Search results for: fin and tube heat exchanger
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3494

Search results for: fin and tube heat exchanger

1454 Organic Co-Polymer Monolithic Columns for Liquid Chromatography Mixed Mode Protein Separations

Authors: Ahmed Alkarimi, Kevin Welham

Abstract:

Organic mixed mode monolithic columns were fabricated from; glycidyl methacrylate-co-ethylene dimethacrylate-co-stearyl methacrylate, using glycidyl methacrylate and stearyl methacrylate as co monomers representing 30% and 70% respectively of the liquid volume with ethylene dimethacrylate crosslinker and 2,2-dimethoxy-2-phenylacetophenone as the free radical initiator. The monomers were mixed with a binary porogenic solvent, comprising propan-1-ol, and methanol (0.825 mL each). The monolith was formed by photo polymerization (365 nm) inside a borosilicate glass tube (1.5 mm ID and 3 mm OD x 50 mm length). The monolith was observed to have formed correctly by optical examination and generated reasonable backpressure, approximately 650 psi at a flow rate of 0.2 mL min⁻¹ 50:50 acetonitrile: water. The morphological properties of the monolithic columns were investigated using scanning electron microscopy images, and Brunauer-Emmett-Teller analysis, the results showed that the monolith was formed properly with 19.98 ± 0.01 mm² surface area, 0.0205 ± 0.01 cm³ g⁻¹ pore volume and 6.93 ± 0.01 nm average pore size. The polymer monolith formed was further investigated using proton nuclear magnetic resonance, and Fourier transform infrared spectroscopy. The monolithic columns were investigated using high-performance liquid chromatography to test their ability to separate different samples with a range of properties. The columns displayed both hydrophobic/hydrophilic and hydrophobic/ion exchange interactions with the compounds tested indicating that true mixed mode separations. The mixed mode monolithic columns exhibited significant separation of proteins.

Keywords: LC separation, proteins separation, monolithic column, mixed mode

Procedia PDF Downloads 162
1453 Application of Lattice Boltzmann Method to Different Boundary Conditions in a Two Dimensional Enclosure

Authors: Jean Yves Trepanier, Sami Ammar, Sagnik Banik

Abstract:

Lattice Boltzmann Method has been advantageous in simulating complex boundary conditions and solving for fluid flow parameters by streaming and collision processes. This paper includes the study of three different test cases in a confined domain using the method of the Lattice Boltzmann model. 1. An SRT (Single Relaxation Time) approach in the Lattice Boltzmann model is used to simulate Lid Driven Cavity flow for different Reynolds Number (100, 400 and 1000) with a domain aspect ratio of 1, i.e., square cavity. A moment-based boundary condition is used for more accurate results. 2. A Thermal Lattice BGK (Bhatnagar-Gross-Krook) Model is developed for the Rayleigh Benard convection for both test cases - Horizontal and Vertical Temperature difference, considered separately for a Boussinesq incompressible fluid. The Rayleigh number is varied for both the test cases (10^3 ≤ Ra ≤ 10^6) keeping the Prandtl number at 0.71. A stability criteria with a precise forcing scheme is used for a greater level of accuracy. 3. The phase change problem governed by the heat-conduction equation is studied using the enthalpy based Lattice Boltzmann Model with a single iteration for each time step, thus reducing the computational time. A double distribution function approach with D2Q9 (density) model and D2Q5 (temperature) model are used for two different test cases-the conduction dominated melting and the convection dominated melting. The solidification process is also simulated using the enthalpy based method with a single distribution function using the D2Q5 model to provide a better understanding of the heat transport phenomenon. The domain for the test cases has an aspect ratio of 2 with some exceptions for a square cavity. An approximate velocity scale is chosen to ensure that the simulations are within the incompressible regime. Different parameters like velocities, temperature, Nusselt number, etc. are calculated for a comparative study with the existing works of literature. The simulated results demonstrate excellent agreement with the existing benchmark solution within an error limit of ± 0.05 implicates the viability of this method for complex fluid flow problems.

Keywords: BGK, Nusselt, Prandtl, Rayleigh, SRT

Procedia PDF Downloads 128
1452 The Same Rules of Traditional Chinese Herbal Medicine in Treating Chronic Idiopathic Urticaria and Hypertension

Authors: Heng W. Chang, Mao F. Sun

Abstract:

Chronic Idiopathic Urticaria (CIU) and hypertension are rarely discussed together in modern and traditional Chinese medicine, and often belong to different medical departments. However, in traditional Chinese medicinal theory, the two diseases have some similar characters. For example, they are both relevant to 'wind'. This study conducted a literature review using the China National Knowledge Infrastructure to identify herbs yielding the same effect for the two diseases. The finding showed that the common herbs used most frequently is Rehmanniae. The conclusion is that the same TCM (Traditional Chinese Medicine) mechanism of the two diseases may be 'blood heat'. It requires further study to prove it in the future.

Keywords: urticaria, herbs, hypertension, Rehmanniae

Procedia PDF Downloads 153
1451 Role of Hyperbaric Oxygen Therapy in Management of Diabetic Foot

Authors: Magdy Al Shourbagi

Abstract:

Diabetes mellitus is the commonest cause of neuropathy. The common pattern is a distal symmetrical sensory polyneuropathy, associated with autonomic disturbances. Less often, Diabetes mellitus is responsible for a focal or multifocal neuropathy. Common causes for non-healing of diabetic foot are the infection and ischemia. Diabetes mellitus is associated with a defective cellular and humoral immunity. Particularly, decreased phagocytosis, decreased chemotaxis, impaired bacterial killing and abnormal lymphocytic function resulting in a reduced inflammatory reaction and defective wound healing. Hyperbaric oxygen therapy is defined by the Undersea and Hyperbaric Medical Society as a treatment in which a patient intermittently breathes 100% oxygen and the treatment chamber is pressurized to a pressure greater than sea level (1 atmosphere absolute). The pressure increase may be applied in mono-place (single person) or multi-place chambers. Multi-place chambers are pressurized with air, with oxygen given via face mask or endotracheal tube; while mono-place chambers are pressurized with oxygen. Oxygen gas plays an important role in the physiology of wound healing. Hyperbaric oxygen therapy can raise tissue oxygen tensions to levels where wound healing can be expected. HBOT increases the killing ability of leucocytes also it is lethal for certain anaerobic bacteria and inhibits toxin formation in many other anaerobes. Multiple anecdotal reports and studies in HBO therapy in diabetic patients report that HBO can be an effective adjunct therapy in the management of diabetic foot wounds and is associated with better functional outcomes.

Keywords: hyperbari oxygen therapy, diabetic foot, neuropathy, multiplace chambers

Procedia PDF Downloads 290
1450 Applying Intelligent Material in Food Packaging

Authors: Kasra Ghaemi, Syeda Tasnim, Shohel Mahmud

Abstract:

One of the main issues affecting the quality and shelf life of food products is temperature fluctuation during transportation and storage. Packaging plays an important role in protecting food from environmental conditions, especially thermal variations. In this study, the performance of using microencapsulated Phase Change Material (PCM) as a promising thermal buffer layer in smart food packaging is investigated. The considered insulation layer is evaluated for different thicknesses and the absorbed heat from the environment. The results are presented in terms of the melting time of PCM or provided thermal protection period.

Keywords: food packaging, phase change material, thermal buffer, protection time

Procedia PDF Downloads 94
1449 Retrofitting Measures for Existing Housing Stock in Kazakhstan

Authors: S. Yessengabulov, A. Uyzbayeva

Abstract:

Residential buildings fund of Kazakhstan was built in the Soviet time about 35-60 years ago without considering energy efficiency measures. Currently, most of these buildings are in a rundown condition and fail to meet the minimum of hygienic, sanitary and comfortable living requirements. The paper aims to examine the reports of recent building energy survey activities in the country and provide a possible solution for retrofitting existing housing stock built before 1989 which could be applicable for building envelope in cold climate. Methodology also includes two-dimensional modeling of possible practical solutions and further recommendations.

Keywords: energy audit, energy efficient buildings in Kazakhstan, retrofit, two-dimensional conduction heat transfer analysis

Procedia PDF Downloads 247
1448 Thermal Contact Resistance of Nanoscale Rough Surfaces

Authors: Ravi Prasher

Abstract:

In nanostructured material thermal transport is dominated by contact resistance. Theoretical models describing thermal transport at interfaces assume perfectly flat surface whereas in reality surfaces can be rough with roughness ranging from sub-nanoscale dimension to micron scale. Here we introduce a model which includes both nanoscale contact mechanics and nanoscale heat transfer for rough nanoscale surfaces. This comprehensive model accounts for the effect of phonon acoustic mismatch, mechanical properties, chemical properties and randomness of the rough surface.

Keywords: adhesion and contact resistance, Kaptiza resistance of rough surfaces, nanoscale thermal transport

Procedia PDF Downloads 369
1447 Critical Investigation on Performance of Polymeric Materials in Rehabilitation of Metallic Components

Authors: Parastou Kharazmi

Abstract:

Failure and leakage of metallic components because of corrosion in infrastructure structures is a considerably problematic and expensive issue and the traditional solution of replacing the component is costly and time-consuming. Rehabilitation techniques by using advanced polymeric materials are an alternative solution towards this problem. This paper provides a summary of analyses on relined rehabilitated metallic samples after exposure in practice and real condition to study the composite material performance when it is exposed to water, heat and chemicals in real condition. The study was carried out by using different test methods such as microscopy, thermal and chemical as well as mechanical analyses.

Keywords: composite, material, rehabilitation, structure

Procedia PDF Downloads 236
1446 Numerical Study of a 6080HP Open Drip Proof (ODP) Motor

Authors: Feng-Hisang Lai

Abstract:

CFD(Computational Fluid Dynamics) is conducted to numerically study the flow and heat transfer features of a two-pole, 6,080HP, 60Hz, 3,150V open drip-proof (ODP) motor. The stator and rotor cores in this high voltage induction motor are segmented with the use of spacers for cooling purposes, which leads to difficulties in meshing when the entire system is to be simulated. The system is divided into 4 parts, meshed separately and then combined using interfaces. The deviation between the CFD and experimental results in temperature and flow rate is less than 10%. The internal flow is further examined and a final design is proposed to reduce the winding temperature by 10 degrees.

Keywords: CFD, open drip proof, induction motor, cooling

Procedia PDF Downloads 197
1445 Impact of aSolar System Designed to Improve the Microclimate of an Agricultural Greenhouse

Authors: Nora Arbaoui, Rachid Tadili, Ilham Ihoume

Abstract:

The improvement of the agricultural production and food preservation processes requires the introduction of heating and cooling techniques in greenhouses. To develop these techniques, our work proposes a design of an integrated and autonomous solar system for heating, cooling, and production conservation in greenhouses. The hot air produced by the greenhouse effect during the day will be evacuated to compartments annexed in the greenhouse to dry the surplus agricultural production that is not sold on the market. In this paper, we will give a description of this solar system and the calculation of the fluid’s volume used for heat storage that will be released during the night.

Keywords: solar system, agricultural greenhouse, heating, cooling, storage, drying

Procedia PDF Downloads 106
1444 Prediction of Fire Growth of the Office by Real-Scale Fire Experiment

Authors: Kweon Oh-Sang, Kim Heung-Youl

Abstract:

Estimating the engineering properties of fires is important to be prepared for the complex and various fire risks of large-scale structures such as super-tall buildings, large stadiums, and multi-purpose structures. In this study, a mock-up of a compartment which was 2.4(L) x 3.6 (W) x 2.4 (H) meter in dimensions was fabricated at the 10MW LSC (Large Scale Calorimeter) and combustible office supplies were placed in the compartment for a real-scale fire test. Maximum heat release rate was 4.1 MW and total energy release obtained through the application of t2 fire growth rate was 6705.9 MJ.

Keywords: fire growth, fire experiment, t2 curve, large scale calorimeter

Procedia PDF Downloads 338
1443 Using Nature-Based Solutions to Decarbonize Buildings in Canadian Cities

Authors: Zahra Jandaghian, Mehdi Ghobadi, Michal Bartko, Alex Hayes, Marianne Armstrong, Alexandra Thompson, Michael Lacasse

Abstract:

The Intergovernmental Panel on Climate Change (IPCC) report stated the urgent need to cut greenhouse gas emissions to avoid the adverse impacts of climatic changes. The United Nations has forecasted that nearly 70 percent of people will live in urban areas by 2050 resulting in a doubling of the global building stock. Given that buildings are currently recognised as emitting 40 percent of global carbon emissions, there is thus an urgent incentive to decarbonize existing buildings and to build net-zero carbon buildings. To attain net zero carbon emissions in communities in the future requires action in two directions: I) reduction of emissions; and II) removal of on-going emissions from the atmosphere once de-carbonization measures have been implemented. Nature-based solutions (NBS) have a significant role to play in achieving net zero carbon communities, spanning both emission reductions and removal of on-going emissions. NBS for the decarbonisation of buildings can be achieved by using green roofs and green walls – increasing vertical and horizontal vegetation on the building envelopes – and using nature-based materials that either emit less heat to the atmosphere thus decreasing photochemical reaction rates, or store substantial amount of carbon during the whole building service life within their structure. The NBS approach can also mitigate urban flooding and overheating, improve urban climate and air quality, and provide better living conditions for the urban population. For existing buildings, de-carbonization mostly requires retrofitting existing envelopes efficiently to use NBS techniques whereas for future construction, de-carbonization involves designing new buildings with low carbon materials as well as having the integrity and system capacity to effectively employ NBS. This paper presents the opportunities and challenges in respect to the de-carbonization of buildings using NBS for both building retrofits and new construction. This review documents the effectiveness of NBS to de-carbonize Canadian buildings, identifies the missing links to implement these techniques in cold climatic conditions, and determine a road map and immediate approaches to mitigate the adverse impacts of climate change such as urban heat islanding. Recommendations are drafted for possible inclusion in the Canadian building and energy codes.

Keywords: decarbonization, nature-based solutions, GHG emissions, greenery enhancement, buildings

Procedia PDF Downloads 93
1442 Comparative Assessment of the Thermal Tolerance of Spotted Stemborer, Chilo partellus Swinhoe (Lepidoptera: Crambidae) and Its Larval Parasitoid, Cotesia sesamiae Cameron (Hymenoptera: Braconidae)

Authors: Reyard Mutamiswa, Frank Chidawanyika, Casper Nyamukondiwa

Abstract:

Under stressful thermal environments, insects adjust their behaviour and physiology to maintain key life-history activities and improve survival. For interacting species, mutual or antagonistic, thermal stress may affect the participants in differing ways, which may then affect the outcome of the ecological relationship. In agroecosystems, this may be the fate of relationships between insect pests and their antagonistic parasitoids under acute and chronic thermal variability. Against this background, we therefore investigated the thermal tolerance of different developmental stages of Chilo partellus Swinhoe (Lepidoptera: Crambidae) and its larval parasitoid Cotesia sesamiae Cameron (Hymenoptera: Braconidae) using both dynamic and static protocols. In laboratory experiments, we determined lethal temperature assays (upper and lower lethal temperatures) using direct plunge protocols in programmable water baths (Systronix, Scientific, South Africa), effects of ramping rate on critical thermal limits following standardized protocols using insulated double-jacketed chambers (‘organ pipes’) connected to a programmable water bath (Lauda Eco Gold, Lauda DR.R. Wobser GMBH and Co. KG, Germany), supercooling points (SCPs) following dynamic protocols using a Pico logger connected to a programmable water bath, heat knock-down time (HKDT) and chill-coma recovery (CCRT) time following static protocols in climate chambers (HPP 260, Memmert GmbH + Co.KG, Germany) connected to a camera (HD Covert Network Camera, DS-2CD6412FWD-20, Hikvision Digital Technology Co., Ltd, China). When exposed for two hours to a static temperature, lower lethal temperatures ranged -9 to 6; -14 to -2 and -1 to 4ºC while upper lethal temperatures ranged from 37 to 48; 41 to 49 and 36 to 39ºC for C. partellus eggs, larvae and C. sesamiae adults respectively. Faster heating rates improved critical thermal maxima (CTmax) in C. partellus larvae and adult C. partellus and C. sesamiae. Lower cooling rates improved critical thermal minima (CTmin) in C. partellus and C. sesamiae adults while compromising CTmin in C. partellus larvae. The mean SCPs for C. partellus larvae, pupae and adults were -11.82±1.78, -10.43±1.73 and -15.75±2.47 respectively with adults having the lowest SCPs. Heat knock-down time and chill-coma recovery time varied significantly between C. partellus larvae and adults. Larvae had higher HKDT than adults, while the later recovered significantly faster following chill-coma. Current results suggest developmental stage differences in C. partellus thermal tolerance (with respect to lethal temperatures and critical thermal limits) and a compromised temperature tolerance of parasitoid C. sesamiae relative to its host, suggesting potential asynchrony between host-parasitoid population phenology and consequently biocontrol efficacy under global change. These results have broad implications to biological pest management insect-natural enemy interactions under rapidly changing thermal environments.

Keywords: chill-coma recovery time, climate change, heat knock-down time, lethal temperatures, supercooling point

Procedia PDF Downloads 238
1441 Overview of Pre-Analytical Lab Errors in a Tertiary Care Hospital at Rawalpindi, Pakistan

Authors: S. Saeed, T. Butt, M. Rehan, S. Khaliq

Abstract:

Objective: To determine the frequency of pre-analytical errors in samples taken from patients for various lab tests at Fauji Foundation Hospital, Rawalpindi. Material and Methods: All the lab specimens for diagnostic purposes received at the lab from Fauji Foundation hospital, Rawalpindi indoor and outdoor patients were included. Total number of samples received in the lab is recorded in the computerized program made for the hospital. All the errors observed for pre-analytical process including patient identification, sampling techniques, test collection procedures, specimen transport/processing and storage were recorded in the log book kept for the purpose. Results: A total of 476616 specimens were received in the lab during the period of study including 237931 and 238685 from outdoor and indoor patients respectively. Forty-one percent of the samples (n=197976) revealed pre-analytical discrepancies. The discrepancies included Hemolyzed samples (34.8%), Clotted blood (27.8%), Incorrect samples (17.4%), Unlabeled samples (8.9%), Insufficient specimens (3.9%), Request forms without authorized signature (2.9%), Empty containers (3.9%) and tube breakage during centrifugation (0.8%). Most of these pre-analytical discrepancies were observed in samples received from the wards revealing that inappropriate sample collection by the medical staff of the ward, as most of the outdoor samples are collected by the lab staff who are properly trained for sample collection. Conclusion: It is mandatory to educate phlebotomists and paramedical staff particularly performing duties in the wards regarding timing and techniques of sampling/appropriate container to use/early delivery of the samples to the lab to reduce pre-analytical errors.

Keywords: pre analytical lab errors, tertiary care hospital, hemolyzed, paramedical staff

Procedia PDF Downloads 204
1440 Stagnation Point Flow Over a Stretching Cylinder with Variable Thermal Conductivity and Slip Conditions

Authors: M. Y. Malik, Farzana Khan

Abstract:

In this article, we discuss the behavior of viscous fluid near stagnation point over a stretching cylinder with variable thermal conductivity. The effects of slip conditions are also encountered. Thermal conductivity is considered as a linear function of temperature. By using homotopy analysis method and Fehlberg method we compare the graphical results for both momentum and energy equations. The effect of different parameters on velocity and temperature fields are shown graphically.

Keywords: slip conditions, stretching cylinder, heat generation/absorption, stagnation point flow, variable thermal conductivity

Procedia PDF Downloads 423
1439 African Swine Fewer Situation and Diagnostic Methods in Lithuania

Authors: Simona Pileviciene

Abstract:

On 24th January 2014, Lithuania notified two primary cases of African swine fever (ASF) in wild boars. The animals were tested positive for ASF virus (ASFV) genome by real-time PCR at the National Reference Laboratory for ASF in Lithuania (NRL), results were confirmed by the European Union Reference Laboratory for African swine fever (CISA-INIA). Intensive wild and domestic animal monitoring program was started. During the period of 2014-2017 ASF was confirmed in two large commercial pig holding with the highest biosecurity. Pigs were killed and destroyed. Since 2014 ASF outbreak territory from east and south has expanded to the middle of Lithuania. Diagnosis by PCR is one of the highly recommended diagnostic methods by World Organization for Animal Health (OIE) for diagnosis of ASF. The aim of the present study was to compare singleplex real-time PCR assays to a duplex assay allowing the identification of ASF and internal control in a single PCR tube and to compare primers, that target the p72 gene (ASF 250 bp and ASF 75 bp) effectivity. Multiplex real-time PCR assays prove to be less time consuming and cost-efficient and therefore have a high potential to be applied in the routine analysis. It is important to have effective and fast method that allows virus detection at the beginning of disease for wild boar population and in outbreaks for domestic pigs. For experiments, we used reference samples (INIA, Spain), and positive samples from infected animals in Lithuania. Results show 100% sensitivity and specificity.

Keywords: African swine fewer, real-time PCR, wild boar, domestic pig

Procedia PDF Downloads 166
1438 CRISPR-Mediated Genome Editing for Yield Enhancement in Tomato

Authors: Aswini M. S.

Abstract:

Tomato (Solanum lycopersicum L.) is one of the most significant vegetable crops in terms of its economic benefits. Both fresh and processed tomatoes are consumed. Tomatoes have a limited genetic base, which makes breeding extremely challenging. Plant breeding has become much simpler and more effective with genome editing tools of CRISPR and CRISPR-associated 9 protein (CRISPR/Cas9), which address the problems with traditional breeding, chemical/physical mutagenesis, and transgenics. With the use of CRISPR/Cas9, a number of tomato traits have been functionally distinguished and edited. These traits include plant architecture as well as flower characters (leaf, flower, male sterility, and parthenocarpy), fruit ripening, quality and nutrition (lycopene, carotenoid, GABA, TSS, and shelf-life), disease resistance (late blight, TYLCV, and powdery mildew), tolerance to abiotic stress (heat, drought, and salinity) and resistance to herbicides. This study explores the potential of CRISPR/Cas9 genome editing for enhancing yield in tomato plants. The study utilized the CRISPR/Cas9 genome editing technology to functionally edit various traits in tomatoes. The de novo domestication of elite features from wild cousins to cultivated tomatoes and vice versa has been demonstrated by the introgression of CRISPR/Cas9. The CycB (Lycopene beta someri) gene-mediated Cas9 editing increased the lycopene content in tomato. Also, Cas9-mediated editing of the AGL6 (Agamous-like 6) gene resulted in parthenocarpic fruit development under heat-stress conditions. The advent of CRISPR/Cas has rendered it possible to use digital resources for single guide RNA design and multiplexing, cloning (such as Golden Gate cloning, GoldenBraid, etc.), creating robust CRISPR/Cas constructs, and implementing effective transformation protocols like the Agrobacterium and DNA free protoplast method for Cas9-gRNAs ribonucleoproteins (RNPs) complex. Additionally, homologous recombination (HR)-based gene knock-in (HKI) via geminivirus replicon and base/prime editing (Target-AID technology) remains possible. Hence, CRISPR/Cas facilitates fast and efficient breeding in the improvement of tomatoes.

Keywords: CRISPR-Cas, biotic and abiotic stress, flower and fruit traits, genome editing, polygenic trait, tomato and trait introgression

Procedia PDF Downloads 70
1437 Loading Forces following Addition of 5% Cu in Nickel-Titanium Alloy Used for Orthodontics

Authors: Aphinan Phukaoluan, Surachai Dechkunakorn, Niwat Anuwongnukroh, Anak Khantachawana, Pongpan Kaewtathip, Julathep Kajornchaiyakul, Wassana Wichai

Abstract:

Aims: This study aims to address the amount of force delivered by a NiTiCu orthodontic wire with a ternary composition ratio of 46.0 Ni: 49.0 Ti: 5.0 Cu and to compare the results with a commercial NiTiCu 35 °C orthodontic archwire. Materials and Methods: Nickel (purity 99.9%), Titanium (purity 99.9%), and Copper (purity 99.9%) were used in this study with the atomic weight ratio 46.0 Ni: 49.0 Ti: 5.0 Cu. The elements were melted to form an alloy using an electrolytic arc furnace in argon gas atmosphere and homogenized at 800 °C for 1 hr. The alloys were subsequently sliced into thin plates (1.5mm) by EDM wire cutting machine to obtain the specimens and were cold-rolled with 30% followed by heat treatment in a furnace at 400 °C for 1 hour. Then, the three newly fabricated NiTiCu specimens were cut in nearly identical wire sizes of 0.016 inch x0.022 inch. Commercial preformed Ormco NiTiCu35 °C archwire with size 0.016 inch x 0.022 inches were used for comparative purposes. Three-point bending test was performed using a Universal Testing Machine to investigate the force of the load-deflection curve at oral temperature (36 °C+ 1) with deflection points at 0.25, 0.5, 0.75, 1.0. 1.25, and 1.5 mm. Descriptive statistics was used to evaluate each variables and independent t-test was used to analyze the differences between the groups. Results: Both NiTiCu wires presented typical superelastic properties as observed from the load-deflection curve. The average force was 341.70 g for loading, and 264.18 g for unloading for 46.0 Ni: 49.0 Ti: 5.0 Cu wire. Similarly, the values were 299.88 g for loading, and 201.96 g for unloading of Ormco NiTiCu35°C. There were significant differences (p < 0.05) in mean loading and unloading forces between the two NiTiCu wires. The deflection forces in loading and unloading force for Ormco NiTiCu at each point were less than 46.0 Ni: 49.0 Ti: 5.0 Cu wire, except at the deflection point of 0.25mm. Regarding the force difference between each deflection point of loading and unloading force, Ormco NiTiCu35 °C exerted less force than 46.0 Ni: 49.0 Ti: 5.0 Cu wire, except at difference deflection at 1.5-1.25 mm of unloading force. However, there were still within the acceptable limits for orthodontic use. Conclusion: The fabricated ternary alloy of 46.0 Ni: 49.0 Ti: 5.0 Cu (atomic weight) with 30% reduction and heat treatment at 400°C for 1 hr. and Ormco 35 °C NiTiCu presented the characteristics of the shape memory in their wire form. The unloading forces of both NiTiCu wires were in the range of orthodontic use. This should be a good foundation for further studies towards development of new orthodontic NiTiCu archwires.

Keywords: loading force, ternary alloy, NiTiCu, shape memory, orthodontic wire

Procedia PDF Downloads 285
1436 Factors in a Sustainability Assessment of New Types of Closed Cavity Facades

Authors: Zoran Veršić, Josip Galić, Marin Binički, Lucija Stepinac

Abstract:

With the current increase in CO₂ emissions and global warming, the sustainability of both existing and new solutions must be assessed on a wide scale. As the implementation of closed cavity facades (CCF) is on the rise, a variety of factors must be included in the analysis of new types of CCF. This paper aims to cover the relevant factors included in the sustainability assessment of new types of CCF. Several mathematical models are being used to describe the physical behavior of CCF. Depending on the type of CCF, they cover the main factors which affect the durability of the façade: thermal behavior of various elements in the façade, stress, and deflection of the glass panels, pressure inside a cavity, exchange rate, and the moisture buildup in the cavity. CCF itself represents a complex system in which all mentioned factors must be considered mutually. Still, the façade is only an envelope of a more complex system, the building. Choice of the façade dictates the heat loss and the heat gain, thermal comfort of inner space, natural lighting, and ventilation. Annual consumption of energy for heating, cooling, lighting, and maintenance costs will present the operational advantages or disadvantages of the chosen façade system in both the economic and environmental aspects. Still, the only operational viewpoint is not all-inclusive. As the building codes constantly demand higher energy efficiency as well as transfer to renewable energy sources, the ratio of embodied and lifetime operational energy footprint of buildings is changing. With the drop in operational energy CO₂ emissions, embodied energy emissions present a larger and larger share in the lifecycle emissions of the building. Taken all into account, the sustainability assessment of a façade, as well as other major building elements, should include all mentioned factors during the lifecycle of an element. The challenge of such an approach is a timescale. Depending on the climatic conditions on the building site, the expected lifetime of CCF can exceed 25 years. In such a time span, some of the factors can be estimated more precisely than others. The ones depending on the socio-economic conditions are more likely to be harder to predict than the natural ones like the climatic load. This work recognizes and summarizes the relevant factors needed for the assessment of new types of CCF, considering the entire lifetime of a façade element and economic and environmental aspects.

Keywords: assessment, closed cavity façade, life cycle, sustainability

Procedia PDF Downloads 192
1435 Removal of Na₂SO₄ by Electro-Confinement on Nanoporous Carbon Membrane

Authors: Jing Ma, Guotong Qin

Abstract:

We reported electro-confinement desalination (ECMD), a desalination method combining electric field effects and confinement effects using nanoporous carbon membranes as electrode. A carbon membrane with average pore size of 8.3 nm was prepared by organic sol-gel method. The precursor of support was prepared by curing porous phenol resin tube. Resorcinol-formaldehyde sol was coated on porous tubular resin support. The membrane was obtained by carbonisation of coated support. A well-combined top layer with the thickness of 35 μm was supported by macroporous support. Measurements of molecular weight cut-off using polyethylene glycol showed the average pore size of 8.3 nm. High salt rejection can be achieved because the water molecules need not overcome high energy barriers in confined space, while huge inherent dehydration energy was required for hydrated ions to enter the nanochannels. Additionally, carbon membrane with additional electric field can be used as an integrated membrane electrode combining the effects of confinement and electric potential gradient. Such membrane electrode can repel co-ions and attract counter-ions using pressure as the driving force for mass transport. When the carbon membrane was set as cathode, the rejection of SO₄²⁻ was 94.89%, while the removal of Na⁺ was less than 20%. We set carbon membrane as anode chamber to treat the effluent water from the cathode chamber. The rejection of SO₄²⁻ and Na⁺ reached to 100% and 88.86%, respectively. ECMD will be a promising energy efficient method for salt rejection.

Keywords: nanoporous carbon membrane, confined effect, electric field, desalination, membrane reactor

Procedia PDF Downloads 125
1434 Research on the Aeration Systems’ Efficiency of a Lab-Scale Wastewater Treatment Plant

Authors: Oliver Marunțălu, Elena Elisabeta Manea, Lăcrămioara Diana Robescu, Mihai Necșoiu, Gheorghe Lăzăroiu, Dana Andreya Bondrea

Abstract:

In order to obtain efficient pollutants removal in small-scale wastewater treatment plants, uniform water flow has to be achieved. The experimental setup, designed for treating high-load wastewater (leachate), consists of two aerobic biological reactors and a lamellar settler. Both biological tanks were aerated by using three different types of aeration systems - perforated pipes, membrane air diffusers and tube ceramic diffusers. The possibility of homogenizing the water mass with each of the air diffusion systems was evaluated comparatively. The oxygen concentration was determined by optical sensors with data logging. The experimental data was analyzed comparatively for all three different air dispersion systems aiming to identify the oxygen concentration variation during different operational conditions. The Oxygenation Capacity was calculated for each of the three systems and used as performance and selection parameter. The global mass transfer coefficients were also evaluated as important tools in designing the aeration system. Even though using the tubular porous diffusers leads to higher oxygen concentration compared to the perforated pipe system (which provides medium-sized bubbles in the aqueous solution), it doesn’t achieve the threshold limit of 80% oxygen saturation in less than 30 minutes. The study has shown that the optimal solution for the studied configuration was the radial air diffusers which ensure an oxygen saturation of 80% in 20 minutes. An increment of the values was identified when the air flow was increased.

Keywords: flow, aeration, bioreactor, oxygen concentration

Procedia PDF Downloads 389
1433 Alkali Activated Materials Based on Natural Clay from Raciszyn

Authors: Michal Lach, Maria Hebdowska-Krupa, Justyna Stefanek, Artur Stanek, Anna Stefanska, Janusz Mikula, Marek Hebda

Abstract:

Limited resources of raw materials determine the necessity of obtaining materials from other sources. In this area, the most known and widespread are recycling processes, which are mainly focused on the reuse of material. Another possible solution used in various companies to achieve improvement in sustainable development is waste-free production. It involves the production exclusively from such materials, whose waste is included in the group of renewable raw materials. This means that they can: (i) be recycled directly during the manufacturing process of further products or (ii) be raw material obtained by other companies for the production of alternative products. The article presents the possibility of using post-production clay from the Jurassic limestone deposit "Raciszyn II" as a raw material for the production of alkali activated materials (AAM). Such products are currently increasingly used, mostly in various building applications. However, their final properties depend significantly on many factors; the most important of them are: chemical composition of the raw material, particle size, specific surface area, type and concentration of the activator and the temperature range of the heat treatment. Conducted mineralogical and chemical analyzes of clay from the “Raciszyn II” deposit confirmed that this material, due to its high content of aluminosilicates, can be used as raw material for the production of AAM. In order to obtain the product with the best properties, the optimization of the clay calcining process was also carried out. Based on the obtained results, it was found that this process should occur in the range between 750 oC and 800 oC. The use of a lower temperature causes getting a raw material with low metakaolin content which is the main component of materials suitable for alkaline activation processes. On the other hand, higher heat treatment temperatures cause thermal dissociation of large amounts of calcite, which is associated with the release of large amounts of CO2 and the formation of calcium oxide. This compound significantly accelerates the binding process, which consequently often prevents the correct formation of geopolymer mass. The effect of the use of various activators: (i) NaOH, (ii) KOH and (iii) a mixture of KOH to NaOH in a ratio of 10%, 25% and 50% by volume on the compressive strength of the AAM was also analyzed. Obtained results depending on the activator used were in the range from 25 MPa to 40 MPa. These values are comparable with the results obtained for materials produced on the basis of Portland cement, which is one of the most popular building materials.

Keywords: alkaline activation, aluminosilicates, calcination, compressive strength

Procedia PDF Downloads 153
1432 The Relationship Study between Topological Indices in Contrast with Thermodynamic Properties of Amino Acids

Authors: Esmat Mohammadinasab, Mostafa Sadeghi

Abstract:

In this study are computed some thermodynamic properties such as entropy and specific heat capacity, enthalpy, entropy and gibbs free energy in 10 type different Aminoacids using Gaussian software with DFT method and 6-311G basis set. Then some topological indices such as Wiener, shultz are calculated for mentioned molecules. Finaly is showed relationship between thermodynamic peoperties and above topological indices and with different curves is represented that there is a good correlation between some of the quantum properties with topological indices of them. The instructive example is directed to the design of the structure-property model for predicting the thermodynamic properties of the amino acids which are discussed here.

Keywords: amino acids, DFT Method, molecular descriptor, thermodynamic properties

Procedia PDF Downloads 432
1431 Experimental Study on Heat and Mass Transfer of Humidifier for Fuel Cell

Authors: You-Kai Jhang, Yang-Cheng Lu

Abstract:

Major contributions of this study are threefold: designing a new model of planar-membrane humidifier for Proton Exchange Membrane Fuel Cell (PEMFC), an index to measure the Effectiveness (εT) of that humidifier, and an air compressor system to replicate related planar-membrane humidifier experiments. PEMFC as a kind of renewable energy has become more and more important in recent years due to its reliability and durability. To maintain the efficiency of the fuel cell, the membrane of PEMFC need to be controlled in a good hydration condition. How to maintain proper membrane humidity is one of the key issues to optimize PEMFC. We developed new humidifier to recycle water vapor from cathode air outlet so as to keep the moisture content of cathode air inlet in a PEMFC. By measuring parameters such as dry side air outlet dew point temperature, dry side air inlet temperature and humidity, wet side air inlet temperature and humidity, and differential pressure between dry side and wet side, we calculated indices obtained by dew point approach temperature (DPAT), water flux (J), water recovery ratio (WRR), effectiveness (εT), and differential pressure (ΔP). We discussed six topics including sealing effect, flow rate effect, flow direction effect, channel effect, temperature effect, and humidity effect by using these indices. Gas cylinders are used as sources of air supply in many studies of humidifiers. Gas cylinder depletes quickly during experiment at 1kW air flow rate, and it causes replication difficult. In order to ensure high stable air quality and better replication of experimental data, this study designs an air supply system to overcome this difficulty. The experimental result shows that the best rate of pressure loss of humidifier is 0.133×10³ Pa(g)/min at the torque of 25 (N.m). The best humidifier performance ranges from 30-40 (LPM) of air flow rates. The counter flow configured humidifies moisturizes the dry side inlet air more effectively than the parallel flow humidifier. From the performance measurements of the channel plates various rib widths studied in this study, it is found that the narrower the rib width is, the more the performance of humidifier improves. Raising channel width in same hydraulic diameter (Dh ) will obtain higher εT and lower ΔP. Moreover, increasing the dry side air inlet temperature or humidity will lead to lower εT. In addition, when the dry side air inlet temperature exceeds 50°C, the effect becomes even more obvious.

Keywords: PEM fuel cell, water management, membrane humidifier, heat and mass transfer, humidifier performance

Procedia PDF Downloads 176
1430 Quince Seed Mucilage (QSD)/ Multiwall Carbonano Tube Hybrid Hydrogels as Novel Controlled Drug Delivery Systems

Authors: Raouf Alizadeh, Kadijeh Hemmati

Abstract:

The aim of this study is to synthesize several series of hydrogels from combination of a natural based polymer (Quince seed mucilage QSD), a synthetic copolymer contained methoxy poly ethylene glycol -polycaprolactone (mPEG-PCL) in the presence of different amount of multi-walled carbon nanotube (f-MWNT). Mono epoxide functionalized mPEG (mP EG-EP) was synthesized and reacted with sodium azide in the presence of NH4Cl to afford mPEG- N3(-OH). Then ring opening polymerization (ROP) of ε–caprolactone (CL) in the presence of mPEG- N3(-OH) as initiator and Sn(Oct)2 as catalyst led to preparation of mPEG-PCL- N3(-OH ) which was grafted onto propagylated f-MWNT by the click reaction to obtain mPEG-PCL- f-MWNT (-OH ). In the presence of mPEG- N3(-Br) and mixture of NHS/DCC/ QSD, hybrid hydrogels were successfully synthesized. The copolymers and hydrogels were characterized using different techniques such as, scanning electron microscope (SEM) and thermogravimetric analysis (TGA). The gel content of hydrogels showed dependence on the weight ratio of QSD:mPEG-PCL:f-MWNT. The swelling behavior of the prepared hydrogels was also studied under variation of pH, immersion time, and temperature. According to the results, the swelling behavior of the prepared hydrogels showed significant dependence in the gel content, pH, immersion time and temperature. The highest swelling was observed at room temperature, in 60 min and at pH 8. The loading and in-vitro release of quercetin as a model drug were investigated at pH of 2.2 and 7.4, and the results showed that release rate at pH 7.4 was faster than that at pH 2.2. The total loading and release showed dependence on the network structure of hydrogels and were in the range of 65- 91%. In addition, the cytotoxicity and release kinetics of the prepared hydrogels were also investigated.

Keywords: antioxidant, drug delivery, Quince Seed Mucilage(QSD), swelling behavior

Procedia PDF Downloads 320
1429 Antibacterial Activity of Flavonoids from Corn Silk (Zea mays L.) in Propionibacterium acne, Staphylococcus Aureus and Staphylococcus Epidermidis

Authors: Fitri Ayu, Nadia, Tanti, Putri, Fatkhan, Pasid Harlisa, Suparmi

Abstract:

Acne is a skin abnormal conditions experienced by many teens, this is caused by various factors such as the climate is hot, humid and excessive sun exposure can aggravate acne because it will lead to excess oil production. Flavonoids form complex compounds against extracellular proteins that disrupt the integrity of bacterial cell membrane in a way denature bacterial cell proteins and bacterial cell membrane damage. This study aimed to test the antibacterial activity of corn silk extract with a concentration of 10 %, 20 %, 30 %, 40 %, 50 %, 60 %, 70 %, 80 %, 90 % and 100 % in vitro by measuring the inhibition of the growth of bacteria Propionibacterium acne, Staphylococcus aureus and Staphylococcus epidermis then compared with the standard antibiotic clindamycin. Extracts tested by Disk Diffusion Method, in which the blank disc soaked with their respective corn silk extract concentration for 15-30 minutes and then the medium of bacteria that have been planted with Propionibacterium acne, Staphylococcus aureus and Staphylococcus epidermis in the given disk that already contains extracts with various concentration. Incubated for 24 hours and then measured the growth inhibition zone Propionibacterium acne, Staphylococcus aureus and Staphylococcus epidermidis. Corn silk contains flavonoids, is shown by the test of flavonoids in corn silk extract by using a tube heating and without heating. Flavonoid in corn silk potentially as anti acne by inhibiting the growth of bacteria that cause acne. Corn silk extract concentration which has the highest antibacterial activity is then performed in a cream formulation and evaluation test of physical and chemical properties of the resulting cream preparation.

Keywords: antibacterial, flavonoid, corn silk, acne

Procedia PDF Downloads 509
1428 Unsteady and Steady State in Natural Convection

Authors: Syukri Himran, Erwin Eka Putra, Nanang Roni

Abstract:

This study explains the natural convection of viscous fluid flowing on semi-infinite vertical plate. A set of the governing equations describing the continuity, momentum and energy, have been reduced to dimensionless forms by introducing the references variables. To solve the problems, the equations are formulated by explicit finite-difference in time dependent form and computations are performed by Fortran program. The results describe velocity, temperature profiles both in transient and steady state conditions. An approximate value of heat transfer coefficient and the effects of Pr on convection flow are also presented.

Keywords: natural convection, vertical plate, velocity and temperature profiles, steady and unsteady

Procedia PDF Downloads 489
1427 Sustainable Composites for Aircraft Cabin Interior Applications

Authors: Fiorenzo Lenzi, Doris Abt, Besnik Bytyqi

Abstract:

Recent developments in composite materials for the interior cabin market provide more sustainable solutions for industrial applications. One contribution comes from epoxy-based prepregs recently developed to substitute phenolic prepregs in order to reduce the environmental impact of their production process and to eliminate health and safety issues related to their handling. Another example is the use of Mica-based products for improving the fire protection of interior cabin parts. Minerals, such as Mica, can be used as reinforcement in composites to reduce the heat release rate or, more traditionally, to improve the burn-through performance of fuselage and cargo lining components.

Keywords: prepreg, epoxy, Mica, battery protection

Procedia PDF Downloads 83
1426 Stress-Strain Relation for Hybrid Fiber Reinforced Concrete at Elevated Temperature

Authors: Josef Novák, Alena Kohoutková

Abstract:

The performance of concrete structures in fire depends on several factors which include, among others, the change in material properties due to the fire. Today, fiber reinforced concrete (FRC) belongs to materials which have been widely used for various structures and elements. While the knowledge and experience with FRC behavior under ambient temperature is well-known, the effect of elevated temperature on its behavior has to be deeply investigated. This paper deals with an experimental investigation and stress‑strain relations for hybrid fiber reinforced concrete (HFRC) which contains siliceous aggregates, polypropylene and steel fibers. The main objective of the experimental investigation is to enhance a database of mechanical properties of concrete composites with addition of fibers subject to elevated temperature as well as to validate existing stress-strain relations for HFRC. Within the investigation, a unique heat transport test, compressive test and splitting tensile test were performed on 150 mm cubes heated up to 200, 400, and 600 °C with the aim to determine a time period for uniform heat distribution in test specimens and the mechanical properties of the investigated concrete composite, respectively. Both findings obtained from the presented experimental test as well as experimental data collected from scientific papers so far served for validating the computational accuracy of investigated stress-strain relations for HFRC which have been developed during last few years. Owing to the presence of steel and polypropylene fibers, HFRC becomes a unique material whose structural performance differs from conventional plain concrete when exposed to elevated temperature. Polypropylene fibers in HFRC lower the risk of concrete spalling as the fibers burn out shortly with increasing temperature due to low ignition point and as a consequence pore pressure decreases. On the contrary, the increase in the concrete porosity might affect the mechanical properties of the material. To validate this thought requires enhancing the existing result database which is very limited and does not contain enough data. As a result of the poor database, only few stress-strain relations have been developed so far to describe the structural performance of HFRC at elevated temperature. Moreover, many of them are inconsistent and need to be refined. Most of them also do not take into account the effect of both a fiber type and fiber content. Such approach might be vague especially when high amount of polypropylene fibers are used. Therefore, the existing relations should be validated in detail based on other experimental results.

Keywords: elevated temperature, fiber reinforced concrete, mechanical properties, stress strain relation

Procedia PDF Downloads 339
1425 Laser-Dicing Modeling: Implementation of a High Accuracy Tool for Laser-Grooving and Cutting Application

Authors: Jeff Moussodji, Dominique Drouin

Abstract:

The highly complex technology requirements of today’s integrated circuits (ICs), lead to the increased use of several materials types such as metal structures, brittle and porous low-k materials which are used in both front end of line (FEOL) and back end of line (BEOL) process for wafer manufacturing. In order to singulate chip from wafer, a critical laser-grooving process, prior to blade dicing, is used to remove these layers of materials out of the dicing street. The combination of laser-grooving and blade dicing allows to reduce the potential risk of induced mechanical defects such micro-cracks, chipping, on the wafer top surface where circuitry is located. It seems, therefore, essential to have a fundamental understanding of the physics involving laser-dicing in order to maximize control of these critical process and reduce their undesirable effects on process efficiency, quality, and reliability. In this paper, the study was based on the convergence of two approaches, numerical and experimental studies which allowed us to investigate the interaction of a nanosecond pulsed laser and BEOL wafer materials. To evaluate this interaction, several laser grooved samples were compared with finite element modeling, in which three different aspects; phase change, thermo-mechanical and optic sensitive parameters were considered. The mathematical model makes it possible to highlight a groove profile (depth, width, etc.) of a single pulse or multi-pulses on BEOL wafer material. Moreover, the heat affected zone, and thermo-mechanical stress can be also predicted as a function of laser operating parameters (power, frequency, spot size, defocus, speed, etc.). After modeling validation and calibration, a satisfying correlation between experiment and modeling, results have been observed in terms of groove depth, width and heat affected zone. The study proposed in this work is a first step toward implementing a quick assessment tool for design and debug of multiple laser grooving conditions with limited experiments on hardware in industrial application. More correlations and validation tests are in progress and will be included in the full paper.

Keywords: laser-dicing, nano-second pulsed laser, wafer multi-stack, multiphysics modeling

Procedia PDF Downloads 209