda Tarafdar

Abstract:

Institutional autonomy and academic freedom corresponding to accountability are seen as a core concept of university governance. Universities are crucial factors in search of truth for knowledge production and dissemination. Academic leaders are the pivots to progressively influence the university governance. Therefore, in a continuum of debate about autonomy and accountability in the aspect of perception, academic leadership has been studied. Having longstanding acquaintance in the field the researcher has been instrumental to gain lived experiences of the informants in this qualitative study. Case studies are useful to gain an understanding of the complexities of a particular site to preserve a sense of wholeness of the site being investigated. Thus, multiple case study approach has been employed with a sample size of seventy-one. Such large size of informants was interviewed in order to capture a wider range of views that exist in Bangladesh. This qualitative multiple case study has engaged in-depth interviewing method of academic leaders and policy makers of three case universities. Open-ended semi-structured questionnaires are used to have a comprehensive understanding of how the perception of autonomy and accountability of academic leaders has impacted university governance in the context of Bangladesh. The paper has interpreted the voices of the informants and distinguished both the transformational and transactional style of academic leaderships in local university settings against the globally changed higher education demography. The study finds contextual dissimilarity in the perspectives of autonomy and accountability of academic leadership towards university governance. Unaccountability results in losing autonomous power and collapsing academic excellence. Since accountability grows competitiveness and competence, the paper also focuses on how academic leaders abuse the premise of academic loyalty to universities.

Keywords: academic loyalty, accountability, autonomy, leadership, perception, university governance

Procedia PDF Downloads 303
5516 Contribution to the Study of Automatic Epileptiform Pattern Recognition in Long Term EEG Signals

Authors: Christine F. Boos, Fernando M. Azevedo

Abstract:

Electroencephalogram (EEG) is a record of the electrical activity of the brain that has many applications, such as monitoring alertness, coma and brain death; locating damaged areas of the brain after head injury, stroke and tumor; monitoring anesthesia depth; researching physiology and sleep disorders; researching epilepsy and localizing the seizure focus. Epilepsy is a chronic condition, or a group of diseases of high prevalence, still poorly explained by science and whose diagnosis is still predominantly clinical. The EEG recording is considered an important test for epilepsy investigation and its visual analysis is very often applied for clinical confirmation of epilepsy diagnosis. Moreover, this EEG analysis can also be used to help define the types of epileptic syndrome, determine epileptiform zone, assist in the planning of drug treatment and provide additional information about the feasibility of surgical intervention. In the context of diagnosis confirmation the analysis is made using long term EEG recordings with at least 24 hours long and acquired by a minimum of 24 electrodes in which the neurophysiologists perform a thorough visual evaluation of EEG screens in search of specific electrographic patterns called epileptiform discharges. Considering that the EEG screens usually display 10 seconds of the recording, the neurophysiologist has to evaluate 360 screens per hour of EEG or a minimum of 8,640 screens per long term EEG recording. Analyzing thousands of EEG screens in search patterns that have a maximum duration of 200 ms is a very time consuming, complex and exhaustive task. Because of this, over the years several studies have proposed automated methodologies that could facilitate the neurophysiologists’ task of identifying epileptiform discharges and a large number of methodologies used neural networks for the pattern classification. One of the differences between all of these methodologies is the type of input stimuli presented to the networks, i.e., how the EEG signal is introduced in the network. Five types of input stimuli have been commonly found in literature: raw EEG signal, morphological descriptors (i.e. parameters related to the signal’s morphology), Fast Fourier Transform (FFT) spectrum, Short-Time Fourier Transform (STFT) spectrograms and Wavelet Transform features. This study evaluates the application of these five types of input stimuli and compares the classification results of neural networks that were implemented using each of these inputs. The performance of using raw signal varied between 43 and 84% efficiency. The results of FFT spectrum and STFT spectrograms were quite similar with average efficiency being 73 and 77%, respectively. The efficiency of Wavelet Transform features varied between 57 and 81% while the descriptors presented efficiency values between 62 and 93%. After simulations we could observe that the best results were achieved when either morphological descriptors or Wavelet features were used as input stimuli.

Keywords: Artificial neural network, electroencephalogram signal, pattern recognition, signal processing

Procedia PDF Downloads 513
5515 Hydrological Method to Evaluate Environmental Flow: Case Study of Gharasou River, Ardabil

Authors: Mehdi Fuladipanah, Mehdi Jorabloo

Abstract:

Water flow management is one of the most important parts of river engineering. Non-uniformity distribution of rainfall and various flow demand with unreasonable flow management will be caused destroyed of the river ecosystem. Then, it is severe to determine ecosystem flow requirement. In this paper, Flow duration curve indices method which has hydrological based was used to evaluate environmental flow in Gharasou River, Ardabil, Iran. Using flow duration curve, Q90 and Q95 for different return periods were calculated. Their magnitude was determined as 1-day, 3-day, 7-day, and 30 days. According to the second method, hydraulic alteration indices often had low and medium range. To maintain river at an acceptable ecological condition, minimum daily discharge of index Q95 is 0.7 m^3.s^-1.

Keywords: Gharasou River, water flow management, non-uniformity distribution, ecosystem flow requirement, hydraulic alteration

Procedia PDF Downloads 318
5514 Numerical Analysis of a Strainer Using Porous Media Technique

Authors: Ji-Hoon Byeon, Kwon-Hee Lee

Abstract:

Strainer filter serves to block the inflow of impurities while mixed fluid is entering or exiting the piping. The filter of the strainer has a perforated structure, so that the pressure drop and the velocity change necessarily occur when the mixed fluid passes through the filter. It is possible to predict the pressure drop and velocity change of the strainer by numerical analysis by implementing all the perforated plates. However, if the size of the perforated plate exceeds a certain size, it is difficult to perform the numerical analysis, and sometimes we cannot guarantee its accuracy. In this study, we tried to predict the pressure drop and velocity change by using the porous media technique to obtain the equivalent resistance without actual implementation of the perforation shape of the strainer. Ansys-CFX, a commercial software, is used to perform the numerical analysis. The analysis procedure is as follows. Firstly, the unit pattern of the perforated plate is modeled, and the pressure drop is analyzed by varying the velocity by symmetry of the wall surface. Secondly, since the equation for obtaining resistance is a quadratic equation of pressure having unknown velocity, the viscous resistance and the inertia resistance of the perforated plate are obtained from the relationship between pressure and speed. Thirdly, by using the calculated resistance values, the values are substituted into the flat plate implemented as a two-dimensional porous media, and the accuracy is verified by comparing the pressure drop and the velocity change. Fourthly, the pressure drop and velocity change in the whole strainer are analyzed by using the resistance values obtained on the perforated plate in the actual whole strainer model. Using the porous media technique, it is found that pressure drop and velocity change can be predicted in relatively short time without modeling the overall shape of the filter. Acknowledgements: This work was supported by the Valve Center from the Regional Innovation Center(RIC) Program of Ministry of Trade, Industry & Energy (MOTIE).

Keywords: strainer, porous media, CFD, numerical analysis

Procedia PDF Downloads 352
5513 An EBSD Investigation of Ti-6Al-4Nb Alloy Processed by Plan Strain Compression Test

Authors: Anna Jastrzebska, K. S. Suresh, T. Kitashima, Y. Yamabe-Mitarai, Z. Pakiela

Abstract:

Near α titanium alloys are important materials for aerospace applications, especially in high temperature applications such as jet engine. Mechanical properties of Ti alloys strongly depends on their processing route, then it is very important to understand micro-structure change by different processing. In our previous study, Nb was found to improve oxidation resistance of Ti alloys. In this study, micro-structure evolution of Ti-6Al-4Nb (wt %) alloy was investigated after plain strain compression test in hot working temperatures in the α and β phase region. High-resolution EBSD was successfully used for precise phase and texture characterization of this alloy. 1.1 kg of Ti-6Al-4Nb ingot was prepared using cold crucible levitation melting. The ingot was subsequently homogenized in 1050 deg.C for 1h followed by cooling in the air. Plate like specimens measuring 10×20×50 mm3 were cut from an ingot by electrical discharge machining (EDM). The plain strain compression test using an anvil with 10 x 35 mm in size was performed with 3 different strain rates: 0.1s-1, 1s-1and 10s-1 in 700 deg.C and 1050 deg.C to obtain 75% of deformation. The micro-structure was investigated by scanning electron microscopy (SEM) equipped with electron backscatter diffraction (EBSD) detector. The α/β phase ratio and phase morphology as well as the crystallographic texture, subgrain size, misorientation angles and misorientation gradients corresponding to each phase were determined over the middle and the edge of sample areas. The deformation mechanism in each working temperature was discussed. The evolution of texture changes with strain rate was investigated. The micro-structure obtained by plain strain compression test was heterogeneous with a wide range of grain sizes. This is because deformation and dynamic recrystallization occurred during deformation at temperature in the α and β phase. It was strongly influenced by strain rate.

Keywords: EBSD, plain strain compression test, Ti alloys

Procedia PDF Downloads 369
5512 CRISPR-DT: Designing gRNAs for the CRISPR-Cpf1 System with Improved Target Efficiency and Specificity

Authors: Houxiang Zhu, Chun Liang

Abstract:

The CRISPR-Cpf1 system has been successfully applied in genome editing. However, target efficiency of the CRISPR-Cpf1 system varies among different gRNA sequences. The published CRISPR-Cpf1 gRNA data was reanalyzed. Many sequences and structural features of gRNAs (e.g., the position-specific nucleotide composition, position-nonspecific nucleotide composition, GC content, minimum free energy, and melting temperature) correlated with target efficiency were found. Using machine learning technology, a support vector machine (SVM) model was created to predict target efficiency for any given gRNAs. The first web service application, CRISPR-DT (CRISPR DNA Targeting), has been developed to help users design optimal gRNAs for the CRISPR-Cpf1 system by considering both target efficiency and specificity. CRISPR-DT will empower researchers in genome editing.

Keywords: CRISPR-Cpf1, genome editing, target efficiency, target specificity

Procedia PDF Downloads 249
5511 Effect of Welding Parameters on Mechanical and Microstructural Properties of Aluminum Alloys Produced by Friction Stir Welding

Authors: Khalil Aghapouramin

Abstract:

The aim of the present work is to investigate the mechanical and microstructural properties of dissimilar and similar aluminum alloys welded by Friction Stir Welding (FSW). The specimens investigated by applying different welding speed and rotary speed. Typically, mechanical properties of the joints performed through tensile test fatigue test and microhardness (HV) at room temperature. Fatigue test investigated by using electromechanical testing machine under constant loading control with similar since wave loading. The Maximum stress versus minimum got the range between 0.1 to 0.3 in the research. Based upon welding parameters by optical observation and scanning electron microscopy microstructural properties fulfilled with a cross section of welds, in addition, SEM observations were made of the fracture surfaces

Keywords: friction stir welding, fatigue and tensile test, Al alloys, microstructural behavior

Procedia PDF Downloads 321
5510 Survey for Mango Seed Weevils and Pulp Weevil Sternochetus Species (Coleoptera:Curculionidae) on Mango, Mangifera indica in Shan State-South, Myanmar

Authors: Khin Nyunt Yee, Mu Mu Thein

Abstract:

Detection survey of mango seed and Pulp weevils was undertaken at major mango production areas, Yat Sauk, Taunggyi, Nyaung Shwe and Hopong Townships, in Shan State (South) of Myanmar on two mango cultivars of Sein Ta Lone and Yinkwe from May to August 2016 to coincide with fruiting season to conduct a survey of mango seed and pulp weevils population. The total numbers of 6300 fruits of both mango cultivars were sampled. Among them, 2900 fruits from 5674 fruit bearing plants were collected for Sein Ta Lone cultivar of five well managed, one unmanaged orchards and Urban in Yatsauk Twonship, 400 fruits from only one well managed orchard in Taunggyi Township, 400 fruits from two managed orchards in Nyaung Shwe Township and 400 fruits from one managed orchard in Hopong Township from May to June. 2200 fruits were collected from 4043 fruit bearing plants for Yinkwe Cultivar of four well managed orchards, one unmanaged orchards and one wild tree only in Yat Sauk Township from July to August, 2016. Fruit sample size was 200 fruits /orchard, / wild or /volunteer trees as minimum number. The pulps of all randomly sampling fruits were longitudinal cut open into three slices on each side of fruit and seed were cut longitudinally to inspect the presence of mango weevils. The collected weevils were identified up to species level at Plant Quarantine Laboratory, Plant Protection Division, Department of Agriculture, Ministry of Agriculture, Livestock and Irrigation, Yangon, Myanmar. Mango Pulp and Seed weevils were found on Sein Ta Lone Mango Cultivar in three out of four surveyed Townships except Hopong with the level of infestation ranged from 0.0% to 3.5% of fruits per Township with 0.0% to 39.0% of fruits per orchard. The highest infestation rate per township was 3.5% of fruits (n=400 fruits) in Nyaung Shwe, then, at Yat Suak, the rate was 2.47% (n=2900 fruits). A well-managed orchard at Taung Gyi had 0.75% (n=400 fruits) whereas Hopong was free 0.0% (n=400). The weevils were also recorded on Yinkwe Mango Cultivar in Yatsauk Township where the infestation level was 12.63% of fruits (n=2200) with 0.0% to 67.0% of fruits per orchard. This high level of infestation was obtained by including an absolutely non Integrated Pest Management (non IPM) orchards in both survey with the infestation rates 63.0% of fruits (n=200) and 67.0% of fruits (n=200) respectively on Yinkwe cultivar. Two different species; mango pulp weevil, Sternochetus frigitus, and mango seed weevil Sternochetus olivieri (Faust) of family Curculionidae under the order Coleoptera were recorded. Sternochetus mangiferae was not found during these surveys. Three different developmental stages of mango seed and pulp weevils: larva, pupa and adult were first detected since the first survey in 3rd week of May and mostly were recorded as adult stages in the following surveys in June, July and August The number of Mango pulp weevil was statistically higher than that of mango seed weevils at P < 0.001%. More precise surveys should be carried out national wide to detect the mango weevils.

Keywords: mango pulp weevil, Sternochetus frigitus, mango seed weevil Sternochetus olivieri, faust, Sternochetus mangiferae, fabricius, Sein Ta Lone, Yinkwe mango cultivars, Shan State (South) Myanmar

Procedia PDF Downloads 291
5509 Improvement of Electric Aircraft Endurance through an Optimal Propeller Design Using Combined BEM, Vortex and CFD Methods

Authors: Jose Daniel Hoyos Giraldo, Jesus Hernan Jimenez Giraldo, Juan Pablo Alvarado Perilla

Abstract:

Range and endurance are the main limitations of electric aircraft due to the nature of its source of power. The improvement of efficiency on this kind of systems is extremely meaningful to encourage the aircraft operation with less environmental impact. The propeller efficiency highly affects the overall efficiency of the propulsion system; hence its optimization can have an outstanding effect on the aircraft performance. An optimization method is applied to an aircraft propeller in order to maximize its range and endurance by estimating the best combination of geometrical parameters such as diameter and airfoil, chord and pitch distribution for a specific aircraft design at a certain cruise speed, then the rotational speed at which the propeller operates at minimum current consumption is estimated. The optimization is based on the Blade Element Momentum (BEM) method, additionally corrected to account for tip and hub losses, Mach number and rotational effects; furthermore an airfoil lift and drag coefficients approximation is implemented from Computational Fluid Dynamics (CFD) simulations supported by preliminary studies of grid independence and suitability of different turbulence models, to feed the BEM method, with the aim of achieve more reliable results. Additionally, Vortex Theory is employed to find the optimum pitch and chord distribution to achieve a minimum induced loss propeller design. Moreover, the optimization takes into account the well-known brushless motor model, thrust constraints for take-off runway limitations, maximum allowable propeller diameter due to aircraft height and maximum motor power. The BEM-CFD method is validated by comparing its predictions for a known APC propeller with both available experimental tests and APC reported performance curves which are based on Vortex Theory fed with the NASA Transonic Airfoil code, showing a adequate fitting with experimental data even more than reported APC data. Optimal propeller predictions are validated by wind tunnel tests, CFD propeller simulations and a study of how the propeller will perform if it replaces the one of on known aircraft. Some tendency charts relating a wide range of parameters such as diameter, voltage, pitch, rotational speed, current, propeller and electric efficiencies are obtained and discussed. The implementation of CFD tools shows an improvement in the accuracy of BEM predictions. Results also showed how a propeller has higher efficiency peaks when it operates at high rotational speed due to the higher Reynolds at which airfoils present lower drag. On the other hand, the behavior of the current consumption related to the propulsive efficiency shows counterintuitive results, the best range and endurance is not necessary achieved in an efficiency peak.

Keywords: BEM, blade design, CFD, electric aircraft, endurance, optimization, range

Procedia PDF Downloads 94
5508 Biodiversity of Aphid Species (Homoptera: Aphididae) in Hyderabad District, Sindh, Pakistan

Authors: Mahpara Pirzada, Mansoor Ali Shah, Saima Pthan, Kamal Khan, Faiza

Abstract:

Present study based on biodiversity of aphid in different crops of Hyderabad district and its, surrounding area to observe the biodiversity of aphids, host plant range of the aphids in Hyderabad and their population also infestation and yield loss aphid on different crops. We have surveyed different fields of Hyderabad, Jamshoro, and collected the aphids from various parts of plants, grasses, and herb with the help of camel brush. They have been brought to the laboratory into plastic jars and preserved in Glycerin (Glycerol). As a result, 383 individuals belonging to 3 species were identified. These identified species were Aphis fabae, Myzus persicae, and Brevicoryne brassicae. Out of the 3 habitats the maximum richness, evenness, and diversity were recorded in agriculture crops followed by flowering vegetables and minimum in fodder crops. The most abundant specie is Myzus persicae.

Keywords: aphid species, biodiversity, Homoptera:Aphididae, Pakistan

Procedia PDF Downloads 310
5507 Extraskeletal Ewing Sarcoma- Experience in a Tertiary Cancer Care Centre of India

Authors: Himanshu Rohela

Abstract:

BACKGROUND: Ewing sarcoma can arise in either bone or soft tissue. Extraskeletal Ewing sarcoma (EES) is an uncommon primary tumor of the soft tissues, accounting for 20 30% of all reported cases of ES. AIM: Was to investigate demographic distribution, survival analysis and factors affecting the survival and recurrence in patients of EES. METHODS: Retrospective study of 19 biopsy-proven EES was performed. Overall survival (OS) using log-rank test and factors affecting OS and local recurrence (LR) were evaluated for the entire cohort. RESULTS: Patients with EES had a mean age of 19.5 and it was more commonly seen in males (63%). Axial location (58%) and solitary presentation (84%) were more common. The average size was 11 cm, 3 of 19 were metastatic at presentation, with the lung beings the most common site for metastasis. 17 received NACT, 16 with VAC-IE regimen and 1 underwent a second line with GEM/DOCE regimen. Unplanned surgery was done in 2 of 19. 3 patients received definitive RT and 13 underwent surgical-wide local excision. 2 of 13 showed good response to NACT. 10 patients required readmission out of which 6 patients had chemotherapy-related complications, 2 had surgical site complications and one patient developed secondary AML post-completion of treatment. A total of 4 patients had a recurrence. One had local recurrence alone, one had distant recurrence alone and 2 patients had a distant and local recurrence both. Tumor size >10 cm, axial location, and previous unplanned surgery was associated with higher LR rate. The mean overall survival was 32 months (2.66 years), with higher rates seen in non-metastatic and non-recurrent settings. CONCLUSIONS: Early and accurate diagnosis is the key to the management of EES, with promising results seen via NACT and RO resection regimens. But further studies with larger study groups are needed to standardize the treatment protocol and evaluate its efficacy.

Keywords: Ewings, sarcoma, extraskeletal, chemotherapy

Procedia PDF Downloads 60
5506 In Vitro Antifungal Activity of Essential Oil Artemisia Absinthium

Authors: Bouchenak Fatima, Lmegharbi Abdelbaki, Houssem Degaichia, Benrebiha Fatima

Abstract:

The essential oil composition of the leaf of Artemisia absinthium from region of Cherchell (The south of Algeria) was investigated by GC, GC-MS. 27 constituents were identified correspond to 84, 63% of the total oil. The major components are Thujone (60, 82%), Chamazulènel (16, 62%), ρ-cymène (4, 29%) and 2-carène (4.25%). The antimicrobial activity of oil was tested in vitro by two methods (agar diffusion and microdilution) on three plant pathogenic fungi. This oil has been tested for antimicrobial activity against three pathogenic fungi (Botrytis cinerea, Fusarium culmorum and Helminthosporium Sp.).The study of activity was evaluated by two methods: Method of diffusion in gelose and the minimum inhibitory concentration MIC. This oil exhibited an interesting antimicrobial activity. A preliminary study showed that this oil presented high toxicity against this fungus. These results, although preliminary show a good antifungal activity, to limit and inhibit stop the development of those pathogen agent.

Keywords: artemisia absinthian, extraction process, chemical study, antifungal activity

Procedia PDF Downloads 462
5505 Smallholder Farmers’ Adaptation Strategies and Socioeconomic Determinants of Climate Variability in Boset District, Oromia, Ethiopia

Authors: Hurgesa Hundera, Samuel Shibeshibikeko, Tarike Daba, Tesfaye Ganamo

Abstract:

The study aimed at examining the ongoing adaptation strategies used by smallholder farmers in response to climate variability in Boset district. It also assessed the socioeconomic factors that influence the choice of adaptation strategies of smallholder farmers to climate variability risk. For attaining the objectives of the study, both primary and secondary sources of data were employed. The primary data were obtained through a household questionnaire, key informant interviews, focus group discussions, and observations, while secondary data were acquired through desk review. Questionnaires were distributed and filled by 328 respondents, and they were identified through systematic random sampling technique. Descriptive statistics and binary logistic regression model were applied in this study as the main analytical methods. The findings of the study reveal that the sample households have utilized multiple adaptation strategies in response to climate variability, such as cropping early mature crops, planting drought resistant crops, growing mixed crops on the same farm lands, and others. The results of the binary logistic model revealed that education, sex, age, family size, off farm income, farm experience, access to climate information, access to farm input, and farm size were significant and key factors determining farmers’ choice of adaptation strategies to climate variability in the study area. To enable effective adaptation measures, Ministry of Agriculture and Natural Resource, with its regional bureaus and offices and concerned non–governmental organizations, should consider climate variability in their planning and budgeting in all levels of decision making.

Keywords: adaptation strategies, boset district, climate variability, smallholder farmers

Procedia PDF Downloads 74
5504 Effect of Variety and Fibre Type on Functional and organoleptic Properties of Plantain Flour Intended for Food "Fufu"

Authors: C. C. Okafor

Abstract:

The effect of different varieties of plantain (Horn, false horn and French) and fibre types (soy bean residue, cassava sievette and rice bran) on functional and organoleptic properties of plantain-based flour was assessed. Horn, false horn french were processed by washing, peeling with knife, slicing into 3mm thickness and steam blanched at 80℃ for 5minutes, oven dried at 65℃ for 48 hours and milled into flours with attrition mill, sieved with 60 mesh sieve, separately. Fibre sources were processed, milled and fractionated into 60, 40 & 20 mesh sizes. Both flours were blended as 80:20, 70:30 and 60:40. Results obtained indicated that water absorption capacity is highest (2.68) in French plantain variety irrespective of the fibre type used. And in all variety tested the swelling capacity is highest (2.93) when the plantain flour is blended with soy residue (SR) and lowest (1.25) when blended with rice brain (RB). The results show that there is significant variety and fibre type interaction effect at (P < : 0.05). Again the results showed that texture mold ability and overall acceptability were best (7.00) when soy residue was used where as addition of rice bran into plantain flour resulted in fufu with poor texture. This trend was observed in all the verities of plantain tested and in all of the particle size of flour. Using cassava serviette also yield fufu similar to that produced with soy residue in all the parameter tested (mold ability, texture and overall acceptability. Generally, plantain flours from french and false horn yielded better quality fufu in terms of texture mold ability, overall acceptability, irrespective of the fibre type used.

Keywords: functional, organoleptic, particle size, sieve mesh, variety

Procedia PDF Downloads 392
5503 Modeling and Simulation of the Structural, Electronic and Magnetic Properties of Fe-Ni Based Nanoalloys

Authors: Ece A. Irmak, Amdulla O. Mekhrabov, M. Vedat Akdeniz

Abstract:

There is a growing interest in the modeling and simulation of magnetic nanoalloys by various computational methods. Magnetic crystalline/amorphous nanoparticles (NP) are interesting materials from both the applied and fundamental points of view, as their properties differ from those of bulk materials and are essential for advanced applications such as high-performance permanent magnets, high-density magnetic recording media, drug carriers, sensors in biomedical technology, etc. As an important magnetic material, Fe-Ni based nanoalloys have promising applications in the chemical industry (catalysis, battery), aerospace and stealth industry (radar absorbing material, jet engine alloys), magnetic biomedical applications (drug delivery, magnetic resonance imaging, biosensor) and computer hardware industry (data storage). The physical and chemical properties of the nanoalloys depend not only on the particle or crystallite size but also on composition and atomic ordering. Therefore, computer modeling is an essential tool to predict structural, electronic, magnetic and optical behavior at atomistic levels and consequently reduce the time for designing and development of new materials with novel/enhanced properties. Although first-principles quantum mechanical methods provide the most accurate results, they require huge computational effort to solve the Schrodinger equation for only a few tens of atoms. On the other hand, molecular dynamics method with appropriate empirical or semi-empirical inter-atomic potentials can give accurate results for the static and dynamic properties of larger systems in a short span of time. In this study, structural evolutions, magnetic and electronic properties of Fe-Ni based nanoalloys have been studied by using molecular dynamics (MD) method in Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) and Density Functional Theory (DFT) in the Vienna Ab initio Simulation Package (VASP). The effects of particle size (in 2-10 nm particle size range) and temperature (300-1500 K) on stability and structural evolutions of amorphous and crystalline Fe-Ni bulk/nanoalloys have been investigated by combining molecular dynamic (MD) simulation method with Embedded Atom Model (EAM). EAM is applicable for the Fe-Ni based bimetallic systems because it considers both the pairwise interatomic interaction potentials and electron densities. Structural evolution of Fe-Ni bulk and nanoparticles (NPs) have been studied by calculation of radial distribution functions (RDF), interatomic distances, coordination number, core-to-surface concentration profiles as well as Voronoi analysis and surface energy dependences on temperature and particle size. Moreover, spin-polarized DFT calculations were performed by using a plane-wave basis set with generalized gradient approximation (GGA) exchange and correlation effects in the VASP-MedeA package to predict magnetic and electronic properties of the Fe-Ni based alloys in bulk and nanostructured phases. The result of theoretical modeling and simulations for the structural evolutions, magnetic and electronic properties of Fe-Ni based nanostructured alloys were compared with experimental and other theoretical results published in the literature.

Keywords: density functional theory, embedded atom model, Fe-Ni systems, molecular dynamics, nanoalloys

Procedia PDF Downloads 229
5502 Corpus-Based Model of Key Concepts Selection for the Master English Language Course "Government Relations"

Authors: Elena Pozdnyakova

Abstract:

“Government Relations” is a field of knowledge presently taught at the majority of universities around the globe. English as the default language can become the language of teaching since the issues discussed are both global and national in character. However for this field of knowledge key concepts and their word representations in English don’t often coincide with those in other languages. International master’s degree students abroad as well as students, taught the course in English at their national universities, are exposed to difficulties, connected with correct conceptualizing of terminology of GR in British and American academic traditions. The study was carried out during the GR English language course elaboration (pilot research: 2013 -2015) at Moscow State Institute of Foreign Relations (University), Russian Federation. Within this period, English language instructors designed and elaborated the three-semester course of GR. Methodologically the course design was based on elaboration model with the special focus on conceptual elaboration sequence and theoretical elaboration sequence. The course designers faced difficulties in concept selection and theoretical elaboration sequence. To improve the results and eliminate the problems with concept selection, a new, corpus-based approach was worked out. The computer-based tool WordSmith 6.0 was used with the aim to build a model of key concept selection. The corpus of GR English texts consisted of 1 million words (the study corpus). The approach was based on measuring effect size, i.e. the percent difference of the frequency of a word in the study corpus when compared to that in the reference corpus. The results obtained proved significant improvement in the process of concept selection. The corpus-based model also facilitated theoretical elaboration of teaching materials.

Keywords: corpus-based study, English as the default language, key concepts, measuring effect size, model of key concept selection

Procedia PDF Downloads 289
5501 Localized Detection of ᴅ-Serine by Using an Enzymatic Amperometric Biosensor and Scanning Electrochemical Microscopy

Authors: David Polcari, Samuel C. Perry, Loredano Pollegioni, Matthias Geissler, Janine Mauzeroll

Abstract:

ᴅ-serine acts as an endogenous co-agonist for N-methyl-ᴅ-aspartate receptors in neuronal synapses. This makes it a key component in the development and function of a healthy brain, especially given its role in several neurodegenerative diseases such as Alzheimer’s disease and dementia. Despite such clear research motivations, the primary site and mechanism of ᴅ-serine release is still currently unclear. For this reason, we are developing a biosensor for the detection of ᴅ-serine utilizing a microelectrode in combination with a ᴅ-amino acid oxidase enzyme, which produces stoichiometric quantities of hydrogen peroxide in response to ᴅ-serine. For the fabrication of a biosensor with good selectivity, we use a permselective poly(meta-phenylenediamine) film to ensure only the target molecule is reacted, according to the size exclusion principle. In this work, we investigated the effect of the electrodeposition conditions used on the biosensor’s response time and selectivity. Careful optimization of the fabrication process allowed for enhanced biosensor response time. This allowed for the real time sensing of ᴅ-serine in a bulk solution, and also provided in means to map the efflux of ᴅ-serine in real time. This was done using scanning electrochemical microscopy (SECM) with the optimized biosensor to measure localized release of ᴅ-serine from an agar filled glass capillary sealed in an epoxy puck, which acted as a model system. The SECM area scan simultaneously provided information regarding the rate of ᴅ-serine flux from the model substrate, as well as the size of the substrate itself. This SECM methodology, which provides high spatial and temporal resolution, could be useful to investigate the primary site and mechanism of ᴅ-serine release in other biological samples.

Keywords: ᴅ-serine, enzymatic biosensor, microelectrode, scanning electrochemical microscopy

Procedia PDF Downloads 215
5500 Load Balancing and Resource Utilization in Cloud Computing

Authors: Gagandeep Kaur

Abstract:

Cloud computing uses various computing resources such as CPU, memory, processor etc. which is used to deliver service over the network and is one of the emerging fields for large scale distributed computing. In cloud computing, execution of large number of tasks with available resources to achieve high performance, minimal total time for completion, minimum response time, effective utilization of resources etc. are the major research areas. In the proposed research, an algorithm has been proposed to achieve high performance in load balancing and resource utilization. The proposed algorithm is used to reduce the makespan, increase the resource utilization and performance cost for independent tasks. Further scheduling metrics based on algorithm in cloud computing has been proposed.

Keywords: resource utilization, response time, load balancing, performance cost

Procedia PDF Downloads 169
5499 The Effect of Reaction Time on the Morphology and Phase of Quaternary Ferrite Nanoparticles (FeCoCrO₄) Synthesised from a Single Source Precursor

Authors: Khadijat Olabisi Abdulwahab, Mohammad Azad Malik, Paul O'Brien, Grigore Timco, Floriana Tuna

Abstract:

The synthesis of spinel ferrite nanoparticles with a narrow size distribution is very crucial in their numerous applications including information storage, hyperthermia treatment, drug delivery, contrast agent in magnetic resonance imaging, catalysis, sensors, and environmental remediation. Ferrites have the general formula MFe₂O₄ (M = Fe, Co, Mn, Ni, Zn e.t.c) and possess remarkable electrical and magnetic properties which depend on the cations, method of preparation, size and their site occupancies. To the best of our knowledge, there are no reports on the use of a single source precursor to synthesise quaternary ferrite nanoparticles. Here in, we demonstrated the use of trimetallic iron pivalate cluster [CrCoFeO(O₂CᵗBu)₆(HO₂CᵗBu)₃] as a single source precursor to synthesise monodisperse cobalt chromium ferrite (FeCoCrO₄) nanoparticles by the hot injection thermolysis method. The precursor was thermolysed in oleylamine, oleic acid, with diphenyl ether as solvent at 260 °C. The effect of reaction time on the stoichiometry, phases or morphology of the nanoparticles was studied. The p-XRD patterns of the nanoparticles obtained after one hour was pure phase of cubic iron cobalt chromium ferrite (FeCoCrO₄). TEM showed that a more monodispersed spherical ferrite nanoparticles were obtained after one hour. Magnetic measurements revealed that the ferrite particles are superparamagnetic at room temperature. The nanoparticles were characterised by Powder X-ray Diffraction (p-XRD), Transmission Electron Microscopy (TEM), Energy Dispersive Spectroscopy (EDS) and Super Conducting Quantum Interference Device (SQUID).

Keywords: cobalt chromium ferrite, colloidal, hot injection thermolysis, monodisperse, reaction time, single source precursor, quaternary ferrite nanoparticles

Procedia PDF Downloads 291
5498 Development of Hydrophilic Materials for Nanofiltration Membrane Achieving Dual Resistance to Fouling and Chlorine

Authors: Xi Quan Cheng, Yan Chao Xu, Xu Jiang, Lu Shao, Cher Hon Lau

Abstract:

A hydrophilic thin-film-composite (TFC) nanofiltration (NF) membrane has been developed through the interfacial polymerization (IP) of amino-functional polyethylene glycol (PEG) and trimesoyl chloride. The selective layer is formed on a polyethersulfone (PES) support that is characterized using FTIR, XPS and SEM, and is dependent on monomer immersion duration, and the concentration of monomers and additives. The higher hydrophilicity alongside the larger pore size of the PEG-based selective layer is the key to a high water flux of 66.0 L m-2 h-1 at 5.0 bar. With mean pore radius of 0.42 nm and narrow pore size distribution, the MgSO4 rejections of the PEG based PA TFC NF membranes can reach up to 80.2 %. The hydrophilic PEG based membranes shows positive charged since the isoelectric points range from pH=8.9 to pH=9.1 and the rejection rates for different salts of the novel membranes are in the order of R(MgCl2)>R(MgSO4)>R(NaCl)>R(Na2SO4). The pore sizes and water permeability of these membranes are tailored by varying the molecular weight and molecular architecture of amino-functional PEG. Due to the unique structure of the selective layer of the PEG based membranes consisting of saturated aliphatic construction unit (CH2-CH2-O), the membranes demonstrate dual resistance to fouling and chlorine. The membranes maintain good salt rejections and high water flux of PEG based membranes after treatment by 2000 ppm NaClO for 24 hours. Interestingly, the PEG based membranes exhibit excellent fouling resistance with a water flux recovery of 90.2 % using BSA as a model molecule. More importantly, the hydrophilic PEG based NF membranes have been exploited to separate several water soluble antibiotics (such as tobramycin, an aminoglycoside antibiotic applied in the treatment of various types of bacterial infections), showing excellent performance in concentration or removal of antibioics.

Keywords: nanofiltration, antibiotic separation, hydrophilic membrane, high flux

Procedia PDF Downloads 304
5497 A Preliminary Study of Economic Dimension of Underground Rock Caverns for Water Storage at Singapore

Authors: Junlong Shang, Zhengxian Chua, Hoongping Peh, Zhiye Zhao

Abstract:

Due to scarce land resources in Singapore, it is imperative to increase water storage capacities to meet the increasing demand of water to secure a sustainable development, which can be achieved in the underground by rock caverns. In this paper, a preliminary study on the effects of cavern span, height and radius on the cavern stability is presented to provide a guidance on the cavern construction in the context of Singapore. It is found that the radius of caverns should be around half of the span width (i.e., B/R=2) to reduce vertical displacement at the crown of cavern. The smaller the rock cover, the smaller displacement. The minimum rock thickness should be at least the same as the cavern span to eliminate excessive yielded element. Finally, rock support system is introduced to maintain the profile of caverns.

Keywords: cavern dimension, numerical modelling, sustainable development, underground rock cavern

Procedia PDF Downloads 304
5496 Extraction of Osmolytes from the Halotolerant Fungus Aspergillus oryzae

Authors: H. Nacef, L. Larous

Abstract:

Salin soils occupy about 7% of land area; they are characterized by unsuitable physical conditions for the growth of living organisms. However, researches showed that some microorganisms especially fungi are able to grow and adapt to such extreme conditions; it is due to their ability to develop different physiological mechanisms in their adaptation. The aim of this study is to identify qualitatively the osmolytes that the biotechnological important fungus A. oryzae accumulated and/or produced in its adaptation, which they were detected by Thin-layer chromatography technique (TLC) using several systems, from different media (Wheat brane, MNM medium and MM medium). The results showed that The moderately halotolerant fungus A. oryzae, accumulates mixture of molecules, containing polyols and sugars , some amino acids in addition to some molecules which were not defined. Wheat bran was the best medium for the extraction of these molecules, where the proportion was 85.71%, followed by MNM medium 64.28%, then the minimum medium MM 14.28%. Properties of osmolytes are becoming increasingly useful in molecular biology, agriculture pharmaceutical, medicinal, and biotechnological interests.

Keywords: salinity, aspergillus oryzae, halo tolerance, osmolytes, compatible solutes

Procedia PDF Downloads 402
5495 Action Potential of Lateral Geniculate Neurons at Low Threshold Currents: Simulation Study

Authors: Faris Tarlochan, Siva Mahesh Tangutooru

Abstract:

Lateral Geniculate Nucleus (LGN) is the relay center in the visual pathway as it receives most of the input information from retinal ganglion cells (RGC) and sends to visual cortex. Low threshold calcium currents (IT) at the membrane are the unique indicator to characterize this firing functionality of the LGN neurons gained by the RGC input. According to the LGN functional requirements such as functional mapping of RGC to LGN, the morphologies of the LGN neurons were developed. During the neurological disorders like glaucoma, the mapping between RGC and LGN is disconnected and hence stimulating LGN electrically using deep brain electrodes can restore the functionalities of LGN. A computational model was developed for simulating the LGN neurons with three predominant morphologies, each representing different functional mapping of RGC to LGN. The firings of action potentials at LGN neuron due to IT were characterized by varying the stimulation parameters, morphological parameters and orientation. A wide range of stimulation parameters (stimulus amplitude, duration and frequency) represents the various strengths of the electrical stimulation with different morphological parameters (soma size, dendrites size and structure). The orientation (0-1800) of LGN neuron with respect to the stimulating electrode represents the angle at which the extracellular deep brain stimulation towards LGN neuron is performed. A reduced dendrite structure was used in the model using Bush–Sejnowski algorithm to decrease the computational time while conserving its input resistance and total surface area. The major finding is that an input potential of 0.4 V is required to produce the action potential in the LGN neuron which is placed at 100 µm distance from the electrode. From this study, it can be concluded that the neuroprostheses under design would need to consider the capability of inducing at least 0.4V to produce action potentials in LGN.

Keywords: Lateral Geniculate Nucleus, visual cortex, finite element, glaucoma, neuroprostheses

Procedia PDF Downloads 262
5494 Bending Behaviour of Fiber Reinforced Polymer Composite Stiffened Panel Subjected to Transverse Loading

Authors: S. Kumar, Rajesh Kumar, S. Mandal

Abstract:

Fiber Reinforced Polymer (FRP) is gaining popularity in many branch of engineering and various applications due to their light weight, specific strength per unit weight and high stiffness in particular direction. As the strength of material is high it can be used in thin walled structure as industrial roof sheds satisfying the strength constraint with comparatively lesser thickness. Analysis of bending behavior of FRP panel has been done here with variation in oriented angle of stiffener panels, fiber orientation, aspect ratio and boundary conditions subjected to transverse loading by using Finite Element Method. The effect of fiber orientation and thickness of ply has also been studied to determine the minimum thickness of ply for optimized section of stiffened FRP panel.

Keywords: bending behavior, fiber reinforced polymer, finite element method, orientation of stiffeners

Procedia PDF Downloads 374
5493 Effect of Microstructure on Wear Resistance of Polycrystalline Diamond Composite Cutter of Bit

Authors: Fanyuan Shao, Wei Liu, Deli Gao

Abstract:

Polycrystalline diamond composite (PDC) cutter is made of diamond powder as raw material, cobalt metal or non-metallic elements as a binder, mixed with WC cemented carbide matrix assembly, through high temperature and high-pressure sintering. PDC bits with PDC cutters are widely used in oil and gas drilling because of their high hardness, good wear resistance and excellent impact toughness. And PDC cutter is the main cutting tool of bit, which seriously affects the service of the PDC bit. The wear resistance of the PDC cutter is measured by cutting granite with a vertical turret lathe (VTL). This experiment can achieve long-distance cutting to obtain the relationship between the wear resistance of the PDC cutter and cutting distance, which is more closely to the real drilling situation. Load cell and 3D optical profiler were used to obtain the value of cutting forces and wear area, respectively, which can also characterize the damage and wear of the PDC cutter. PDC cutters were cut via electrical discharge machining (EDM) and then flattened and polished. A scanning electron microscope (SEM) was used to observe the distribution of binder cobalt and the size of diamond particles in a diamond PDC cutter. The cutting experimental results show that the wear area of the PDC cutter has a good linear relationship with the cutting distance. Simultaneously, the larger the wear area is and the greater the cutting forces are required to maintain the same cutting state. The size and distribution of diamond particles in the polycrystalline diamond layer have a great influence on the wear resistance of the diamond layer. And PDC cutter with fine diamond grains shows more wear resistance than that with coarse grains. The deep leaching process is helpful to reduce the effect of binder cobalt on the wear resistance of the polycrystalline diamond layer. The experimental study can provide an important basis for the application of PDC cutters in oil and gas drilling.

Keywords: polycrystalline diamond compact, scanning electron microscope, wear resistance, cutting distance

Procedia PDF Downloads 184
5492 Wadi Halfa Oolitic Ironstone Formation, Wadi Halfa and Argein Areas, North Sudan

Authors: Mutwakil Nafi, Abed Elaziz El Amein, Muna El Dawi, Khalafala Salih, Osma Elbahi, Abed Elhalim Abou

Abstract:

Recently a large deposit of oolitic iron ore of Late Carboniferous-Permotriassic-Lower Jurassic age was discovered in Wadi Halfa and Argein areas, North Sudan. It seems that the iron ore mineralization exists in the west and east bank of the River Nile of the study area that are found on the Egyptian-Sudanese border. The Carboniferous-Lower Jurassic age strata were covered by 67 sections and each section has been examined and carefully described. The iron-ore in Wadi Halfa occurs as oolitic ironstone and contained two horizons: (A) horizon and (B) horizon. Only horizon (A) was observed in southern Argein area. The texture of the ore is variable depending on the volume of the component. In thin sections the average of the ooids were ranged between 90% - 80%. The matrix varies between 10%-20% by volume and detritus quartz in other component my reach up to 30% by volume in sandy massive ore. Ooids size ranges from 0.2mm-1.00 mm on average in very coarse ooids may attend up to 1 mm in size. The matrix around the ooids is dominated by iron hydroxide, carbonate, fine and amorphous silica. The probable ore reserve estimate of 1.234 billion at a head grade of 41.29% Fe for the Wadi Halfa Oolitic Ironstone Formation. The iron ore shows higher content of phosphorus ranges from 6.15% to 0.16%, with mean 1.45%. The new technology Hatch–Ironstone Chloride Segregation (HICS) can be used to produce commercial-quality of iron and reduce phosphorus and silica to acceptable levels for steel industry. The development of infra structures and presence huge quantity of iron ore would make exploitation of the iron ore economic.

Keywords: HICS, Late Carboniferous age, oolitic iron ore, phosphorus

Procedia PDF Downloads 630
5491 The Analysis of Changes in Urban Hierarchy of Isfahan Province in the Fifty-Year Period (1956-2006)

Authors: Hamidreza Joudaki, Yousefali Ziari

Abstract:

The appearance of city and urbanism is one of the important processes which have affected social communities. Being industrialized urbanism developed along with each other in the history. In addition, they have had simple relationship for more than six thousand years, that is, from the appearance of the first cities. In 18th century by coming out of industrial capitalism, progressive development took place in urbanism in the world. In Iran, the city of each region made its decision by itself and the capital of region (downtown) was the only central part and also the regional city without any hierarchy, controlled its realm. However, this method of ruling during these three decays, because of changing in political, social and economic issues that have caused changes in rural and urban relationship. Moreover, it has changed the variety of performance of cities and systematic urban network in Iran. Today, urban system has very vast imbalanced apace and performance. In Isfahan, the trend of urbanism is like the other part of Iran and systematic urban hierarchy is not suitable and normal. This article is a quantitative and analytical. The statistical communities are Isfahan Province cities and the changes in urban network and its hierarchy during the period of fifty years (1956 -2006) has been surveyed. In addition, those data have been analyzed by model of Rank and size and Entropy index. In this article Iran cities and also the factor of entropy of primate city and urban hierarchy of Isfahan Province have been introduced. Urban residents of this Province have been reached from 55 percent to 83% (2006). As we see the analytical data reflects that there is mismatching and imbalance between cities. Because the entropy index was.91 in 1956.And it decreased to.63 in 2006. Isfahan city is the primate city in the whole of these periods. Moreover, the second and the third cities have population gap with regard to the other cities and finally, they do not follow the system of rank-size.

Keywords: urban network, urban hierarchy, primate city, Isfahan province, urbanism, first cities

Procedia PDF Downloads 239
5490 Synthesis of Highly Stable Pseudocapacitors From Secondary Resources

Authors: Samane Maroufi, Rasoul Khayyam Nekouei, Sajjad Mofarah

Abstract:

Fabrication of the state-of-the-art portable pseudocapacitors with the desired transparency, mechanical flexibility, capacitance, and durability is challenging. In most cases, the fabrication of such devices requires critical elements which are either under the crisis of depletion or their extraction from virgin mineral ores have sever environmental impacts. This urges the use of secondary resources instead of virgin resources in fabrication of advanced devices. In this research, ultrathin films of defect-rich Mn1−x−y(CexLay)O2−δ with controllable thicknesses in the range between 5 nm to 627 nm and transmittance (≈29–100%) have been fabricated via an electrochemical chronoamperometric deposition technique using an aqueous precursor derived during the selective purification of rare earth oxide (REOs) isolated from end-of-life nickel-metal hydride (Ni-MH) batteries. Intercalation/de-intercalation of anionic O2− through the atomic tunnels of the stratified Mn1−x−y(CexLay)O2−δ crystallites was found to be responsible for outstanding areal capacitance of 3.4 mF cm−2 of films with 86% transmittance. The intervalence charge transfer among interstitial Ce/La cations and Mn oxidation states within the Mn1−x−y(CexLay)O2−δ structure resulted in excellent capacitance retention of ≈90% after 16 000 cycles. The synthesised transparent flexible Mn1−x−y(CexLay)O2−δ full-cell pseudocapacitor device possessed the energy and power densities of 0.088 μWh cm⁻² and 843 µW cm⁻², respectively. These values show insignificant changes under vigorous twisting and bending to 45–180° confirming these value-added materials are intriguing alternatives for size-sensitive energy storage devices. This research confirms the feasibility of utilisation of secondary waste resources for the fabrication of high-quality pseudocapacitors with engineered defects with the desired flexibility, transparency, and cycling stability suitable for size-sensitive portable electronic devices.

Keywords: pseudocapacitors, energy storage devices, flexible and transparent, sustainability

Procedia PDF Downloads 74
5489 Machine Learning Approach in Predicting Cracking Performance of Fiber Reinforced Asphalt Concrete Materials

Authors: Behzad Behnia, Noah LaRussa-Trott

Abstract:

In recent years, fibers have been successfully used as an additive to reinforce asphalt concrete materials and to enhance the sustainability and resiliency of transportation infrastructure. Roads covered with fiber-reinforced asphalt concrete (FRAC) require less frequent maintenance and tend to have a longer lifespan. The present work investigates the application of sasobit-coated aramid fibers in asphalt pavements and employs machine learning to develop prediction models to evaluate the cracking performance of FRAC materials. For the experimental part of the study, the effects of several important parameters such as fiber content, fiber length, and testing temperature on fracture characteristics of FRAC mixtures were thoroughly investigated. Two mechanical performance tests, i.e., the disk-shaped compact tension [DC(T)] and indirect tensile [ID(T)] strength tests, as well as the non-destructive acoustic emission test, were utilized to experimentally measure the cracking behavior of the FRAC material in both macro and micro level, respectively. The experimental results were used to train the supervised machine learning approach in order to establish prediction models for fracture performance of the FRAC mixtures in the field. Experimental results demonstrated that adding fibers improved the overall fracture performance of asphalt concrete materials by increasing their fracture energy, tensile strength and lowering their 'embrittlement temperature'. FRAC mixtures containing long-size fibers exhibited better cracking performance than regular-size fiber mixtures. The developed prediction models of this study could be easily employed by pavement engineers in the assessment of the FRAC pavements.

Keywords: fiber reinforced asphalt concrete, machine learning, cracking performance tests, prediction model

Procedia PDF Downloads 124
5488 Hyper Parameter Optimization of Deep Convolutional Neural Networks for Pavement Distress Classification

Authors: Oumaima Khlifati, Khadija Baba

Abstract:

Pavement distress is the main factor responsible for the deterioration of road structure durability, damage vehicles, and driver comfort. Transportation agencies spend a high proportion of their funds on pavement monitoring and maintenance. The auscultation of pavement distress was based on the manual survey, which was extremely time consuming, labor intensive, and required domain expertise. Therefore, the automatic distress detection is needed to reduce the cost of manual inspection and avoid more serious damage by implementing the appropriate remediation actions at the right time. Inspired by recent deep learning applications, this paper proposes an algorithm for automatic road distress detection and classification using on the Deep Convolutional Neural Network (DCNN). In this study, the types of pavement distress are classified as transverse or longitudinal cracking, alligator, pothole, and intact pavement. The dataset used in this work is composed of public asphalt pavement images. In order to learn the structure of the different type of distress, the DCNN models are trained and tested as a multi-label classification task. In addition, to get the highest accuracy for our model, we adjust the structural optimization hyper parameters such as the number of convolutions and max pooling, filers, size of filters, loss functions, activation functions, and optimizer and fine-tuning hyper parameters that conclude batch size and learning rate. The optimization of the model is executed by checking all feasible combinations and selecting the best performing one. The model, after being optimized, performance metrics is calculated, which describe the training and validation accuracies, precision, recall, and F1 score.

Keywords: distress pavement, hyperparameters, automatic classification, deep learning

Procedia PDF Downloads 68