Search results for: detecting of envelope modulation on noise
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2592

Search results for: detecting of envelope modulation on noise

552 Evaluation of IMERG Performance at Estimating the Rainfall Properties through Convective and Stratiform Rain Events in a Semi-Arid Region of Mexico

Authors: Eric Muñoz de la Torre, Julián González Trinidad, Efrén González Ramírez

Abstract:

Rain varies greatly in its duration, intensity, and spatial coverage, it is important to have sub-daily rainfall data for various applications, including risk prevention. However, the ground measurements are limited by the low and irregular density of rain gauges. An alternative to this problem are the Satellite Precipitation Products (SPPs) that use passive microwave and infrared sensors to estimate rainfall, as IMERG, however, these SPPs have to be validated before their application. The aim of this study is to evaluate the performance of the IMERG: Integrated Multi-satellitE Retrievals for Global Precipitation Measurament final run V06B SPP in a semi-arid region of Mexico, using 4 automatic rain gauges (pluviographs) sub-daily data of October 2019 and June to September 2021, using the Minimum inter-event Time (MIT) criterion to separate unique rain events with a dry period of 10 hrs. for the purpose of evaluating the rainfall properties (depth, duration and intensity). Point to pixel analysis, continuous, categorical, and volumetric statistical metrics were used. Results show that IMERG is capable to estimate the rainfall depth with a slight overestimation but is unable to identify the real duration and intensity of the rain events, showing large overestimations and underestimations, respectively. The study zone presented 80 to 85 % of convective rain events, the rest were stratiform rain events, classified by the depth magnitude variation of IMERG pixels and pluviographs. IMERG showed poorer performance at detecting the first ones but had a good performance at estimating stratiform rain events that are originated by Cold Fronts.

Keywords: IMERG, rainfall, rain gauge, remote sensing, statistical evaluation

Procedia PDF Downloads 69
551 Investigating the Environmental Impact of Tourists Activities on Yankari Resort and Safari

Authors: Eldah Ephraim Buba, Sanusi Abubakar Sadiq

Abstract:

Habitat can be degraded by tourism leisure activities for example wildlife viewing can bring abrupt stress for animals and alter their natural behaviors when tourist come too close and wildlife watching have degradation effects on the habitats as they often are accompanied by the noise and commotion created by tourist as they chase wild animals. It is observed that Jos Wild Life Park is usually congested during on-peak periods which causes littering and contamination of the environment by tourist which may lead to changes in the soil nutrient. The issue of unauthorized feeding of animals by a tourist in which the food might be dangerous and harmful to their health and making them be so aggressive is also observed. The aim of the study is to investigate the environmental impact of tourists’ activities in Jos Wild Life Park, Nigeria. The study used survey questionnaires to both tourists and the staff of the wildlife park. One hundred questionnaires were self-administered to randomly selected tourists as the visit the park and some staff. The average mean score of the response was used to show agreement or disagreement. Major findings show the negative impact of tourist’s activities to the environment as air pollution, overcrowding, and congestion, solid littering of the environment, distress to animals and alteration of the ecosystem. Furthermore, the study found the positive impact of tourists activities on the environment to be income generation through tourists activities and infrastructural development. It is recommended that the impact of tourism should be minimized through admitting the right carrying capacity and impact assessment.

Keywords: environmental, impact, investigation, tourists, activities

Procedia PDF Downloads 357
550 Non-Native and Invasive Fish Species in Poland

Authors: Tomasz Raczyński

Abstract:

Non-native and invasive species negatively transform ecosystems. Non-native fish species can displace native fish species through competition, predation, disrupting spawning, transforming ecosystems, or transmitting parasites. This influence is more and more noticeable in Poland and in the world. From December 2014 to October 2020, did catch of fishes by electrofishing method carried on 416 sites in various parts of Poland. Research was conducted in both running and stagnant freshwaters with the predominance of running waters. Only sites where the presence of fish was found were analysed. The research covered a wide spectrum of waters from small mountain streams, through drainage ditches to the largest Polish river - the Vistula. Single sites covered oxbow lakes, small ponds and lakes. Electrofishing was associated with ichthyofauna inventories and was mainly aimed at detecting protected species of fish and lampreys or included in the annexes to the EU Habitats Directive (Council Directive 92/43/EEC on the Conservation of natural habitats and of wild fauna and flora). The results of these catches were analysed for alien and invasive fish species. The analysis of the catch structure shows that in 71 out of 416 research sites was found alien and invasive fish species, belonging to 9 taxa. According to the above, alien species of fish are present in 17% of the study sites. The most frequently observed species was the Prussian carp Carassius gibelio, which was recorded on 43 sites. Stone moroko Pseudorasbora parva was found on 24 sites. Chinese sleeper Perccottus glenii was found on 6 sites, and Bullhead Ameiurus sp. was also found on 6 sites. Western tubenose goby Proterorhinus semilunaris was found at 5 sites and Rainbow trout Oncorhynchus mykiss at 3 sites. Monkey goby Neogobius fluviatilis, Round goby Neogobius melanostomus and Eurasian carp Cyprinus carpio was recorded on 2 sites.

Keywords: non-native species, invasive species, fish species, invasive fish species, native fish species

Procedia PDF Downloads 110
549 Language Errors Used in “The Space between Us” Movie and Their Effects on Translation Quality: Translation Study toward Discourse Analysis Approach

Authors: Mochamad Nuruz Zaman, Mangatur Rudolf Nababan, M. A. Djatmika

Abstract:

Both society and education areas teach to have good communication for building the interpersonal skills up. Everyone has the capacity to understand something new, either well comprehension or worst understanding. Worst understanding makes the language errors when the interactions are done by someone in the first meeting, and they do not know before it because of distance area. “The Space between Us” movie delivers the love-adventure story between Mars Boy and Earth Girl. They are so many missing conversations because of the different climate and environment. As the moviegoer also must be focused on the subtitle in order to enjoy well the movie. Furthermore, Indonesia subtitle and English conversation on the movie still have overlapping understanding in the translation. Translation hereby consists of source language -SL- (English conversation) and target language -TL- (Indonesia subtitle). These research gap above is formulated in research question by how the language errors happened in that movie and their effects on translation quality which is deepest analyzed by translation study toward discourse analysis approach. The research goal is to expand the language errors and their translation qualities in order to create a good atmosphere in movie media. The research is studied by embedded research in qualitative design. The research locations consist of setting, participant, and event as focused determined boundary. Sources of datum are “The Space between Us” movie and informant (translation quality rater). The sampling is criterion-based sampling (purposive sampling). Data collection techniques use content analysis and questioner. Data validation applies data source and method triangulation. Data analysis delivers domain, taxonomy, componential, and cultural theme analysis. Data findings on the language errors happened in the movie are referential, register, society, textual, receptive, expressive, individual, group, analogical, transfer, local, and global errors. Data discussions on their effects to translation quality are concentrated by translation techniques on their data findings; they are amplification, borrowing, description, discursive creation, established equivalent, generalization, literal, modulation, particularization, reduction, substitution, and transposition.

Keywords: discourse analysis, language errors, The Space between Us movie, translation techniques, translation quality instruments

Procedia PDF Downloads 219
548 Combining the Deep Neural Network with the K-Means for Traffic Accident Prediction

Authors: Celso L. Fernando, Toshio Yoshii, Takahiro Tsubota

Abstract:

Understanding the causes of a road accident and predicting their occurrence is key to preventing deaths and serious injuries from road accident events. Traditional statistical methods such as the Poisson and the Logistics regressions have been used to find the association of the traffic environmental factors with the accident occurred; recently, an artificial neural network, ANN, a computational technique that learns from historical data to make a more accurate prediction, has emerged. Although the ability to make accurate predictions, the ANN has difficulty dealing with highly unbalanced attribute patterns distribution in the training dataset; in such circumstances, the ANN treats the minority group as noise. However, in the real world data, the minority group is often the group of interest; e.g., in the road traffic accident data, the events of the accident are the group of interest. This study proposes a combination of the k-means with the ANN to improve the predictive ability of the neural network model by alleviating the effect of the unbalanced distribution of the attribute patterns in the training dataset. The results show that the proposed method improves the ability of the neural network to make a prediction on a highly unbalanced distributed attribute patterns dataset; however, on an even distributed attribute patterns dataset, the proposed method performs almost like a standard neural network.

Keywords: accident risks estimation, artificial neural network, deep learning, k-mean, road safety

Procedia PDF Downloads 163
547 Quantitative Analysis of Caffeine in Pharmaceutical Formulations Using a Cost-Effective Electrochemical Sensor

Authors: Y. T. Gebreslassie, Abrha Tadesse, R. C. Saini, Rishi Pal

Abstract:

Caffeine, known chemically as 3,7-dihydro-1,3,7-trimethyl-1H-purine-2,6-dione, is a naturally occurring alkaloid classified as an N-methyl derivative of xanthine. Given its widespread use in coffee and other caffeine-containing products, it is the most commonly consumed psychoactive substance in everyday human life. This research aimed to develop a cost-effective, sensitive, and easily manufacturable sensor for the detection of caffeine. Antraquinone-modified carbon paste electrode (AQMCPE) was fabricated, and the electrochemical behavior of caffeine on this electrode was investigated using cyclic voltammetry (CV) and square wave voltammetry (SWV) in a solution of 0.1M perchloric acid at pH 0.56. The modified electrode displayed enhanced electrocatalytic activity towards caffeine oxidation, exhibiting a two-fold increase in peak current and an 82 mV shift of the peak potential in the negative direction compared to an unmodified carbon paste electrode (UMCPE). Exploiting the electrocatalytic properties of the modified electrode, SWV was employed for the quantitative determination of caffeine. Under optimized experimental conditions, a linear relationship between peak current and concentration was observed within the range of 2.0 x 10⁻⁶ to 1.0× 10⁻⁴ M, with a correlation coefficient of 0.998 and a detection limit of 1.47× 10⁻⁷ M (signal-to-noise ratio = 3). Finally, the proposed method was successfully applied to the quantitative analysis of caffeine in pharmaceutical formulations, yielding recovery percentages ranging from 95.27% to 106.75%.

Keywords: antraquinone-modified carbon paste electrode, caffeine, detection, electrochemical sensor, quantitative analysis

Procedia PDF Downloads 65
546 Speech Enhancement Using Wavelet Coefficients Masking with Local Binary Patterns

Authors: Christian Arcos, Marley Vellasco, Abraham Alcaim

Abstract:

In this paper, we present a wavelet coefficients masking based on Local Binary Patterns (WLBP) approach to enhance the temporal spectra of the wavelet coefficients for speech enhancement. This technique exploits the wavelet denoising scheme, which splits the degraded speech into pyramidal subband components and extracts frequency information without losing temporal information. Speech enhancement in each high-frequency subband is performed by binary labels through the local binary pattern masking that encodes the ratio between the original value of each coefficient and the values of the neighbour coefficients. This approach enhances the high-frequency spectra of the wavelet transform instead of eliminating them through a threshold. A comparative analysis is carried out with conventional speech enhancement algorithms, demonstrating that the proposed technique achieves significant improvements in terms of PESQ, an international recommendation of objective measure for estimating subjective speech quality. Informal listening tests also show that the proposed method in an acoustic context improves the quality of speech, avoiding the annoying musical noise present in other speech enhancement techniques. Experimental results obtained with a DNN based speech recognizer in noisy environments corroborate the superiority of the proposed scheme in the robust speech recognition scenario.

Keywords: binary labels, local binary patterns, mask, wavelet coefficients, speech enhancement, speech recognition

Procedia PDF Downloads 229
545 Hyperspectral Imaging and Nonlinear Fukunaga-Koontz Transform Based Food Inspection

Authors: Hamidullah Binol, Abdullah Bal

Abstract:

Nowadays, food safety is a great public concern; therefore, robust and effective techniques are required for detecting the safety situation of goods. Hyperspectral Imaging (HSI) is an attractive material for researchers to inspect food quality and safety estimation such as meat quality assessment, automated poultry carcass inspection, quality evaluation of fish, bruise detection of apples, quality analysis and grading of citrus fruits, bruise detection of strawberry, visualization of sugar distribution of melons, measuring ripening of tomatoes, defect detection of pickling cucumber, and classification of wheat kernels. HSI can be used to concurrently collect large amounts of spatial and spectral data on the objects being observed. This technique yields with exceptional detection skills, which otherwise cannot be achieved with either imaging or spectroscopy alone. This paper presents a nonlinear technique based on kernel Fukunaga-Koontz transform (KFKT) for detection of fat content in ground meat using HSI. The KFKT which is the nonlinear version of FKT is one of the most effective techniques for solving problems involving two-pattern nature. The conventional FKT method has been improved with kernel machines for increasing the nonlinear discrimination ability and capturing higher order of statistics of data. The proposed approach in this paper aims to segment the fat content of the ground meat by regarding the fat as target class which is tried to be separated from the remaining classes (as clutter). We have applied the KFKT on visible and nearinfrared (VNIR) hyperspectral images of ground meat to determine fat percentage. The experimental studies indicate that the proposed technique produces high detection performance for fat ratio in ground meat.

Keywords: food (ground meat) inspection, Fukunaga-Koontz transform, hyperspectral imaging, kernel methods

Procedia PDF Downloads 431
544 Identification and Molecular Profiling of A Family I Cystatin Homologue from Sebastes schlegeli Deciphering Its Putative Role in Host Immunity

Authors: Don Anushka Sandaruwan Elvitigala, P. D. S. U. Wickramasinghe, Jehee Lee

Abstract:

Cystatins are a large superfamily of proteins which act as reversible inhibitors of cysteine proteases. Papain proteases and cysteine cathepsins are predominant substrates of cystatins. Cystatin superfamily can be further clustered into three groups as Stefins, Cystatins, and Kininogens. Among them, stefines are also known as family 1 cystatins which harbors cystatin Bs and cystatin As. In this study, a homologue of family one cystatins more close to cystatin Bs was identified from Korean black rockfish (Sebastes schlegeli) using a prior constructed cDNA (complementary deoxyribonucleic acid) database and designated as RfCyt1. The full-length cDNA of RfCyt1 consisted of 573 bp, with a coding region of 294 bp. It comprised a 5´-untranslated region (UTR) of 55 bp, and 3´-UTR of 263 bp. The coding sequence encodes a polypeptide consisting of 97 amino acids with a predicted molecular weight of 11kDa and theoretical isoelectric point of 6.3. The RfCyt1 shared homology with other teleosts and vertebrate species and consisted conserved features of cystatin family signature including single cystatin-like domain, cysteine protease inhibitory signature of pentapeptide (QXVXG) consensus sequence and N-terminal two conserved neighboring glycine (⁸GG⁹) residues. As expected, phylogenetic reconstruction developed using the neighbor-joining method showed that RfCyt1 is clustered with the cystatin family 1 members, in which more closely with its teleostan orthologues. An SYBR Green qPCR (quantitative polymerase chain reaction) assay was performed to quantify the RfCytB transcripts in different tissues in healthy and immune stimulated fish. RfCyt1 was ubiquitously expressed in all tissue types of healthy animals with gill and spleen being the highest. Temporal expression of RfCyt1 displayed significant up-regulation upon infection with Aeromonas salmonicida. Recombinantly expressed RfCyt1 showed concentration-dependent papain inhibitory activity. Collectively these findings evidence for detectable protease inhibitory and immunity relevant roles of RfCyt1 in Sebastes schlegeli.

Keywords: Sebastes schlegeli, family 1 cystatin, immune stimulation, expressional modulation

Procedia PDF Downloads 136
543 Targeting APP IRE mRNA to Combat Amyloid -β Protein Expression in Alzheimer’s Disease

Authors: Mateen A Khan, Taj Mohammad, Md. Imtaiyaz Hassan

Abstract:

Alzheimer’s disease is characterized by the accumulation of the processing products of the amyloid beta peptide cleaved by amyloid precursor protein (APP). Iron increases the synthesis of amyloid beta peptides, which is why iron is present in Alzheimer's disease patients' amyloid plaques. Iron misregulation in the brain is linked to the overexpression of APP protein, which is directly related to amyloid-β aggregation in Alzheimer’s disease. The APP 5'-UTR region encodes a functional iron-responsive element (IRE) stem-loop that represents a potential target for modulating amyloid production. Targeted regulation of APP gene expression through the modulation of 5’-UTR sequence function represents a novel approach for the potential treatment of AD because altering APP translation can be used to improve both the protective brain iron balance and provide anti-amyloid efficacy. The molecular docking analysis of APP IRE RNA with eukaryotic translation initiation factors yields several models exhibiting substantial binding affinity. The finding revealed that the interaction involved a set of functionally active residues within the binding sites of eIF4F. Notably, APP IRE RNA and eIF4F interaction were stabilized by multiple hydrogen bonds with residues of APP IRE RNA and eIF4F. It was evident that APP IRE RNA exhibited a structural complementarity that tightly fit within binding pockets of eIF4F. The simulation studies further revealed the stability of the complexes formed between RNA and eIF4F, which is crucial for assessing the strength of these interactions and subsequent roles in the pathophysiology of Alzheimer’s disease. In addition, MD simulations would capture conformational changes in the IRE RNA and protein molecules during their interactions, illustrating the mechanism of interaction, conformational change, and unbinding events and how it may affect aggregation propensity and subsequent therapeutic implications. Our binding studies correlated well with the translation efficiency of APP mRNA. Overall, the outcome of this study suggests that the genomic modification and/or inhibiting the expression of amyloid protein by targeting APP IRE RNA can be a viable strategy to identify potential therapeutic targets for AD and subsequently be exploited for developing novel therapeutic approaches.

Keywords: Alzheimer's disease, Protein-RNA interaction analysis, molecular docking simulations, conformational dynamics, binding stability, binding kinetics, protein synthesis.

Procedia PDF Downloads 64
542 Enhancement of Road Defect Detection Using First-Level Algorithm Based on Channel Shuffling and Multi-Scale Feature Fusion

Authors: Yifan Hou, Haibo Liu, Le Jiang, Wandong Su, Binqing Wang

Abstract:

Road defect detection is crucial for modern urban management and infrastructure maintenance. Traditional road defect detection methods mostly rely on manual labor, which is not only inefficient but also difficult to ensure their reliability. However, existing deep learning-based road defect detection models have poor detection performance in complex environments and lack robustness to multi-scale targets. To address this challenge, this paper proposes a distinct detection framework based on the one stage algorithm network structure. This article designs a deep feature extraction network based on RCSDarknet, which applies channel shuffling to enhance information fusion between tensors. Through repeated stacking of RCS modules, the information flow between different channels of adjacent layer features is enhanced to improve the model's ability to capture target spatial features. In addition, a multi-scale feature fusion mechanism with weighted dual flow paths was adopted to fuse spatial features of different scales, thereby further improving the detection performance of the model at different scales. To validate the performance of the proposed algorithm, we tested it using the RDD2022 dataset. The experimental results show that the enhancement algorithm achieved 84.14% mAP, which is 1.06% higher than the currently advanced YOLOv8 algorithm. Through visualization analysis of the results, it can also be seen that our proposed algorithm has good performance in detecting targets of different scales in complex scenes. The above experimental results demonstrate the effectiveness and superiority of the proposed algorithm, providing valuable insights for advancing real-time road defect detection methods.

Keywords: roads, defect detection, visualization, deep learning

Procedia PDF Downloads 7
541 Information Visualization Methods Applied to Nanostructured Biosensors

Authors: Osvaldo N. Oliveira Jr.

Abstract:

The control of molecular architecture inherent in some experimental methods to produce nanostructured films has had great impact on devices of various types, including sensors and biosensors. The self-assembly monolayers (SAMs) and the electrostatic layer-by-layer (LbL) techniques, for example, are now routinely used to produce tailored architectures for biosensing where biomolecules are immobilized with long-lasting preserved activity. Enzymes, antigens, antibodies, peptides and many other molecules serve as the molecular recognition elements for detecting an equally wide variety of analytes. The principles of detection are also varied, including electrochemical methods, fluorescence spectroscopy and impedance spectroscopy. In this presentation an overview will be provided of biosensors made with nanostructured films to detect antibodies associated with tropical diseases and HIV, in addition to detection of analytes of medical interest such as cholesterol and triglycerides. Because large amounts of data are generated in the biosensing experiments, use has been made of computational and statistical methods to optimize performance. Multidimensional projection techniques such as Sammon´s mapping have been shown more efficient than traditional multivariate statistical analysis in identifying small concentrations of anti-HIV antibodies and for distinguishing between blood serum samples of animals infected with two tropical diseases, namely Chagas´ disease and Leishmaniasis. Optimization of biosensing may include a combination of another information visualization method, the Parallel Coordinate technique, with artificial intelligence methods in order to identify the most suitable frequencies for reaching higher sensitivity using impedance spectroscopy. Also discussed will be the possible convergence of technologies, through which machine learning and other computational methods may be used to treat data from biosensors within an expert system for clinical diagnosis.

Keywords: clinical diagnosis, information visualization, nanostructured films, layer-by-layer technique

Procedia PDF Downloads 337
540 Associations of the FTO Gene Polymorphism with Obesity and Metabolic Syndrome in Lithuanian Adult Population

Authors: Alina Smalinskiene Janina Petkeviciene, Jurate Klumbiene, Vilma Kriaucioniene, Vaiva Lesauskaite

Abstract:

The worldwide prevalence of obesity has been increasing dramatically in the last few decades, and Lithuania is no exception. In 2012, every fifth adult (19% of men and 20.5 % of women) was obese and every third was overweight Association studies have highlighted the influence of SNPs in obesity, with particular focus on FTO rs9939609. Thus far, no data on the possible association of this SNP to obesity in the adult Lithuanian population has been reported. Here, for the first time, we demonstrate an association between the FTO rs9939609 homozygous AA genotype and increased BMI when compared to homozygous TT. Furthermore, a positive association was determined between the FTO rs9939609 variant and risk of metabolic syndrome. Background: This study aimed to examine the associations between the fat mass and obesity associated (FTO) gene rs9939609 variant with obesity and metabolic syndrome in Lithuanian adult population. Materials and Methods: A cross-sectional health survey was carried out in randomly selected municipalities of Lithuania. The random sample was obtained from lists of 25–64 year-old inhabitants. The data from 1020 subjects were analysed. The rs9939609 SNP of the FTO gene was assessed using TaqMan assays (Applied Biosystems, Foster City, CA, USA). The Applied Biosystems 7900HT Real-Time Polymerase Chain Reaction System was used for detecting the SNPs. Results: The carriers of the AA genotype had the highest mean values of BMI and waist circumference (WC) and the highest risk of obesity. Interactions ‘genotype x age’ and ‘genotype x physical activity’ in determining BMI and WC were shown. Neither lipid and glucose levels, nor blood pressure were associated with the rs9939609 independently of BMI. In the age group of 25-44 years, association between the FTO genotypes and metabolic syndrome was found. Conclusion: The FTO rs9939609 variant was significantly associated with BMI and WC, and with the risk of obesity in Lithuanian population. The FTO polymorphism might have a greater influence on weight status in younger individuals and in subjects with a low level of physical activity.

Keywords: obesity metabolic syndrome, FTO gene, polymorphism, Lithuania

Procedia PDF Downloads 430
539 Pioneering Technology of Night Photo-Stimulation of the Brain Lymphatic System: Therapy of Brain Diseases during Sleep

Authors: Semyachkina-Glushkovskaya Oxana, Fedosov Ivan, Blokhina Inna, Terskov Andrey, Evsukova Arina, Elovenko Daria, Adushkina Viktoria, Dubrovsky Alexander, Jürgen Kurths

Abstract:

In modern neurobiology, sleep is considered a novel biomarker and a promising therapeutic target for brain diseases. This is due to recent discoveries of the nighttime activation of the brain lymphatic system (BLS), playing an important role in the removal of wastes and toxins from the brain and contributes neuroprotection of the central nervous system (CNS). In our review, we discuss that night stimulation of BLS might be a breakthrough strategy in a new treatment of Alzheimer’s and Parkinson’s disease, stroke, brain trauma, and oncology. Although this research is in its infancy, however, there are pioneering and promising results suggesting that night transcranial photostimulation (tPBM) stimulates more effectively lymphatic removal of amyloid-beta from mouse brain than daily tPBM that is associated with a greater improvement of the neurological status and recognition memory of animals. In our previous study, we discovered that tPBM modulates the tone and permeability of the lymphatic endothelium by stimulating NO formation, promoting lymphatic clearance of wastes and toxins from the brain tissues. We also demonstrate that tPBM can also lead to angio- and lymphangiogenesis, which is another mechanism underlying tPBM-mediated stimulation of BLS. Thus, photo-augmentation of BLS might be a promising therapeutic target for preventing or delaying brain diseases associated with BLS dysfunction. Here we present pioneering technology for simultaneous tPBM in humans and sleep monitoring for stimulation of BLS to remove toxins from CNS and modulation of brain immunity. The wireless-controlled gadget includes a flexible organic light-emitting diode (LED) source that is controlled directly by a sleep-tracking device via a mobile application. The designed autonomous LED source is capable of providing the required therapeutic dose of light radiation at a certain region of the patient’s head without disturbing of sleeping patient. To minimize patients' discomfort, advanced materials like flexible organic LEDs were used. Acknowledgment: This study was supported by RSF project No. 23-75-30001.

Keywords: brain diseases, brain lymphatic system, phototherapy, sleep

Procedia PDF Downloads 72
538 Determining Factors of Suspended Glass Systems with Pre-Stress Cable Truss

Authors: Cemil Atakara, Hüseyin Eryaman

Abstract:

The use of glass as an envelope of a building has been increasing in the twentieth century. For more transparency and dematerialization new glass facade types have emerged in the past two decades which depends on point fixed glazing system (PFGS). The aim of this study is to analyze of the PFGS systems which are used on the glass curtain wall according to their types, degree, architectural and structural effects. This new system is desired because it enhances the transparency of the façade and it minimizes the component of the frames or of the profiles. This PFGS led to new structural elements which use cables, rods, trusses when designing a glass building facades, this structural element called the suspended glass system with pre-stressed cable truss (SGSPCT) which has been used for the first time in 1980 in Serres building. The twenty glass buildings which are designed in different systems have been analyzed during this study. After these analyses five selected SGSPCT building analyzed deeply and one skeletal frame building selected from Lefkosa redesigned according to the analysis results. These selected buildings have been included of various cable-truss system typologies and degree. The methodology of this study is building analysis method and literature survey with the help of books, articles, magazines, drawings, internet sources and applied connection details of the glass buildings. The selected five glass buildings and case building have been detailed analyzed with their architectural drawings, photographs and details. A gridshell structure can be compared with a shell structure; it consists of discrete members connecting nodal points. As these nodal points lie on the surface of an imaginary shell, their shapes function almost identically. Difference between shell and gridshell structures can be found in the fact that, due to their free-form and thus, due to the presence of bending forces, gridshells are required to resist loading through their cross-section. This research is divided into parts. A general study about the glass building and cable-glass and grid shell system will be done in the first chapters. Structural analyses and detailed analyses with schematic drawings with the plans, sections of the selected buildings will be explained in the second part. The third part it consists of the advantages and disadvantages of the use of the SGSPCT and Grid Shell in architecture. The study consists of four chapters including the introduction chapter. The general information of the SGSPCT and glazing system has been mentioned in the first chapter. Structural features, typologies, transparency principle and analytical information on systems have been explained of the selected buildings in the second chapter. The detailed analyses of case building have been done according to their schematic drawings with the plans, sections in the third chapter. After third chapter SGSPCT discussed on to the case building and selected buildings. SGSPCT systems have been compared with their advantages and disadvantages to the other systems. Advantages of cable-truss systems and SGSPCT have been concluded that the use of glass substrates in the last chapter.

Keywords: cable truss, glass, grid shell, transparency

Procedia PDF Downloads 411
537 Using Hyperspectral Sensor and Machine Learning to Predict Water Potentials of Wild Blueberries during Drought Treatment

Authors: Yongjiang Zhang, Kallol Barai, Umesh R. Hodeghatta, Trang Tran, Vikas Dhiman

Abstract:

Detecting water stress on crops early and accurately is crucial to minimize its impact. This study aims to measure water stress in wild blueberry crops non-destructively by analyzing proximal hyperspectral data. The data collection took place in the summer growing season of 2022. A drought experiment was conducted on wild blueberries in the randomized block design in the greenhouse, incorporating various genotypes and irrigation treatments. Hyperspectral data ( spectral range: 400-1000 nm) using a handheld spectroradiometer and leaf water potential data using a pressure chamber were collected from wild blueberry plants. Machine learning techniques, including multiple regression analysis and random forest models, were employed to predict leaf water potential (MPa). We explored the optimal wavelength bands for simple differences (RY1-R Y2), simple ratios (RY1/RY2), and normalized differences (|RY1-R Y2|/ (RY1-R Y2)). NDWI ((R857 - R1241)/(R857 + R1241)), SD (R2188 – R2245), and SR (R1752 / R1756) emerged as top predictors for predicting leaf water potential, significantly contributing to the highest model performance. The base learner models achieved an R-squared value of approximately 0.81, indicating their capacity to explain 81% of the variance. Research is underway to develop a neural vegetation index (NVI) that automates the process of index development by searching for specific wavelengths in the space ratio of linear functions of reflectance. The NVI framework could work across species and predict different physiological parameters.

Keywords: hyperspectral reflectance, water potential, spectral indices, machine learning, wild blueberries, optimal bands

Procedia PDF Downloads 67
536 Statistical Time-Series and Neural Architecture of Malaria Patients Records in Lagos, Nigeria

Authors: Akinbo Razak Yinka, Adesanya Kehinde Kazeem, Oladokun Oluwagbenga Peter

Abstract:

Time series data are sequences of observations collected over a period of time. Such data can be used to predict health outcomes, such as disease progression, mortality, hospitalization, etc. The Statistical approach is based on mathematical models that capture the patterns and trends of the data, such as autocorrelation, seasonality, and noise, while Neural methods are based on artificial neural networks, which are computational models that mimic the structure and function of biological neurons. This paper compared both parametric and non-parametric time series models of patients treated for malaria in Maternal and Child Health Centres in Lagos State, Nigeria. The forecast methods considered linear regression, Integrated Moving Average, ARIMA and SARIMA Modeling for the parametric approach, while Multilayer Perceptron (MLP) and Long Short-Term Memory (LSTM) Network were used for the non-parametric model. The performance of each method is evaluated using the Mean Absolute Error (MAE), R-squared (R2) and Root Mean Square Error (RMSE) as criteria to determine the accuracy of each model. The study revealed that the best performance in terms of error was found in MLP, followed by the LSTM and ARIMA models. In addition, the Bootstrap Aggregating technique was used to make robust forecasts when there are uncertainties in the data.

Keywords: ARIMA, bootstrap aggregation, MLP, LSTM, SARIMA, time-series analysis

Procedia PDF Downloads 75
535 Pregnancy - The Unique Immunological Paradigm

Authors: Husham Bayazed

Abstract:

Purpose of presentation: Pregnancy represents the most important period for the conservation of the species. The immune system is one of the most important systems protecting the mother against the environment and preventing damage to the fetus. This presentation aims to review and discuss the role of the immune system during pregnancy, the evolutionary inflammatory process through pregnancy, infectious and environmental exposure influences on the mother and the fetus, and the impacts of sexual dimorphism of the placenta on offspring susceptibility to different disorders. Recent Findings: In 1960, Peter Medawar (Nobel Prize Winner) proposed that the fetus, a semi-allograft, is similar to a tissue graft that escapes rejection through a mechanism involving systemic immune suppression (Graft –Host response). However, recent researchers and studies have documented that implantation means inflammation, and the inflammatory process is considered a breach of tolerance in pregnancy with immune induction, which is necessary for the protection of the mother and the fetus against infections and environmental triggers. This inflammatory process should be maintained during different pregnancy phases till parturition, and any block at any phase will be associated with pregnancy complications, including pregnancy failure or loss, miscarriage, and preterm birth subsequently. Maternal immune activation following any trigger can have a positive effect on the fetus. The old concept of the placenta being asexual is inaccurate, and being with sexual dimorphism with clear differences in susceptibility to different factors that stimulate maternal immunity. Summary: The presence of different immune cells ((i.e., T cells, B cells, NK cells, etc.) at the implantation site is considered proof of a strong maternal immune response to the fetus. Therefore, human pregnancy is considered a unique immunological paradigm requiring maternal immune modulation rather than suppression. So Medawar's postulation of maternal systemic immunosuppression is wrong. Maternal immune system activation triggered by infections, stress, diet, and pollution can have a positive effect on the fetus, with the development of fetal-trained immunity necessary for survival. The sexual dimorphism of the placenta seems to have an impact on the differences in sex susceptible to the environment maternal risk stimuli. This link to why the incidence of autism is increasing more among boys than girls.

Keywords: pregnancy, maternal immunity, implantation and inflammation, placenta sexual dimorphism

Procedia PDF Downloads 93
534 Analytical Model of Multiphase Machines Under Electrical Faults: Application on Dual Stator Asynchronous Machine

Authors: Nacera Yassa, Abdelmalek Saidoune, Ghania Ouadfel, Hamza Houassine

Abstract:

The rapid advancement in electrical technologies has underscored the increasing importance of multiphase machines across various industrial sectors. These machines offer significant advantages in terms of efficiency, compactness, and reliability compared to their single-phase counterparts. However, early detection and diagnosis of electrical faults remain critical challenges to ensure the durability and safety of these complex systems. This paper presents an advanced analytical model for multiphase machines, with a particular focus on dual stator asynchronous machines. The primary objective is to develop a robust diagnostic tool capable of effectively detecting and locating electrical faults in these machines, including short circuits, winding faults, and voltage imbalances. The proposed methodology relies on an analytical approach combining electrical machine theory, modeling of magnetic and electrical circuits, and advanced signal analysis techniques. By employing detailed analytical equations, the developed model accurately simulates the behavior of multiphase machines in the presence of electrical faults. The effectiveness of the proposed model is demonstrated through a series of case studies and numerical simulations. In particular, special attention is given to analyzing the dynamic behavior of machines under different types of faults, as well as optimizing diagnostic and recovery strategies. The obtained results pave the way for new advancements in the field of multiphase machine diagnostics, with potential applications in various sectors such as automotive, aerospace, and renewable energies. By providing precise and reliable tools for early fault detection, this research contributes to improving the reliability and durability of complex electrical systems while reducing maintenance and operation costs.

Keywords: faults, diagnosis, modelling, multiphase machine

Procedia PDF Downloads 63
533 Verification of the Supercavitation Phenomena: Investigation of the Cavity Parameters and Drag Coefficients for Different Types of Cavitator

Authors: Sezer Kefeli, Sertaç Arslan

Abstract:

Supercavitation is a pressure dependent process which gives opportunity to eliminate the wetted surface effects on the underwater vehicle due to the differences of viscosity and velocity effects between liquid (freestream) and gas phase. Cavitation process occurs depending on rapid pressure drop or temperature rising in liquid phase. In this paper, pressure based cavitation is investigated due to the fact that is encountered in the underwater world, generally. Basically, this vapor-filled pressure based cavities are unstable and harmful for any underwater vehicle because these cavities (bubbles or voids) lead to intense shock waves while collapsing. On the other hand, supercavitation is a desired and stabilized phenomena than general pressure based cavitation. Supercavitation phenomena offers the idea of minimizing form drag, and thus supercavitating vehicles are revived. When proper circumstances are set up, which are either increasing the operating speed of the underwater vehicle or decreasing the pressure difference between free stream and artificial pressure, the continuity of the supercavitation is obtainable. There are 2 types of supercavitation to obtain stable and continuous supercavitation, and these are called as natural and artificial supercavitation. In order to generate natural supercavitation, various mechanical structures are discovered, which are called as cavitators. In literature, a lot of cavitator types are studied either experimentally or numerically on a CFD platforms with intent to observe natural supercavitation since the 1900s. In this paper, firstly, experimental results are obtained, and trend lines are generated based on supercavitation parameters in terms of cavitation number (), form drag coefficientC_D, dimensionless cavity diameter (d_m/d_c), and length (L_c/d_c). After that, natural cavitation verification studies are carried out for disk and cone shape cavitators. In addition, supercavitation parameters are numerically analyzed at different operating conditions, and CFD results are fitted into trend lines of experimental results. The aims of this paper are to generate one generally accepted drag coefficient equation for disk and cone cavitators at different cavitator half angle and investigation of the supercavitation parameters with respect to cavitation number. Moreover, 165 CFD analysis are performed at different cavitation numbers on FLUENT version 21R2. Five different cavitator types are modeled on SCDM with respect tocavitator’s half angles. After that, CFD database is generated depending on numerical results, and new trend lines are generated based on supercavitation parameters. These trend lines are compared with experimental results. Finally, the generally accepted drag coefficient equation and equations of supercavitation parameters are generated.

Keywords: cavity envelope, CFD, high speed underwater vehicles, supercavitation, supercavitating flows, supercavitation parameters, drag reduction, viscous force elimination, natural cavitation verification

Procedia PDF Downloads 131
532 Therapeutic Role of T Subpopulations Cells (CD4, CD8 and Treg (CD25 and FOXP3+ Cells) of UC MSC Isolated from Three Different Methods in Various Disease

Authors: Kumari Rekha, Mathur K Dhananjay, Maheshwari Deepanshu, Nautiyal Nidhi, Shubham Smriti, Laal Deepika, Sinha Swati, Kumar Anupam, Biswas Subhrajit, Shiv Kumar Sarin

Abstract:

Background: Mesenchymal stem cells are multipotent stem cells derived from mesoderm and are used for therapeutic purposes because of their self-renewal, homing capacity, Immunomodulatory capability, low immunogenicity and mitochondrial transfer signaling. MSCs have the ability to regulate the mechanism of both innate as well as adaptive immune responses through the modulation of cellular response and the secretion of inflammatory mediators. Different sources of MSC are UC MSC, BM MSC, Dental Pulp, and Adipose MSC. The most frequent source used is umbilical cord tissue due to its being easily available and free of limitations of collection procedures from respective hospitals. The immunosuppressive role of MSCs is particularly interesting for clinical use since it confers resistance to rejection by the host immune response. Methodology: In this study, T helper cells (TH4), Cytotoxic T cells (CD-8), immunoregulatory cells (CD25 +FOXP3+) are compared from isolated MSC from three different methods, UC Dissociation Kit (Miltenyi), Explant Culture and Collagenase Type-IV. To check the immunomodulatory property, these MSCs were seeded with PBMC(Coculture) in CD3 coated 24 well plates. Cd28 antibody was added in coculture for six days. The coculture was analyzed in FACS Verse flow cytometry. Results: From flow cytometry analysis of coculture, it found that All over T helper cells (CD4+) number p<0.0264 increases in (All Enzymes) MSC rather than explant MSC(p>0.0895) as compared to Collagenase(p>0.7889) in a coculture of Activated T cell and Mesenchymal Stem Cell. Similar T reg cells (CD25+, FOXP3+) expression p<0.0234increases in All Enzymes), decreases in Explant and Collagenase. Experiments have shown that MSCs can also directly prevent the cytotoxic activity of CD8 lymphocytes mainly by blocking their proliferation rather than by inhibiting the cytotoxic effect. And promoting the t-reg cells, which helps in the mediation of immune response in various diseases. Conclusion: MSC suppress Cytotoxic CD8 T cell and Enhance immunoregulatory T reg (CD4+, CD25+, FOXP3+) Cell expression. Thus, MSC maintains a proper balance(ratio) between CD4 T cells and Cytotoxic CD8 T cells.

Keywords: MSC, disease, T cell, T regulatory

Procedia PDF Downloads 114
531 Terahertz Glucose Sensors Based on Photonic Crystal Pillar Array

Authors: S. S. Sree Sanker, K. N. Madhusoodanan

Abstract:

Optical biosensors are dominant alternative for traditional analytical methods, because of their small size, simple design and high sensitivity. Photonic sensing method is one of the recent advancing technology for biosensors. It measures the change in refractive index which is induced by the difference in molecular interactions due to the change in concentration of the analyte. Glucose is an aldosic monosaccharide, which is a metabolic source in many of the organisms. The terahertz waves occupies the space between infrared and microwaves in the electromagnetic spectrum. Terahertz waves are expected to be applied to various types of sensors for detecting harmful substances in blood, cancer cells in skin and micro bacteria in vegetables. We have designed glucose sensors using silicon based 1D and 2D photonic crystal pillar arrays in terahertz frequency range. 1D photonic crystal has rectangular pillars with height 100 µm, length 1600 µm and width 50 µm. The array period of the crystal is 500 µm. 2D photonic crystal has 5×5 cylindrical pillar array with an array period of 75 µm. Height and diameter of the pillar array are 160 µm and 100 µm respectively. Two samples considered in the work are blood and glucose solution, which are labelled as sample 1 and sample 2 respectively. The proposed sensor detects the concentration of glucose in the samples from 0 to 100 mg/dL. For this, the crystal was irradiated with 0.3 to 3 THz waves. By analyzing the obtained S parameter, the refractive index of the crystal corresponding to the particular concentration of glucose was measured using the parameter retrieval method. Refractive indices of the two crystals decreased gradually with the increase in concentration of glucose in the sample. For 1D photonic crystals, a gradual decrease in refractive index was observed at 1 THz. 2D photonic crystal showed this behavior at 2 THz. The proposed sensor was simulated using CST Microwave studio. This will enable us to develop a model which can be used to characterize a glucose sensor. The present study is expected to contribute to blood glucose monitoring.

Keywords: CST microwave studio, glucose sensor, photonic crystal, terahertz waves

Procedia PDF Downloads 281
530 Standard Protocol Selection for Acquisition of Breast Thermogram in Perspective of Early Breast Cancer Detection

Authors: Mrinal Kanti Bhowmik, Usha Rani Gogoi Jr., Anjan Kumar Ghosh, Debotosh Bhattacharjee

Abstract:

In the last few decades, breast thermography has achieved an average sensitivity and specificity of 90% for breast tumor detection. Breast thermography is a non-invasive, cost-effective, painless and radiation-free breast imaging modality which makes a significant contribution to the evaluation and diagnosis of patients, suspected of having breast cancer. An abnormal breast thermogram may indicate significant biological risk for the existence or the development of breast tumors. Breast thermography can detect a breast tumor, when the tumor is in its early stage or when the tumor is in a dense breast. The infrared breast thermography is very sensitive to environmental changes for which acquisition of breast thermography should be performed under strictly controlled conditions by undergoing some standard protocols. Several factors like air, temperature, humidity, etc. are there to be considered for characterizing thermal images as an imperative tool for detecting breast cancer. A detailed study of various breast thermogram acquisition protocols adopted by different researchers in their research work is provided here in this paper. After going through a rigorous study of different breast thermogram acquisition protocols, a new standard breast thermography acquisition setup is proposed here in this paper for proper and accurate capturing of the breast thermograms. The proposed breast thermogram acquisition setup is being built in the Radiology Department, Agartala Government Medical College (AGMC), Govt. of Tripura, Tripura, India. The breast thermograms are captured using FLIR T650sc thermal camera with the thermal sensitivity of 20 mK at 30 degree C. The paper is an attempt to highlight the importance of different critical parameters of breast thermography like different thermography views, patient preparation protocols, acquisition room requirements, acquisition system requirements, etc. This paper makes an important contribution by providing a detailed survey and a new efficient approach on breast thermogram capturing.

Keywords: acquisition protocol, breast cancer, breast thermography, infrared thermography

Procedia PDF Downloads 397
529 Thermal Vacuum Chamber Test Result for CubeSat Transmitter

Authors: Fitri D. Jaswar, Tharek A. Rahman, Yasser A. Ahmad

Abstract:

CubeSat in low earth orbit (LEO) mainly uses ultra high frequency (UHF) transmitter with fixed radio frequency (RF) output power to download the telemetry and the payload data. The transmitter consumes large amount of electrical energy during the transmission considering the limited satellite size of a CubeSat. A transmitter with power control ability is designed to achieve optimize the signal to noise ratio (SNR) and efficient power consumption. In this paper, the thermal vacuum chamber (TVAC) test is performed to validate the performance of the UHF band transmitter with power control capability. The TVAC is used to simulate the satellite condition in the outer space environment. The TVAC test was conducted at the Laboratory of Spacecraft Environment Interaction Engineering, Kyushu Institute of Technology, Japan. The TVAC test used 4 thermal cycles starting from +60°C to -20°C for the temperature setting. The pressure condition inside chamber was less than 10-5Pa. During the test, the UHF transmitter is integrated in a CubeSat configuration with other CubeSat subsystem such as on board computer (OBC), power module, and satellite structure. The system is validated and verified through its performance in terms of its frequency stability and the RF output power. The UHF band transmitter output power is tested from 0.5W to 2W according the satellite mode of operations and the satellite power limitations. The frequency stability is measured and the performance obtained is less than 2 ppm in the tested operating temperature range. The test demonstrates the RF output power is adjustable in a thermal vacuum condition.

Keywords: communication system, CubeSat, SNR, UHF transmitter

Procedia PDF Downloads 264
528 An Investigation of Challenges in Implementing Sustainable Supply Chain Management for Construction Industry in Thailand by Interpretive Structural Model Approach

Authors: Shaolan Zou, Kullapa Soratana

Abstract:

Construction industry faces tremendous challenges in sustainability issue in recent years. Building materials, generally, are non-recyclable with short service life time, leading to economic loss. Building sites also cause social issues, e.g. noise, hazardous substances, and particulate matters. Sustainable supply chain management (SSCM) has been recognized as an appropriate method to balance three pillars of sustainability: environment, economy, and society. However, most of construction companies cannot successfully adopt SSCM due to numerous challenges. In this study, a list of challenges in implementing SSCM was collected from peer-reviewed literature on sustainable implementation. A building materials company in Thailand, which has successfully adopted SSCM for almost two decades and established the sustainable development committee since 1995, was used as a case study. Management-level representatives in sustainability department of the company were interviewed, mainly, to examine which challenges on the list complies with the company’s condition when adopting SSCM. The interview result was analyzed by interpretive structural model (ISM) with sustainability experts’ opinions to identify top 5 influential challenges. The results could assist a building construction company in assigning appropriate strategies to overcome most influential barriers, as well as in using as a reference or guidance for other construction companies adopting SSCM.

Keywords: sustainable supply chain management, challenges, construction industry, interpretive structural model

Procedia PDF Downloads 181
527 Detection of Atrial Fibrillation Using Wearables via Attentional Two-Stream Heterogeneous Networks

Authors: Huawei Bai, Jianguo Yao, Fellow, IEEE

Abstract:

Atrial fibrillation (AF) is the most common form of heart arrhythmia and is closely associated with mortality and morbidity in heart failure, stroke, and coronary artery disease. The development of single spot optical sensors enables widespread photoplethysmography (PPG) screening, especially for AF, since it represents a more convenient and noninvasive approach. To our knowledge, most existing studies based on public and unbalanced datasets can barely handle the multiple noises sources in the real world and, also, lack interpretability. In this paper, we construct a large- scale PPG dataset using measurements collected from PPG wrist- watch devices worn by volunteers and propose an attention-based two-stream heterogeneous neural network (TSHNN). The first stream is a hybrid neural network consisting of a three-layer one-dimensional convolutional neural network (1D-CNN) and two-layer attention- based bidirectional long short-term memory (Bi-LSTM) network to learn representations from temporally sampled signals. The second stream extracts latent representations from the PPG time-frequency spectrogram using a five-layer CNN. The outputs from both streams are fed into a fusion layer for the outcome. Visualization of the attention weights learned demonstrates the effectiveness of the attention mechanism against noise. The experimental results show that the TSHNN outperforms all the competitive baseline approaches and with 98.09% accuracy, achieves state-of-the-art performance.

Keywords: PPG wearables, atrial fibrillation, feature fusion, attention mechanism, hyber network

Procedia PDF Downloads 121
526 Highly Accurate Target Motion Compensation Using Entropy Function Minimization

Authors: Amin Aghatabar Roodbary, Mohammad Hassan Bastani

Abstract:

One of the defects of stepped frequency radar systems is their sensitivity to target motion. In such systems, target motion causes range cell shift, false peaks, Signal to Noise Ratio (SNR) reduction and range profile spreading because of power spectrum interference of each range cell in adjacent range cells which induces distortion in High Resolution Range Profile (HRRP) and disrupt target recognition process. Thus Target Motion Parameters (TMPs) effects compensation should be employed. In this paper, such a method for estimating TMPs (velocity and acceleration) and consequently eliminating or suppressing the unwanted effects on HRRP based on entropy minimization has been proposed. This method is carried out in two major steps: in the first step, a discrete search method has been utilized over the whole acceleration-velocity lattice network, in a specific interval seeking to find a less-accurate minimum point of the entropy function. Then in the second step, a 1-D search over velocity is done in locus of the minimum for several constant acceleration lines, in order to enhance the accuracy of the minimum point found in the first step. The provided simulation results demonstrate the effectiveness of the proposed method.

Keywords: automatic target recognition (ATR), high resolution range profile (HRRP), motion compensation, stepped frequency waveform technique (SFW), target motion parameters (TMPs)

Procedia PDF Downloads 152
525 Optimized Brain Computer Interface System for Unspoken Speech Recognition: Role of Wernicke Area

Authors: Nassib Abdallah, Pierre Chauvet, Abd El Salam Hajjar, Bassam Daya

Abstract:

In this paper, we propose an optimized brain computer interface (BCI) system for unspoken speech recognition, based on the fact that the constructions of unspoken words rely strongly on the Wernicke area, situated in the temporal lobe. Our BCI system has four modules: (i) the EEG Acquisition module based on a non-invasive headset with 14 electrodes; (ii) the Preprocessing module to remove noise and artifacts, using the Common Average Reference method; (iii) the Features Extraction module, using Wavelet Packet Transform (WPT); (iv) the Classification module based on a one-hidden layer artificial neural network. The present study consists of comparing the recognition accuracy of 5 Arabic words, when using all the headset electrodes or only the 4 electrodes situated near the Wernicke area, as well as the selection effect of the subbands produced by the WPT module. After applying the articial neural network on the produced database, we obtain, on the test dataset, an accuracy of 83.4% with all the electrodes and all the subbands of 8 levels of the WPT decomposition. However, by using only the 4 electrodes near Wernicke Area and the 6 middle subbands of the WPT, we obtain a high reduction of the dataset size, equal to approximately 19% of the total dataset, with 67.5% of accuracy rate. This reduction appears particularly important to improve the design of a low cost and simple to use BCI, trained for several words.

Keywords: brain-computer interface, speech recognition, artificial neural network, electroencephalography, EEG, wernicke area

Procedia PDF Downloads 271
524 Single Atom Manipulation with 4 Scanning Tunneling Microscope Technique

Authors: Jianshu Yang, Delphine Sordes, Marek Kolmer, Christian Joachim

Abstract:

Nanoelectronics, for example the calculating circuits integrating at molecule scale logic gates, atomic scale circuits, has been constructed and investigated recently. A major challenge is their functional properties characterization because of the connecting problem from atomic scale to micrometer scale. New experimental instruments and new processes have been proposed therefore. To satisfy a precisely measurement at atomic scale and then connecting micrometer scale electrical integration controller, the technique improvement is kept on going. Our new machine, a low temperature high vacuum four scanning tunneling microscope, as a customer required instrument constructed by Omicron GmbH, is expected to be scaling down to atomic scale characterization. Here, we will present our first testified results about the performance of this new instrument. The sample we selected is Au(111) surface. The measurements have been taken at 4.2 K. The atomic resolution surface structure was observed with each of four scanners with noise level better than 3 pm. With a tip-sample distance calibration by I-z spectra, the sample conductance has been derived from its atomic locally I-V spectra. Furthermore, the surface conductance measurement has been performed using two methods, (1) by landing two STM tips on the surface with sample floating; and (2) by sample floating and one of the landed tips turned to be grounding. In addition, single atom manipulation has been achieved with a modified tip design, which is comparable to a conventional LT-STM.

Keywords: low temperature ultra-high vacuum four scanning tunneling microscope, nanoelectronics, point contact, single atom manipulation, tunneling resistance

Procedia PDF Downloads 280
523 Recreating Old Gardens, a Dynamic and Sustainable Design Pattern for Urban Green Spaces, Case Study: Persian Garden

Authors: Mina Sarabi, Dariush Sattarzadeh, Mitra Asadollahi Oula

Abstract:

In the old days, gardens reflect the identity and culture of each country. Persian garden in urban planning and architecture has a high position and it is a kind of paradise in Iranian opinion. But nowadays, the gardens were replaced with parks and urban open spaces. On the other hand, due to the industrial development of cities and increasing air pollution in urban environments, living in this spaces make problem for people. And improving ecological conditions will be felt more than ever. The purposes of this study are identification and reproduction of Persian garden pattern and adaptation of it with sustainability features in green spaces in contemporary cities and developing meaningful green spaces instead of designing aimless spaces in urban environment. The research method in this article is analytical and descriptive. Studying and collecting information about Iranian garden pattern is referring to library documents, articles and analysis case studies. The result reveals that Persian garden was the main factor the bond between man and nature. But in the last century, this relationship is in trouble. It has a significant impact in reducing the adverse effects of urban air pollution, noise and etc as well. Nowadays, recreated pattern of Iranian gardens in urban green spaces not only keep Iranian identity for future generations but also, using the principles of sustainability can play an important role in sustainable development and quality space of a city.

Keywords: green open spaces, nature, Persian garden, urban sustainability

Procedia PDF Downloads 249