Search results for: genetically modified organism (GMOs)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2732

Search results for: genetically modified organism (GMOs)

692 Thin-Film Nanocomposite Membrane with Single-Walled Carbon Nanotubes Axial Positioning in Support Layer for Desalination of Water

Authors: Ahmed A. Alghamdi

Abstract:

Single-walled carbon nanotubes (SWCNTs) are an outstanding material for applications in thermoelectric power generation, nanoelectronics, electrochemical energy storage, photovoltaics, and light emission. They are ultra-lightweight and possess electrical as well as thermal conductivity, flexibility, and mechanical strength. SWCNT is applicable in water treatment, brine desalination, removal of heavy metal ions associated with pollutants, and oil-water separation. Carbon nanotube (CNT) is believed to tackle the trade-off issue between permeability, selectivity, and fouling issues in membrane filtration applications. Studying these CNT structures, as well as their interconnection in nanotechnology, assists in finding the precise position to be placed for water desalination. Reverse osmosis (RO) has been used globally for desalination, resulting in purified water. Thin film composite (TFC) membranes were utilized in the RO process for desalination. The sheet thickness increases the salt rejection and decreases the water flux when CNT is utilized as a support layer to this membrane. Thus, through a temperature-induced phase separation technique (TIPS), axially aligned SWCNT (AASWCNT) is fabricated, and its use enhances the salt rejection and water flux at short reaction times with a modified procedure. An evaluation was conducted and analogized with prior works in the literature, which exhibited that the prepared TFC membrane showed a better outcome.

Keywords: single-walled carbon nanotubes, thin film composite, axially aligned swcnt, temperature induced phase separation technique, reverse osmosis

Procedia PDF Downloads 37
691 Apparent Temperature Distribution on Scaffoldings during Construction Works

Authors: I. Szer, J. Szer, K. Czarnocki, E. Błazik-Borowa

Abstract:

People on construction scaffoldings work in dynamically changing, often unfavourable climate. Additionally, this kind of work is performed on low stiffness structures at high altitude, which increases the risk of accidents. It is therefore desirable to define the parameters of the work environment that contribute to increasing the construction worker occupational safety level. The aim of this article is to present how changes in microclimate parameters on scaffolding can impact the development of dangerous situations and accidents. For this purpose, indicators based on the human thermal balance were used. However, use of this model under construction conditions is often burdened by significant errors or even impossible to implement due to the lack of precise data. Thus, in the target model, the modified parameter was used – apparent environmental temperature. Apparent temperature in the proposed Scaffold Use Risk Assessment Model has been a perceived outdoor temperature, caused by the combined effects of air temperature, radiative temperature, relative humidity and wind speed (wind chill index, heat index). In the paper, correlations between component factors and apparent temperature for facade scaffolding with a width of 24.5 m and a height of 42.3 m, located at south-west side of building are presented. The distribution of factors on the scaffolding has been used to evaluate fitting of the microclimate model. The results of the studies indicate that observed ranges of apparent temperature on the scaffolds frequently results in a worker’s inability to adapt. This leads to reduced concentration and increased fatigue, adversely affects health, and consequently increases the risk of dangerous situations and accidental injuries

Keywords: apparent temperature, health, safety work, scaffoldings

Procedia PDF Downloads 163
690 Implementation of the Canadian Emergency Department Triage and Acuity Scale (CTAS) in an Urgent Care Center in Saudi Arabia

Authors: Abdullah Arafat, Ali Al-Farhan, Amir Omair

Abstract:

Objectives: To review and assess the effectiveness of the implemented modified five-levels triage and acuity scale triage system in AL-Yarmook Urgent Care Center (UCC), King Abdulaziz Residential city, Riyadh, Saudi Arabia. Method: The applied study design was an observational cross sectional design. A data collection sheet was designed and distributed to triage nurses; the data collection was done during triage process and was directly observed by the co-investigator. Triage system was reviewed by measuring three time intervals as quality indicators: time before triage (TBT), time before being seen by physician (TBP) and total length of stay (TLS) taking in consideration timing of presentation and level of triage. Results: During the study period, a total of 187 patients were included in our study. 118 visits were at weekdays and 68 visits at weekends. Overall, 173 patients (92.5%) were seen by the physician in timely manner according to triage guidelines while 14 patients (7.5%) were not seen at appropriate time.Overall, The mean time before seen the triage nurse (TBT) was 5.36 minutes, the mean time to be seen by physician (TBP) was 22.6 minutes and the mean length of stay (TLS) was 59 minutes. The data didn’t showed significant increase in TBT, TBP, and number of patients not seen at the proper time, referral rate and admission rate during weekend. Conclusion: The CTAS is adaptable to countries beyond Canada and worked properly. The applied CTAS triage system in Al-Yarmook UCC is considered to be effective and well applied. Overall, urgent cases have been seen by physician in timely manner according to triage system and there was no delay in the management of urgent cases.

Keywords: CTAS, emergency, Saudi Arabia, triage, urgent care

Procedia PDF Downloads 302
689 Comparison between Some of Robust Regression Methods with OLS Method with Application

Authors: Sizar Abed Mohammed, Zahraa Ghazi Sadeeq

Abstract:

The use of the classic method, least squares (OLS) to estimate the linear regression parameters, when they are available assumptions, and capabilities that have good characteristics, such as impartiality, minimum variance, consistency, and so on. The development of alternative statistical techniques to estimate the parameters, when the data are contaminated with outliers. These are powerful methods (or resistance). In this paper, three of robust methods are studied, which are: Maximum likelihood type estimate M-estimator, Modified Maximum likelihood type estimate MM-estimator and Least Trimmed Squares LTS-estimator, and their results are compared with OLS method. These methods applied to real data taken from Duhok company for manufacturing furniture, the obtained results compared by using the criteria: Mean Squared Error (MSE), Mean Absolute Percentage Error (MAPE) and Mean Sum of Absolute Error (MSAE). Important conclusions that this study came up with are: a number of typical values detected by using four methods in the furniture line and very close to the data. This refers to the fact that close to the normal distribution of standard errors, but typical values in the doors line data, using OLS less than that detected by the powerful ways. This means that the standard errors of the distribution are far from normal departure. Another important conclusion is that the estimated values of the parameters by using the lifeline is very far from the estimated values using powerful methods for line doors, gave LTS- destined better results using standard MSE, and gave the M- estimator better results using standard MAPE. Moreover, we noticed that using standard MSAE, and MM- estimator is better. The programs S-plus (version 8.0, professional 2007), Minitab (version 13.2) and SPSS (version 17) are used to analyze the data.

Keywords: Robest, LTS, M estimate, MSE

Procedia PDF Downloads 218
688 Application of Electrochemical Impedance Spectroscopy to Monitor the Steel/Soil Interface During Cathodic Protection of Steel in Simulated Soil Solution

Authors: Mandlenkosi George Robert Mahlobo, Tumelo Seadira, Major Melusi Mabuza, Peter Apata Olubambi

Abstract:

Cathodic protection (CP) has been widely considered a suitable technique for mitigating corrosion of buried metal structures. Plenty of efforts have been made in developing techniques, in particular non-destructive techniques, for monitoring and quantifying the effectiveness of CP to ensure the sustainability and performance of buried steel structures. The aim of this study was to investigate the evolution of the electrochemical processes at the steel/soil interface during the application of CP on steel in simulated soil. Carbon steel was subjected to electrochemical tests with NS4 solution used as simulated soil conditions for 4 days before applying CP for a further 11 days. A previously modified non-destructive voltammetry technique was applied before and after the application of CP to measure the corrosion rate. Electrochemical impedance spectroscopy (EIS), in combination with mathematical modeling through equivalent electric circuits, was applied to determine the electrochemical behavior at the steel/soil interface. The measured corrosion rate was found to have decreased from 410 µm/yr to 8 µm/yr between days 5 and 14 because of the applied CP. Equivalent electrical circuits were successfully constructed and used to adequately model the EIS results. The modeling of the obtained EIS results revealed the formation of corrosion products via a mixed activation-diffusion mechanism during the first 4 days, while the activation mechanism prevailed in the presence of CP, resulting in a protective film. The x-ray diffraction analysis confirmed the presence of corrosion products and the predominant protective film corresponding to the calcareous deposit.

Keywords: carbon steel, cathodic protection, NS4 solution, voltammetry, EIS

Procedia PDF Downloads 40
687 Genetic Characterization of Acanthamoeba Isolates from Amoebic Keratitis Patients

Authors: Sumeeta Khurana, Kirti Megha, Amit Gupta, Rakesh Sehgal

Abstract:

Background: Amoebic keratitis is a painful vision threatening infection caused by a free living pathogenic amoeba Acanthamoeba. It can be misdiagnosed and very difficult to treat if not suspected early. The epidemiology of Acanthamoeba genotypes causing infection in our geographical area is not yet known to the best of our knowledge. Objective: To characterize Acanthamoeba isolates from amoebic keratitis patients. Methods: A total of 19 isolates obtained from patients with amoebic keratitis presenting to the Advanced Eye Centre at Postgraduate Institute of Medical Education and Research, a tertiary care centre of North India over a period of last 10 years were included. Their corneal scrapings, lens solution and lens case (in case of lens wearer) were collected for microscopic examination, culture and molecular diagnosis. All the isolates were maintained in the Non Nutrient agar culture medium overlaid with E.coli and 13 strains were axenised and maintained in modified Peptone Yeast Dextrose Agar. Identification of Acanthamoeba genotypes was based on amplification of diagnostic fragment 3 (DF3) region of the 18srRNA gene followed by sequencing. Nucleotide similarity search was performed by BLAST search of sequenced amplicons in GenBank database (http//www.ncbi.nlm.nih.gov/blast). Multiple Sequence alignments were determined by using CLUSTAL X. Results: Nine out of 19 Acanthamoeba isolates were found to belong to Genotype T4 followed by 6 isolates of genotype T11, 3 T5 and 1 T3 genotype. Conclusion: T4 is the predominant Acanthamoeba genotype in our geographical area. Further studies should focus on differences in pathogenicity of these genotypes and their clinical significance.

Keywords: Acanthamoeba, free living amoeba, keratitis, genotype, ocular

Procedia PDF Downloads 224
686 Levansucrase from Zymomonas Mobilis KIBGE-IB14: Production Optimization and Characterization for High Enzyme Yield

Authors: Sidra Shaheen, Nadir Naveed Siddiqui, Shah Ali Ul Qader

Abstract:

In recent years, significant progress has been made in discovering and developing new bacterial polysaccharides producing organisms possessing extremely functional properties. Levan is a natural biopolymer of fructose which is produced by transfructosylation reaction in the presence of levansucrase. It is one of the industrially promising enzymes that offer a variety of industrial applications in the field of cosmetics, foods and pharmaceuticals. Although levan has significant applications but the yield of levan produced is not equal to other biopolymers due to the inefficiency of producer microorganism. Among wide range of levansucrase producing microorganisms, Zymomonas mobilis is considered as a potential candidate for large scale production of this natural polysaccharide. The present investigation is concerned with the isolation of levansucrase producing natural isolate having maximum enzyme production. Furthermore, production parameters were optimized to get higher enzyme yield. Levansucrase was partially purified and characterized to study its applicability on industrial scale. The results of this study revealed that the bacterial strain Z. mobilis KIBGE-IB14 was the best producer of levansucrase. Bacterial growth and enzyme production was greatly influenced by physical and chemical parameters. Maximum levansucrase production was achieved after 24 hours of fermentation at 30°C using modified medium of pH-6.5. Contrary to other levansucrases, the one presented in the current study is able to produce high amount of products in relatively short period of time with optimum temperature at 35°C. Due to these advantages, this enzyme can be used on large scale for commercial production of levan and other important metabolites.

Keywords: levansucrase, metabolites, polysaccharides, transfructosylation

Procedia PDF Downloads 484
685 Failure of Cable Reel Flat Spring of Crane: Beyond Fatigue Life Use

Authors: Urbi Pal, Piyas Palit, Jitendra Mathur, Abhay Chaturvedi, Sandip Bhattacharya

Abstract:

The hot rolled slab lifting crane cable reel drum (CRD) failed due to failure of cable reel flat spring which are inside the cassette of CRD. CRD is used for the movement of tong cable. Stereoscopic observation revealed beach marks and Scanning Electron Microscopy showed striations confirming fatigue mode of failure. Chemical composition should be spring steel (Cr-Mo-V) as per IS 3431:1982 instead of C-Mn steel. To find out the reason of fatigue failure, the theoretical fatigue life of flat spiral spring has been calculated. The calculation of number of fatigue cycles included bending moment, maximum stress on the spring, ultimate tensile strength and alternative stress. The bending moment determination has been taken account with various parameters like Young’s Modulus, width, thickness, outer diameter, arbor diameter, pay out the length and angular deflection in rotations. With all the required data, the calculated fatigue life turned to be 10000 cycles, but the spring served 15000 cycles which clearly indicated beyond fatigue life usage. Different UTS values have been plotted with respect to the number of fatigue cycles and clearly showed that the increase in UTS by 40% increases fatigue life by 50%. The significance of higher UTS lied here, and higher UTS depends on modified chemistry with proper tempered martensite microstructure. This kind of failure can be easily avoided by changing the crane spring maintenance schedule from 2 years to 1.5 years considering 600 cycles per month. The plant has changed changing the schedule of cable reel spring and procured new flat reel spring made of 50CrV2 steel.

Keywords: cable reel spring, fatigue life, stress, spring steel

Procedia PDF Downloads 132
684 A Cross-Sectional Assessment of Maternal Food Insecurity in Urban Settings

Authors: Theresia F. Mrema, Innocent Semali

Abstract:

Food insecurity to pregnant women seriously impedes efforts to reduce maternal mortality in resource poor countries. This study was carried out to assess determinants food insecurity among pregnant women in urban areas. A cross sectional study design was used to collect data for the period of two weeks. A structured questionnaire with both closed and open ended questions was used to interview a total of 225 randomly selected pregnant women who attend the three randomly selected antenatal care clinics in Temeke Municipal council. The food insecurity was measured using a modified version of the USDA’s core food security module which consists of 15questions. Logistic regression analysis was used to obtain strength of association between dependent and independent variables. Among 225 pregnant women attending antenatal care (ANC) interviewed 55.1% were food insecure. Food insecurity declined with increasing household wealth, it was also significantly low among those with less than three children compared with having more. Low level of food insecurity was associated with having Secondary education (Adjusted OR=0.24; 95%CI, 0.12–0.48), College Education (OR=0.156; 95%CI, 0.05-0.46), paid employment (OR=0.322; 95%CI, 0.11-0.96) and high income (OR=0.031; 95%CI, 0.01–0.07). Also, having head of the household with secondary education (OR=0.51; 95%CI, 0.07-0.32) college education (OR=0.04; 95%CI, 0.01-0.13) and paid employment (OR=0.225; 95%CI, 0.12-0.42). Food insecurity is a significant problem among pregnant women in Temeke Municipal which might significantly affect health of the pregnant woman and foetus due to higher maternal malnutrition which increases risk of miscarriage, maternal and infant mortality, and poor pregnancy outcomes. The study suggests a multi-sectoral approach in order to address this problem.

Keywords: food security, nutrition, pregnant women, urban settings

Procedia PDF Downloads 342
683 Fly Ash Derived Zeolites as Potential Sorbents for Elemental Mercury Removal from Simulated Gas Stream

Authors: Piotr Kunecki, Magdalena Wdowin

Abstract:

The fly ash produced as waste in the process of conventional coal combustion was utilized in the hybrid synthesis of zeolites X and A from Faujasite (FAU) and Linde Type A (LTA) frameworks, respectively. The applied synthesis method included modification together with the crystallization stage. The sorbent modification was performed by introducing metals into the zeolite structure in order to create an ability to form stable bonds with elemental mercury (Hg0). The use of waste in the form of fly ash as a source of silicon and aluminum, as well as the proposed method of zeolite synthesis, fits the circular economy idea. The effect of zeolite modification on Hg0 removal from a simulated gas stream was studied empirically using prototype installation designed to test the effectiveness of sorption by solid-state sorbents. Both derived zeolites X and A modified with silver nitrate revealed significant mercury uptake during a 150-minute sorption experiment. The amount of elemental mercury removed in the experiment ranged from 5.69 to 6.01 µg Hg0/1g of sorbent for zeolites X and from 4.47 to 4.86 µg Hg0/1g of sorbent for zeolites A. In order to confirm the effectiveness of the sorbents towards mercury bonding, the possible re-emission effect was tested as well. Derived zeolites X and A did not show mercury re-emission after the sorption process, which confirms the stable bonding of Hg0 in the structure of synthesized zeolites. The proposed hybrid synthesis method possesses the potential to be implemented for both fly ash utilization as well as the time and energy-saving production of aluminosilicate, porous materials with high Hg0 removal efficiency. This research was supported by National Science Centre, Poland, grant no 2021/41/N/ST5/03214.

Keywords: fly ash, synthetic zeolites, elemental mercury removal, sorption, simulated gas stream

Procedia PDF Downloads 65
682 Surface Sterilization Retain Postharvest Quality and Shelf Life of Strawberry and Cherry Tomato during Modified Atmosphere Packaging

Authors: Ju Young Kim, Mohammad Zahirul Islam, Mahmuda Akter Mele, Su Jeong Han, Hyuk Sung Yoon, In-Lee Choi, Ho-Min Kang

Abstract:

Strawberry and tomato fruits were harvested at the red ripens maturity stage in the Republic of Korea. The fruits were dipped in fungi solution and afterwards were sterilized with sodium hypochlorite (NaOCl) and chlorine dioxide (ClO2) gas. Some fruits were dipped in 150μL/L NaOCl solution for 10 minutes, and others were treated with 5μL/L ClO2 gas for 12 hours and packed with 20,000 cc OTR (oxygen transmission rate) film, the rest were packed in 10,000 cc OTR film inserted with 5μL/L ClO2 gas. 5μL/L ClO2 gas insert treatment showed the lowest carbon dioxide and ethylene, and the highest oxygen concentration was on the final storage day (15th day) in both strawberry and tomato fruits. Tomato fruits showed the lowest fresh weight loss in 5μL/L ClO2 gas insert treatment. The visual quality as well as shelf life showed the highest in 5μL/L ClO2 gas insert treatment of both strawberry and tomato fruits. In addition, the fungal incidence of strawberry and tomato fruits were the most suppressed in 5μL/L ClO2 gas insert treatment. 5μL/L ClO2 gas insert treatment showed higher firmness and soluble solids in both strawberry and tomato fruits. So, 5μL/L ClO2 gas insert treatment may be useful to prevent the fungal incidence as well as retaining the postharvest quality, and increase the shelf life of strawberry and tomato fruits for long term storage. This study was supported by Export Promotion Technology Development Program (314027-03), IPET, Ministry of Agriculture, Food and Rural Affairs, Republic of Korea.

Keywords: chlorine dioxide, ethylene, fungi, sodium hypochlorite

Procedia PDF Downloads 350
681 Nutrition Role in the Management of Psychiatric Disorders

Authors: Abeer Mohammed, Nevein Mustafa Elashery, Mona Hassan Abdel Aal, Ereny Wilson Nagib

Abstract:

The Aim of the current study is to investigate nutrition role in the management of psychiatric disorders. Research Design: A quasi- experimental research design was utilized for this study. Setting The study was conducted at outpatient clinic at Institute of Psychiatry affiliated to Ain Shams University hospitals, using a convenient sample of 50 psychiatric patients with depression, schizophrenia, bipolar disorders, and obsessive compulsive disorders. Tools: data were collected through; first, an interview questionnaire covering socio-demographic characteristics, second, nutrition assessment tools Third, nutrition risk assessment. Fourth, nutrition management program Results showed that there were highly statistically significant improvements in modified nutritional supplements for patients with depression, schizophrenia, bipolar disorders, and obsessive compulsive disorders' patients after conducting the nutrition management program. Regarding psychiatric patients’ knowledge about healthy food, healthy nutritional habits, and patients’ awareness & readiness for change, there were highly statistically significant improvements. Concerning signs and symptoms of psychiatric disorders, there were highly statistically significant improvements for depression, schizophrenia, bipolar disorders, and obsessive-compulsive patients after conducting the management program. In conclusion, the nutrition management program was effective in improving symptoms associated with, depression, schizophrenia, bipolar disorders, and obsessive compulsive disorders. The study recommended that nurses should have more contribution in counseling psychiatric patients, and their families about healthy diet and healthy habits. Further research should recommend studying the effectiveness of herbs on enhancing mental health for psychiatric patients.

Keywords: nutrition, role, management, psychiatric disorders

Procedia PDF Downloads 320
680 Determining Which Material Properties Resist the Tool Wear When Machining Pre-Sintered Zirconia

Authors: David Robert Irvine

Abstract:

In the dental restoration sector, there has been a shift to using zirconia. With the ever increasing need to decrease lead times to deliver restorations faster the zirconia is machined in its pre-sintered state instead of grinding the very hard sintered state. As with all machining, there is tool wear and while investigating the tooling used to machine pre-sintered zirconia it became apparent that the wear rate is based more on material build up and abrasion than it is on plastic deformation like conventional metal machining. It also came to light that the tool material can currently not be selected based on wear resistance, as there is no data. Different works have analysed the effect of the individual wear mechanism separately using similar if not the same material. In this work, the testing method used to analyse the wear was a modified from ISO 8688:1989 to use the pre-sintered zirconia and the cutting conditions used in dental to machine it. This understanding was developed through a series of tests based in machining operations, to give the best representation of the multiple wear factors that can occur in machining of pre-sintered zirconia such as 3 body abrasion, material build up, surface welding, plastic deformation, tool vibration and thermal cracking. From the testing, it found that carbide grades with low trans-granular rupture toughness would fail due to abrasion while those with high trans-granular rupture toughness failed due to edge chipping from build up or thermal properties. The results gained can assist the development of these tools and the restorative dental process. This work was completed with the aim of assisting in the selection of tool material for future tools along with a deeper understanding of the properties that assist in abrasive wear resistance and material build up.

Keywords: abrasive wear, cemented carbide, pre-sintered zirconia, tool wear

Procedia PDF Downloads 147
679 Endothelial Progenitor Cells Is a Determinant of Vascular Function and Atherosclerosis in Ankylosing Spondylitis

Authors: Ashit Syngle, Inderjit Verma, Pawan Krishan

Abstract:

Objective: Endothelial progenitor cells (EPCs) have reparative potential in overcoming the endothelial dysfunction and reducing cardiovascular risk. EPC depletion has been demonstrated in the setting of established atherosclerotic diseases. With this background, we evaluated whether reduced EPCs population are associated with endothelial dysfunction, subclinical atherosclerosis and inflammatory markers in ankylosing spondylitis (AS) patients without any known traditional cardiovascular risk factor in AS patients. Methods: Levels of circulating EPCs (CD34+/CD133+), brachial artery flow-mediated dilatation, carotid intima-media thickness (CIMT) and inflammatory markers i.e erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), tissue necrosis factor (TNF)–α, interleukin (IL)-6, IL-1 were assessed in 30 AS patients (mean age33.41 ± 10.25; 11 female and 19 male) who fulfilled the modified New York diagnostic criteria with 25 healthy volunteers (mean age 29.36± 8.64; 9 female and 16 male) matched for age and sex. Results: EPCs (CD34+/CD133+) cells were significantly (0.020 ± 0.001% versus 0.040 ± 0.010%, p<0.001) reduced in patients with AS compared to healthy controls. Endothelial function (7.35 ± 2.54 versus 10.27 ±1.73, p=0.002), CIMT (0.63 ± 0.01 versus 0.35 ± 0.02, p < 0.001) and inflammatory markers were also significantly (p < 0.01) altered as compared to healthy controls. Specifically, CD34+CD133+cells were inversely multivariate correlated with CRP and TNF-α and endothelial dysfunction was positively correlated with reduced number of EPC. Conclusion: Depletion of EPCs population is an independent predictor of endothelial dysfunction and early atherosclerosis in AS patients and may provide additional information beyond conventional risk factors and inflammatory markers.

Keywords: endothelial progenitor cells, atherosclerosis, ankylosing spondylitis, cardiovascular

Procedia PDF Downloads 371
678 Supervisory Controller with Three-State Energy Saving Mode for Induction Motor in Fluid Transportation

Authors: O. S. Ebrahim, K. O. Shawky, M. O. S. Ebrahim, P. K. Jain

Abstract:

Induction Motor (IM) driving pump is the main consumer of electricity in a typical fluid transportation system (FTS). It was illustrated that changing the connection of the stator windings from delta to star at no load could achieve noticeable active and reactive energy savings. This paper proposes a supervisory hysteresis liquid-level control with three-state energy saving mode (ESM) for IM in FTS including storage tank. The IM pump drive comprises modified star/delta switch and hydromantic coupler. Three-state ESM is defined, along with the normal running, and named analog to computer ESMs as follows: Sleeping mode in which the motor runs at no load with delta stator connection, hibernate mode in which the motor runs at no load with a star connection, and motor shutdown is the third energy saver mode. A logic flow-chart is synthesized to select the motor state at no-load for best energetic cost reduction, considering the motor thermal capacity used. An artificial neural network (ANN) state estimator, based on the recurrent architecture, is constructed and learned in order to provide fault-tolerant capability for the supervisory controller. Sequential test of Wald is used for sensor fault detection. Theoretical analysis, preliminary experimental testing and, computer simulations are performed to show the effectiveness of the proposed control in terms of reliability, power quality and energy/coenergy cost reduction with the suggestion of power factor correction.

Keywords: ANN, ESM, IM, star/delta switch, supervisory control, FT, reliability, power quality

Procedia PDF Downloads 170
677 Trends in Use of Millings in Pavement Maintenance

Authors: Rafiqul Tarefder, Mohiuddin Ahmad, Mohammad Hossain

Abstract:

While milling materials from old pavement surface can be an important component of cost effective maintenance operation, their use in maintenance projects are not uniform and well documented. This study documents the different maintenance practices followed by four transportation districts of New Mexico Department of Transportation (NMDOT) in an attempt to find whether millings are being used in maintenance projects by those districts. Based on existing literature, a questionnaire was developed related to six common maintenance practices. NMDOT district personal were interviewed face to face to discuss and get answers to that questionnaire. It revealed that NMDOT districts mainly use chip seal and patching. Other maintenance procedures such as sand seal, scrub seal, slurry seal, and thin overlay have limited use. Two out of four participating districts do not have any documents on chip sealing; rather they employ the experiences of the chip seal crew. All districts use polymer modified high float emulsion (HFE100P) for chip seal with an application rate ranging from 0.4 to 0.56 gallons per square yard. Chip application rate varies from 15 to 40 lb/ square yard. State wide, the thickness of chip seal varies from 3/8" to 1" and life varies from 3 to 10 years. NMDOT districts mainly use three type of patching: pothole, dig-out and blade patch. Pothole patches are used for small potholes and during emergency, dig-out patches are used for all type of potholes sometimes after pothole patching, and blade patch is used when a significant portion of the pavement is damaged. Pothole patches last as low as three days whereas, blade patch lasts as long as 3 years. It was observed that all participating districts use millings in maintenance projects.

Keywords: chip seal, sand seal, scrub seal, slurry seal, overlay, patching, millings

Procedia PDF Downloads 326
676 Diagnostics of Existing Steel Structures of Winter Sport Halls

Authors: Marcela Karmazínová, Jindrich Melcher, Lubomír Vítek, Petr Cikrle

Abstract:

The paper deals with the diagnostics of steel roof structure of the winter sports stadiums built in 1970 year. The necessity of the diagnostics has been given by the requirement to the evaluation design of this structure, which has been caused by the new situation in the field of the loadings given by the validity of the European Standards in the Czech Republic from 2010 year. Due to these changes in the normative rules, in practice, existing structures are gradually subjected to the evaluation design and depending on its results to the strengthening or reconstruction, respectively. The steel roof is composed of plane truss main girders, purlins and bracings and the roof structure is supported by two arch main girders with the span of L=84 m. The in situ diagnostics of the roof structure was oriented to the following parts: (i) determination and evaluation of the actual material properties of used steel and (ii) verification of the actual dimensions of the structural members. For the solution, the non-destructive methods have been used for in situ measurement. For the indicative determination of steel strengths the modified method based on the determination of Rockwell’s hardness has been used. For the verification of the member’s dimensions (thickness of hollow sections) the ultrasound method has been used. This paper presents the results obtained using these testing methods and their evaluation, from the viewpoint of the usage for the subsequent static assessment and design evaluation of the existing structure. For the comparison, the examples of the similar evaluations realized for steel structures of the stadiums in Olomouc and Jihlava cities are briefly illustrated, too.

Keywords: actual dimensions, destructive methods, diagnostics, existing steel structure, indirect non-destructive methods, Rockwel’s hardness, sport hall, steel strength, ultrasound method.

Procedia PDF Downloads 323
675 Some Extreme Halophilic Microorganisms Produce Extracellular Proteases with Long Lasting Tolerance to Ethanol Exposition

Authors: Cynthia G. Esquerre, Amparo Iris Zavaleta

Abstract:

Extremophiles constitute a potentially valuable source of proteases for the development of biotechnological processes; however, the number of available studies in the literature is limited compared to mesophilic counterparts. Therefore, in this study, Peruvian halophilic microorganisms were characterized to select suitable proteolytic strains that produce active proteases under exigent conditions. Proteolysis was screened using the streak plate method with gelatin or skim milk as substrates. After that, proteolytic microorganisms were selected for phenotypic characterization and screened by a semi-quantitative proteolytic test using a modified method of diffusion agar. Finally, proteolysis was evaluated using partially purified extracts by ice-cold ethanol precipitation and dialysis. All analyses were carried out over a wide range of NaCl concentrations, pH, temperature and substrates. Of a total of 60 strains, 21 proteolytic strains were selected, of these 19 were extreme halophiles and 2 were moderates. Most proteolytic strains demonstrated differences in their biochemical patterns, particularly in sugar fermentation. A total of 14 microorganisms produced extracellular proteases, 13 were neutral, and one was alkaline showing activity up to pH 9.0. Proteases hydrolyzed gelatin as the most specific substrate. In general, catalytic activity was efficient under a wide range of NaCl (1 to 4 M NaCl), temperature (37 to 55 °C) and after an ethanol exposition performed at -20 °C for 24 hours. In conclusion, this study reported 14 candidates extremely halophiles producing extracellular proteases capable of being stable and active on a wide range of NaCl, temperature and even long lasting ethanol exposition.

Keywords: biotechnological processes, ethanol exposition, extracellular proteases, extremophiles

Procedia PDF Downloads 269
674 Impact of Aging on Fatigue Performance of Novel Hybrid HMA

Authors: Faizan Asghar, Mohammad Jamal Khattak

Abstract:

Aging, in general, refers to changes in rheological characteristics of asphalt mixture due to changes in chemical composition over the course of construction and service life of the pavement. The main goal of this study was to investigate the impact of oxidation on fatigue characteristics of a novel HMA composite fabricated with a combination of crumb rubber (CRM) and polyvinyl alcohol (PVA) fiber subject to aging of 7 and 14 days. A flexural beam fatigue test was performed to evaluate several characteristics of control, CRM modified, PVA reinforced, and novel rubber-fiber HMA composite. Experimental results revealed that aging had a significant impact on the fatigue performance of novel HMA composite. It was found that a suitable proportion of CRM and PVA radically affected the performance of novel rubber-fiber HMA in resistance to fracture and fatigue cracking when subjected to long-term aging. The developed novel HMA composite containing 2% CRM and 0.2% PVA presented around 29 times higher resistance to fatigue cracking for a period of 7 days of aging. To develop a cumulative plastic deformation level of 250 micros, such a mixture required over 50 times higher cycles than control HMA. Moreover, the crack propagation rate was reduced by over 90%, with over 12 times higher energy required to propagate a unit crack length in such a mixture compared to conventional HMA. Further, digital imaging correlation analyses revealed a more twisted and convoluted fracture path and higher strain distribution in rubber-fiber HMA composite. The fatigue performance after long-term aging of such novel HMA composite explicitly validates the ability to withstand load repetition that could lead to an extension in the service life of pavement infrastructure and reduce taxpayers’ dollars spent.

Keywords: crumb rubber, PVA fibers, dry process, aging, performance testing, fatigue life

Procedia PDF Downloads 52
673 Electrocatalysts for Lithium-Sulfur Energy Storage Systems

Authors: Mirko Ante, Şeniz Sörgel, Andreas Bund

Abstract:

Li-S- (Lithium-Sulfur-) battery systems provide very high specific gravimetric energy (2600 Wh/kg) and volumetric energy density (2800Wh/l). Hence, Li-S batteries are one of the key technologies for both the upcoming electromobility and stationary applications. Furthermore, the Li-S battery system is potentially cheap and environmentally benign. However, the technical implementation suffers from cycling stability, low charge and discharge rates and incomplete understanding of the complex polysulfide reaction mechanism. The aim of this work is to develop an effective electrocatalyst for the polysulfide reactions so that the electrode kinetics of the sulfur half-cell will be improved. Accordingly, the overvoltage will be decreased, and the efficiency of the cell will be increased. An enhanced electroactive surface additionally improves the charge and discharge rates. To reach this goal, functionalized electrocatalytic coatings are investigated to accelerate the kinetics of the polysulfide reactions. In order to determine a suitable electrocatalyst, apparent exchange current densities of a variety of materials (Ni, Co, Pt, Cr, Al, Cu, ITO, stainless steel) have been evaluated in a polysulfide containing electrolyte by potentiodynamic measurements and a Butler-Volmer fit including diffusion limitation. The samples have been examined by Scanning Electron Microscopy (SEM) after the potentiodynamic measurements. Up to now, our work shows that cobalt is a promising material with good electrocatalytic properties for the polysulfide reactions and good chemical stability in the system. Furthermore, an electrodeposition from a modified Watt’s nickel electrolyte with a sulfur source seems to provide an autocatalytic effect, but the electrocatalytic behavior decreases after several cycles of the current-potential-curve.

Keywords: electrocatalyst, energy storage, lithium sulfur battery, sulfur electrode materials

Procedia PDF Downloads 349
672 Crystallinity, Antimicrobial Activity and Dyeing Properties of Chitosan-G-Poly(N-Acryloyl Morpholine) Copolymer

Authors: Fakhreia A. Al Sagheer, Enas I. Ibrahim, Khaled D. Khalil

Abstract:

N-Acryloyl morpholine, NAM, was grafted onto chitosan utilizing homogeneous conditions with 1% acetic acid as the solvent, and potassium persulfate and sodium sulfite as the redox initiator. The effects of various reaction parameters, such as time, temperature, and monomer and initiator concentrations, on the percentage of grafting (G%) and the grafting efficiency (E%) were determined. The graft copolymer showed a remarkably improved crystallinity, as compared to the unmodified chitosan, based on the FESEM, XRD, and DSC results. Chitosan-g-poly(N-acryloyl morpholine) (Cs-PNAM), the copolymer obtained by using this procedure, was characterized by utilizing FTIR, FESEM, TGA, and XRD analysis. As expected, the results of an evaluation of antibacterial and antifungal activities show that the grafted chitosan copolymers exhibit stronger inhibitory effects against both types of microbes than does chitosan. Moreover, the size of the inhibition zone created by the graft copolymer was observed to be proportional to its G% corresponding to its morpholine content. Fortunately, the graft copolymer showed a marked growth inhibition against candidiasis (C.Albicans and C.Kefyr). We conclude that the graft copolymer may be highly effective in the prevention and treatment of candidiasis. In addition, the extent and pH dependence of uptake of different types of dyes (acidic: EBT, and MV; and basic: MB) by grafted chitosan in pH 6.5 aqueous solutions was determined. The results show that, the grafted copolymer exhibited a greater affinity to absorb the acid dyes more than the basic ones especially at relatively low temperature. Thus the modified chitosan can be used, in wastewater treatment, as efficient economic absorbent especially for anionic dyes from the industrial processing effluents.

Keywords: chitosan, N-Acryloyl morpholine, homogeneous grafting, antimicrobial activity, dye uptake

Procedia PDF Downloads 353
671 Development of 3D Printed, Conductive, Biodegradable Nerve Conduits for Neural Regeneration

Authors: Wei-Chia Huang, Jane Wang

Abstract:

Damage to nerves is considered one of the most irreversible injuries. The regeneration of nerves has always been an important topic in regenerative medicine. In general, damage to human tissue will naturally repair overtime. However, when the nerves are damaged, healed flesh wound cannot guarantee full restoration to its original function, as truncated nerves are often irreversible. Therefore, the development of treatment methods to successfully guide and accelerate the regeneration of nerves has been highly sought after. In order to induce nerve tissue growth, nerve conduits are commonly used to help reconnect broken nerve bundles to provide protection to the location of the fracture while guiding the growth of the nerve bundles. To prevent the protected tissue from becoming necrotic and to ensure the growth rate, the conduits used are often modified with microstructures or blended with neuron growth factors that may facilitate nerve regeneration. Electrical stimulation is another attempted treatment for medical rehabilitation. With appropriate range of voltages and stimulation frequencies, it has been demonstrated to promote cell proliferation and migration. Biodegradability are critical for medical devices like nerve conduits, while conductive polymers pose great potential toward the differentiation and growth of nerve cells. In this work, biodegradability and conductivity were combined into a novel biodegradable, photocurable, conductive polymer composite materials by embedding conductive nanoparticles in poly(glycerol sebacate) acrylate (PGSA) and 3D-printed into nerve conduits. Rat pheochromocytoma cells and rat neuronal Schwann cells were chosen for the in vitro tests of the conduits and had demonstrate selective growth upon culture in the conductive conduits with built-in microchannels and electrical stimulation.

Keywords: biodegradable polymer, 3d printing, neural regeneration, electrical stimulation

Procedia PDF Downloads 91
670 Investigation of Atomic Adsorption on the Surface of BC3 Nanotubes

Authors: S. V. Boroznin, I. V. Zaporotskova, N. P. Polikarpova

Abstract:

Studing of nanotubes sorption properties is very important for researching. These processes for carbon and boron nanotubes described in the high number of papers. But the sorption properties of boron containing nanotubes, susch as BC3-nanotubes haven’t been studied sufficiently yet. In this paper we present the results of theoretical research into the mechanism of atomic surface adsorption on the two types of boron-carbon nanotubes (BCNTs) within the framework of an ionic-built covalent-cyclic cluster model and an appropriately modified MNDO quantum chemical scheme and DFT method using B3LYP functional with 6-31G basis. These methods are well-known and the results, obtained using them, were in good agreement with the experiment. Also we studied three position of atom location above the nanotube surface. These facts suggest us to use them for our research and quantum-chemical calculations. We studied the mechanism of sorption of Cl, O and F atoms on the external surface of single-walled BC3 arm-chair nanotubes. We defined the optimal geometry of the sorption complexes and obtained the values of the sorption energies. Analysis of the band structure suggests that the band gap is insensitive to adsorption process. The electron density is located near atoms of the surface of the tube. Also we compared our results with others, which have been obtained earlier for pure carbon and boron nanotubes. The most stable adsorption complex has been between boron-carbon nanotube and oxygen atom. So, it suggests us to make a research of oxygen molecule adsorption on the BC3 nanotube surface. We modeled five variants of molecule orientation above the nanotube surface. The most stable sorption complex has been defined between the oxygen molecule and nanotube when the oxygen molecule is located above the nanotube surface perpendicular to the axis of the tube.

Keywords: Boron-carbon nanotubes, nanostructures, nanolayers, quantum-chemical calculations, nanoengineering

Procedia PDF Downloads 296
669 Preparation and Characterization of PVA Pure and PVA/MMT Matrix: Effect of Thermal Treatment

Authors: Albana Hasimi, Edlira Tako, Elvin Çomo, Partizan Malkaj, Blerina Papajani, Ledjan Malaj, Mirela Ndrita

Abstract:

Many endeavors have been exerted during the last years for developing new artificial polymeric membranes which fulfill the demanded conditions for biomedical uses. One of the most tested polymers is Poly(vinyl alcohol) [PVA]. Ours groups, is based on the possibility of using PVA for personal protective equipment against covid. In them, we explore the possibility of modifying the properties of the polymer by adding Montmorillonite [MMT]. Heat-treatment above the glass transition temperature are used to improve mechanical properties mainly by increasing the crystallinity of the polymer, which acts as a physical network. Temperature-Modulated Differential Scanning Calorimetry (TMDSC) measurements indicated that the presence of 0.5% MMT in PVA causes a higher Tg value and shaped peak of crystallinity. Decomposition is observed at two of the melting points of the crystals during heating 25-240oC and overlap of the recrystallization ridges during cooling 240-25oC. This is indicative of the presence of two types (quality or structure ) of polymer crystals. On the other hand, some indication of improvement of the quality of the crystals by heat-treatment is given by the distinct non-reversing contribution to melting. Data on sorption and transport of water in polyvinyl alcohol films: PVA pure and PVA/MMT matrix, modified by thermal treatment, are presented. The thermal treatment has aftereffect the films become more rigid, and because of this, the water uptake is significantly lower in membranes. That is indicates by analysis of the resulting water uptake kinetics. The presence 0.5% w/w of MMT has no significant impact on the properties of PVA membranes. Water uptake kinetics deviates from Fick’s law due to slow relaxation of glassy polymer matrix for all membranes category.

Keywords: crystallinity, montmorillonite, nanocomposite, poly (vinyl alcohol)

Procedia PDF Downloads 100
668 Holistic Approach to Assess the Potential of Using Traditional and Advance Insulation Materials for Energy Retrofit of Office Buildings

Authors: Marco Picco, Mahmood Alam

Abstract:

Improving the energy performance of existing buildings can be challenging, particularly when facades cannot be modified, and the only available option is internal insulation. In such cases, the choice of the most suitable material becomes increasingly complex, as in addition to thermal transmittance and capital cost, the designer needs to account for the impact of the intervention on the internal spaces, and in particular the loss of usable space due to the additional layers of materials installed. This paper explores this issue by analysing a case study of an average office building needing to go through a refurbishment in order to reach the limits imposed by current regulations to achieve energy efficiency in buildings. The building is simulated through dynamic performance simulation under three different climate conditions in order to evaluate its energy needs. The use of Vacuum Insulated Panels as an option for energy refurbishment is compared to traditional insulation materials (XPS, Mineral Wool). For each scenario, energy consumptions are calculated and, in combination with their expected capital costs, used to perform a financial feasibility analysis. A holistic approach is proposed, taking into account the impact of the intervention on internal space by quantifying the value of the lost usable space and used in the financial feasibility analysis. The proposed approach highlights how taking into account different drivers will lead to the choice of different insulation materials, showing how accounting for the economic value of space can make VIPs an attractive solution for energy retrofitting under various climate conditions.

Keywords: vacuum insulated panels, building performance simulation, payback period, building energy retrofit

Procedia PDF Downloads 136
667 Utility of Geospatial Techniques in Delineating Groundwater-Dependent Ecosystems in Arid Environments

Authors: Mangana B. Rampheri, Timothy Dube, Farai Dondofema, Tatenda Dalu

Abstract:

Identifying and delineating groundwater-dependent ecosystems (GDEs) is critical to the well understanding of the GDEs spatial distribution as well as groundwater allocation. However, this information is inadequately understood due to limited available data for the most area of concerns. Thus, this study aims to address this gap using remotely sensed, analytical hierarchy process (AHP) and in-situ data to identify and delineate GDEs in Khakea-Bray Transboundary Aquifer. Our study developed GDEs index, which integrates seven explanatory variables, namely, Normalized Difference Vegetation Index (NDVI), Modified Normalized Difference Water Index (MNDWI), Land-use and landcover (LULC), slope, Topographic Wetness Index (TWI), flow accumulation and curvature. The GDEs map was delineated using the weighted overlay tool in ArcGIS environments. The map was spatially classified into two classes, namely, GDEs and Non-GDEs. The results showed that only 1,34 % (721,91 km2) of the area is characterised by GDEs. Finally, groundwater level (GWL) data was used for validation through correlation analysis. Our results indicated that: 1) GDEs are concentrated at the northern, central, and south-western part of our study area, and 2) the validation results showed that GDEs classes do not overlap with GWL located in the 22 boreholes found in the given area. However, the results show a possible delineation of GDEs in the study area using remote sensing and GIS techniques along with AHP. The results of this study further contribute to identifying and delineating priority areas where appropriate water conservation programs, as well as strategies for sustainable groundwater development, can be implemented.

Keywords: analytical hierarchy process (AHP), explanatory variables, groundwater-dependent ecosystems (GDEs), khakea-bray transboundary aquifer, sentinel-2

Procedia PDF Downloads 93
666 3D Numerical Study of Tsunami Loading and Inundation in a Model Urban Area

Authors: A. Bahmanpour, I. Eames, C. Klettner, A. Dimakopoulos

Abstract:

We develop a new set of diagnostic tools to analyze inundation into a model district using three-dimensional CFD simulations, with a view to generating a database against which to test simpler models. A three-dimensional model of Oregon city with different-sized groups of building next to the coastline is used to run calculations of the movement of a long period wave on the shore. The initial and boundary conditions of the off-shore water are set using a nonlinear inverse method based on Eulerian spatial information matching experimental Eulerian time series measurements of water height. The water movement is followed in time, and this enables the pressure distribution on every surface of each building to be followed in a temporal manner. The three-dimensional numerical data set is validated against published experimental work. In the first instance, we use the dataset as a basis to understand the success of reduced models - including 2D shallow water model and reduced 1D models - to predict water heights, flow velocity and forces. This is because models based on the shallow water equations are known to underestimate drag forces after the initial surge of water. The second component is to identify critical flow features, such as hydraulic jumps and choked states, which are flow regions where dissipation occurs and drag forces are large. Finally, we describe how future tsunami inundation models should be modified to account for the complex effects of buildings through drag and blocking.Financial support from UCL and HR Wallingford is greatly appreciated. The authors would like to thank Professor Daniel Cox and Dr. Hyoungsu Park for providing the data on the Seaside Oregon experiment.

Keywords: computational fluid dynamics, extreme events, loading, tsunami

Procedia PDF Downloads 98
665 Impact of Climate Variability on Dispersal and Distribution of Airborne Pollen and Fungal Spores in Nsukka, South-East Nigeria: Implication on Public Health

Authors: Dimphna Ezikanyi, Gloria Sakwari

Abstract:

Airborne pollen and fungal spores are major triggers of allergies, and their abundance and seasonality depend on plant responses to climatic and meteorological variables. A survey of seasonal prevalence of airborne pollen and fungal spores in Nsukka, Enugu, South- East Nigeria and relationship to climatic variables were carried out from Jan-June, 2017. The aim of the study was to access climate change and variability over time in the area and their accrued influence on modern pollen and spores rain. Decadal change in climate was accessed from variables collected from meteorological centre in the study area. Airborne samples were collected monthly using a modified Tauber-like pollen samplers raised 5 ft above ground level. Aerosamples collected were subjected to acetolysis. Dominant pollen recorded were those of Poaceae, Elaeis guinensis Jacq. and Casuarina equisetifolia L. Change in weather brought by onset of rainfall evoked sporulation and dispersal of diverse spores into ambient air especially potent allergenic spores with the spores of Ovularia, Bispora, Curvularia, Nigrospora, Helminthosporium preponderant; these 'hydrophilic fungi' were abundant in the rainy season though in varying quantities. Total fungal spores correlated positively with monthly rainfall and humidity but negatively with temperature. There was a negative though not significant correlation between total pollen count and rainfall. The study revealed a strong influence of climatic variables on abundance and spatial distribution of pollen and fungal spores in the ambient atmosphere.

Keywords: allergy, fungal spores, pollen, weather parameters

Procedia PDF Downloads 156
664 Influence of Magnetized Water on the Split Tensile Strength of Concrete

Authors: Justine Cyril E. Nunag, Nestor B. Sabado Jr., Jienne Chester M. Tolosa

Abstract:

Concrete has high compressive strength but a low-tension strength. The small tensile strength of concrete is regarded as its primary weakness, which is why it is typically reinforced with steel, a material that is resistant to tension. Even with steel, however, cracking can occur. In strengthening concrete, only a few researchers have modified the water to be used in a concrete mix. This study aims to compare the split tensile strength of normal structural concrete to concrete prepared with magnetic water and a quick setting admixture. In this context, magnetic water is defined as tap water that has undergone a magnetic process to become magnetized water. To test the hypothesis that magnetized concrete leads to higher split tensile strength, twenty concrete specimens were made. There were five groups, each with five samples, that were differentiated by the number of cycles (0, 50, 100, and 150). The data from the Universal Testing Machine's split tensile strength were then analyzed using various statistical models and tests to determine the significant effect of magnetized water. The result showed a moderate (+0.579) but still significant degree of correlation. The researchers also discovered that using magnetic water for 50 cycles did not result in a significant increase in the concrete's split tensile strength, which influenced the analysis of variance. These results suggest that a concrete mix containing magnetic water and a quick-setting admixture alters the typical split tensile strength of normal concrete. Magnetic water has a significant impact on concrete tensile strength. The hardness property of magnetic water influenced the split tensile strength of concrete. In addition, a higher number of cycles results in a strong water magnetism. The laboratory test results show that a higher cycle translates to a higher tensile strength.

Keywords: hardness property, magnetic water, quick-setting admixture, split tensile strength, universal testing machine

Procedia PDF Downloads 133
663 Micropropagation of Rhododendron tomentosum (Ledum palustre): An Endangered Plant of Scientific Interest as the Example of Ex Situ Conservation

Authors: Anna Jesionek, Aleksandra Szreniawa-Sztajnert, Zbigniew Jaremicz, Adam Kokotkiewicz, Natalia Filipowicz, Renata Ochocka, Bozena Zabiegala, Maria Luczkiewicz

Abstract:

Rhododendron tomentosum (formerly Ledum palustre), an evergreen shrub grows in peaty soils in northern Europe, Asia and North America. In Poland, it is classified as an endangered species not only due to the drainage of wetlands, but also to the excessive collection of this repellent plant by human. The other valuable biological properties of R. tomentosum, used for years in folk medicine, include anti-inflammatory, analgesic and anti-microbial activity, conditioned by the essential oil content. Taking into account the importance of biodiversity and the potential therapeutic application, it was decided to establish, for the first time, the micropropagation protocol for R. tomentosum, for ex-situ conservation of this endangered species as well as to obtain the continuous source of in vivo and in-vitro plant material for further studies. This object was achieved by the selection of the explant and the media, which were modified within the scope of mineral composition, sugar content, pH and the growth regulators. As a result, the four-stage micropropagation protocol for R. tomentosum was specified, including shoot multiplication, elongation, rooting and ex-vitro adaptation. The genetic identification of the examined species and the compatibility of progeny plants with maternal ones was tested with molecular biology methods. Moreover, during the research process, the chemical composition of initial and regenerated plant and in vitro shoots was controlled in terms of volatile fraction by phytochemical analysis (GC and TLC methods). The correctness of the micropropagation procedure was confirmed by both types of studies.

Keywords: ex situ conservation, Ledum palustre, micropropagation, Rhododendron tomentosum

Procedia PDF Downloads 470