Search results for: climatic classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2864

Search results for: climatic classification

824 Exploring Data Leakage in EEG Based Brain-Computer Interfaces: Overfitting Challenges

Authors: Khalida Douibi, Rodrigo Balp, Solène Le Bars

Abstract:

In the medical field, applications related to human experiments are frequently linked to reduced samples size, which makes the training of machine learning models quite sensitive and therefore not very robust nor generalizable. This is notably the case in Brain-Computer Interface (BCI) studies, where the sample size rarely exceeds 20 subjects or a few number of trials. To address this problem, several resampling approaches are often used during the data preparation phase, which is an overly critical step in a data science analysis process. One of the naive approaches that is usually applied by data scientists consists in the transformation of the entire database before the resampling phase. However, this can cause model’ s performance to be incorrectly estimated when making predictions on unseen data. In this paper, we explored the effect of data leakage observed during our BCI experiments for device control through the real-time classification of SSVEPs (Steady State Visually Evoked Potentials). We also studied potential ways to ensure optimal validation of the classifiers during the calibration phase to avoid overfitting. The results show that the scaling step is crucial for some algorithms, and it should be applied after the resampling phase to avoid data leackage and improve results.

Keywords: data leackage, data science, machine learning, SSVEP, BCI, overfitting

Procedia PDF Downloads 153
823 Estimating Knowledge Flow Patterns of Business Method Patents with a Hidden Markov Model

Authors: Yoonjung An, Yongtae Park

Abstract:

Knowledge flows are a critical source of faster technological progress and stouter economic growth. Knowledge flows have been accelerated dramatically with the establishment of a patent system in which each patent is required by law to disclose sufficient technical information for the invention to be recreated. Patent analysis, thus, has been widely used to help investigate technological knowledge flows. However, the existing research is limited in terms of both subject and approach. Particularly, in most of the previous studies, business method (BM) patents were not covered although they are important drivers of knowledge flows as other patents. In addition, these studies usually focus on the static analysis of knowledge flows. Some use approaches that incorporate the time dimension, yet they still fail to trace a true dynamic process of knowledge flows. Therefore, we investigate dynamic patterns of knowledge flows driven by BM patents using a Hidden Markov Model (HMM). An HMM is a popular statistical tool for modeling a wide range of time series data, with no general theoretical limit in regard to statistical pattern classification. Accordingly, it enables characterizing knowledge patterns that may differ by patent, sector, country and so on. We run the model in sets of backward citations and forward citations to compare the patterns of knowledge utilization and knowledge dissemination.

Keywords: business method patents, dynamic pattern, Hidden-Markov Model, knowledge flow

Procedia PDF Downloads 328
822 The Impact of Childhood Cancer on the Quality of Life of Survivor: A Qualitative Analysis of Functionality and Participation

Authors: Catarina Grande, Barbara Mota

Abstract:

The main goal of the present study was to understand the impact of childhood cancer on the quality of life of survivors and the extent to which oncologic disease affects the functionality and participation of survivors at the present time, compared to the time of diagnosis. Six survivors of pediatric cancer participated in the study. Participants were interviewed using a semi-structured interview, adapted from two instruments present in the literature - QALY and QLACS - and piloted through a previous study. This study is based on a qualitative approach using content analysis, allowing the identification of categories and subcategories. Subsequently, the correspondence between the units of meaning and the codes in the International Classification of Functioning, Disability, and Health for Children and Young, which contributed to a more detailed analysis of the impact on the quality of life of survivors in relation to the domains under study. The results showed significant changes between the moment of diagnosis and the present moment, concretely at the microsystem of the survivor. Regarding functionality and participation, the results show that the functions of the body are the most affected domain, emphasizing the emotional component that currently has a greater impact on the quality of life of survivors. The present study allowed identifying a set of codes for the development of a CIF-CJ core set for pediatric cancer survivors. He also indicated the need for future studies to validate and deepen these issues.

Keywords: cancer, participation, quality of life, survivor

Procedia PDF Downloads 237
821 3D Scanning Documentation and X-Ray Radiography Examination for Ancient Egyptian Canopic Jar

Authors: Abdelrahman Mohamed Abdelrahman

Abstract:

Canopic jars are one of the vessels of funerary nature used by the ancient Egyptian in mummification process that were used to save the viscera of the mummified body after being extracted from the body and treated. Canopic jars are made of several types of materials like Limestone, Alabaster, and Pottery. The studied canopic jar dates back to Late period, located in the Grand Egyptian Museum (GEM), Giza, Egypt. This jar carved from limestone with carved hieroglyphic inscriptions, and it filled and closed by mortar from inside. Some aspects of damage appeared in the jar, such as dust, dirts, classification, wide crack, weakness of limestone. In this study, we used documentation and investigation modern techniques to document and examine the jar. 3D scanning and X-ray Radiography imaging used in applied study. X-ray imaging showed that the mortar was placed at a time when the jar contained probably viscera where the mortar appeared that not reach up to the base of the inner jar. Through the three-dimensional photography, the jar was documented, and we have 3D model of the jar, and now we have the ability through the computer to see any part of the jar in all its details. After that, conservation procedures have been applied with high accuracy to conserve the jar, including mechanical, wet, and chemical cleaning, filling wide crack in the body of the jar using mortar consisting of calcium carbonate powder mixing with primal E330 S, and consolidation, so the limestone became strong after using paraloid B72 2% concentrate as a consolidate material.

Keywords: vessel, limestone, canopic jar, mortar, 3D scanning, X-ray radiography

Procedia PDF Downloads 77
820 Normalizing Scientometric Indicators of Individual Publications Using Local Cluster Detection Methods on Citation Networks

Authors: Levente Varga, Dávid Deritei, Mária Ercsey-Ravasz, Răzvan Florian, Zsolt I. Lázár, István Papp, Ferenc Járai-Szabó

Abstract:

One of the major shortcomings of widely used scientometric indicators is that different disciplines cannot be compared with each other. The issue of cross-disciplinary normalization has been long discussed, but even the classification of publications into scientific domains poses problems. Structural properties of citation networks offer new possibilities, however, the large size and constant growth of these networks asks for precaution. Here we present a new tool that in order to perform cross-field normalization of scientometric indicators of individual publications relays on the structural properties of citation networks. Due to the large size of the networks, a systematic procedure for identifying scientific domains based on a local community detection algorithm is proposed. The algorithm is tested with different benchmark and real-world networks. Then, by the use of this algorithm, the mechanism of the scientometric indicator normalization process is shown for a few indicators like the citation number, P-index and a local version of the PageRank indicator. The fat-tail trend of the article indicator distribution enables us to successfully perform the indicator normalization process.

Keywords: citation networks, cross-field normalization, local cluster detection, scientometric indicators

Procedia PDF Downloads 203
819 The Use of Optical-Radar Remotely-Sensed Data for Characterizing Geomorphic, Structural and Hydrologic Features and Modeling Groundwater Prospective Zones in Arid Zones

Authors: Mohamed Abdelkareem

Abstract:

Remote sensing data contributed on predicting the prospective areas of water resources. Integration of microwave and multispectral data along with climatic, hydrologic, and geological data has been used here. In this article, Sentinel-2, Landsat-8 Operational Land Imager (OLI), Shuttle Radar Topography Mission (SRTM), Tropical Rainfall Measuring Mission (TRMM), and Advanced Land Observing Satellite (ALOS) Phased Array Type L‐band Synthetic Aperture Radar (PALSAR) data were utilized to identify the geological, hydrologic and structural features of Wadi Asyuti which represents a defunct tributary of the Nile basin, in the eastern Sahara. The image transformation of Sentinel-2 and Landsat-8 data allowed characterizing the different varieties of rock units. Integration of microwave remotely-sensed data and GIS techniques provided information on physical characteristics of catchments and rainfall zones that are of a crucial role for mapping groundwater prospective zones. A fused Landsat-8 OLI and ALOS/PALSAR data improved the structural elements that difficult to reveal using optical data. Lineament extraction and interpretation indicated that the area is clearly shaped by the NE-SW graben that is cut by NW-SE trend. Such structures allowed the accumulation of thick sediments in the downstream area. Processing of recent OLI data acquired on March 15, 2014, verified the flood potential maps and offered the opportunity to extract the extent of the flooding zone of the recent flash flood event (March 9, 2014), as well as revealed infiltration characteristics. Several layers including geology, slope, topography, drainage density, lineament density, soil characteristics, rainfall, and morphometric characteristics were combined after assigning a weight for each using a GIS-based knowledge-driven approach. The results revealed that the predicted groundwater potential zones (GPZs) can be arranged into six distinctive groups, depending on their probability for groundwater, namely very low, low, moderate, high very, high, and excellent. Field and well data validated the delineated zones.

Keywords: GIS, remote sensing, groundwater, Egypt

Procedia PDF Downloads 98
818 An Exploratory Study on the Impact of Climate Change on Design Rainfalls in the State of Qatar

Authors: Abdullah Al Mamoon, Niels E. Joergensen, Ataur Rahman, Hassan Qasem

Abstract:

Intergovernmental Panel for Climate Change (IPCC) in its fourth Assessment Report AR4 predicts a more extreme climate towards the end of the century, which is likely to impact the design of engineering infrastructure projects with a long design life. A recent study in 2013 developed new design rainfall for Qatar, which provides an improved design basis of drainage infrastructure for the State of Qatar under the current climate. The current design standards in Qatar do not consider increased rainfall intensity caused by climate change. The focus of this paper is to update recently developed design rainfalls in Qatar under the changing climatic conditions based on IPCC's AR4 allowing a later revision to the proposed design standards, relevant for projects with a longer design life. The future climate has been investigated based on the climate models released by IPCC’s AR4 and A2 story line of emission scenarios (SRES) using a stationary approach. Annual maximum series (AMS) of predicted 24 hours rainfall data for both wet (NCAR-CCSM) scenario and dry (CSIRO-MK3.5) scenario for the Qatari grid points in the climate models have been extracted for three periods, current climate 2010-2039, medium term climate (2040-2069) and end of century climate (2070-2099). A homogeneous region of the Qatari grid points has been formed and L-Moments based regional frequency approach is adopted to derive design rainfalls. The results indicate no significant changes in the design rainfall on the short term 2040-2069, but significant changes are expected towards the end of the century (2070-2099). New design rainfalls have been developed taking into account climate change for 2070-2099 scenario and by averaging results from the two scenarios. IPCC’s AR4 predicts that the rainfall intensity for a 5-year return period rain with duration of 1 to 2 hours will increase by 11% in 2070-2099 compared to current climate. Similarly, the rainfall intensity for more extreme rainfall, with a return period of 100 years and duration of 1 to 2 hours will increase by 71% in 2070-2099 compared to current climate. Infrastructure with a design life exceeding 60 years should add safety factors taking the predicted effects from climate change into due consideration.

Keywords: climate change, design rainfalls, IDF, Qatar

Procedia PDF Downloads 393
817 Non-Targeted Adversarial Object Detection Attack: Fast Gradient Sign Method

Authors: Bandar Alahmadi, Manohar Mareboyana, Lethia Jackson

Abstract:

Today, there are many applications that are using computer vision models, such as face recognition, image classification, and object detection. The accuracy of these models is very important for the performance of these applications. One challenge that facing the computer vision models is the adversarial examples attack. In computer vision, the adversarial example is an image that is intentionally designed to cause the machine learning model to misclassify it. One of very well-known method that is used to attack the Convolution Neural Network (CNN) is Fast Gradient Sign Method (FGSM). The goal of this method is to find the perturbation that can fool the CNN using the gradient of the cost function of CNN. In this paper, we introduce a novel model that can attack Regional-Convolution Neural Network (R-CNN) that use FGSM. We first extract the regions that are detected by R-CNN, and then we resize these regions into the size of regular images. Then, we find the best perturbation of the regions that can fool CNN using FGSM. Next, we add the resulted perturbation to the attacked region to get a new region image that looks similar to the original image to human eyes. Finally, we placed the regions back to the original image and test the R-CNN with the attacked images. Our model could drop the accuracy of the R-CNN when we tested with Pascal VOC 2012 dataset.

Keywords: adversarial examples, attack, computer vision, image processing

Procedia PDF Downloads 193
816 A Strategic Water and Energy Project as a Climate Change Adaptation Tool for Israel, Jordan and the Middle East

Authors: Doron Markel

Abstract:

Water availability in most of the Middle East (especially in Jordan) is among the lowest in the world and has been even further exacerbated by the regional climatic change and the reduced rainfall. The Araba Valley in Israel is disconnected from the national water system. On the other hand, the Araba Valley, both in Israel and Jordan, is an excellent area for solar energy gaining. The Dead Sea (Israel and Jordan) is a hypersaline lake which its level declines at a rate of more than 1 m/y. The decline stems from the increasing use of all available freshwater resources that discharge into the Dead Sea and decreasing natural precipitation due to climate change in the Middle East. As an adaptation tool for this humanmade and Climate Change results, a comprehensive water-energy and environmental project were suggested: The Red Sea-Dead Sea Conveyance. It is planned to desalinate the Red Sea water, supply the desalinated water to both Israel and Jordan, and convey the desalination brine to the Dead Sea to stabilize its water level. Therefore, the World Bank had led a multi-discipline feasibility study between 2008 and 2013, that had mainly dealt with the mixing of seawater and Dead Sea Water. The possible consequences of such mixing were precipitation and possible suspension of secondary Gypsum, as well as blooming of Dunaliella red algae. Using a comprehensive hydrodynamic-geochemical model for the Dead Sea, it was predicted that while conveying up to 400 Million Cubic Meters per year of seawater or desalination brine to the Dead Sea, the latter would not be stratified as it was until 1979; hence Gypsum precipitation and algal blooms would be neglecting. Using another hydrodynamic-biological model for the Red Sea, it was predicted the Seawater pump from the Gulf of Eilat would not harm the ecological system of the gulf (including the sensitive coral reef), giving a pump depth of 120-160 m. Based on these studies, a pipeline conveyance was recommended to convey desalination brine to the Dead Sea with the use of a hydropower plant, utilizing the elevation difference of 400 m between the Red Sea and the Dead Sea. The complementary energy would come from solar panels coupled with innovative storage technology, needed to produce a continuous energy production for an appropriate function of the desalination plant. The paper will describe the proposed project as well as the feasibility study results. The possibility to utilize this water-energy-environmental project as a climate change adaptation strategy for both Israel and Jordan will also be discussed.

Keywords: Red Sea, Dead Sea, water supply, hydro-power, Gypsum, algae

Procedia PDF Downloads 113
815 Mobile and Hot Spot Measurement with Optical Particle Counting Based Dust Monitor EDM264

Authors: V. Ziegler, F. Schneider, M. Pesch

Abstract:

With the EDM264, GRIMM offers a solution for mobile short- and long-term measurements in outdoor areas and at production sites. For research as well as permanent areal observations on a near reference quality base. The model EDM264 features a powerful and robust measuring cell based on optical particle counting (OPC) principle with all the advantages that users of GRIMM's portable aerosol spectrometers are used to. The system is embedded in a compact weather-protection housing with all-weather sampling, heated inlet system, data logger, and meteorological sensor. With TSP, PM10, PM4, PM2.5, PM1, and PMcoarse, the EDM264 provides all fine dust fractions real-time, valid for outdoor applications and calculated with the proven GRIMM enviro-algorithm, as well as six additional dust mass fractions pm10, pm2.5, pm1, inhalable, thoracic and respirable for IAQ and workplace measurements. This highly versatile instrument performs real-time monitoring of particle number, particle size and provides information on particle surface distribution as well as dust mass distribution. GRIMM's EDM264 has 31 equidistant size channels, which are PSL traceable. A high-end data logger enables data acquisition and wireless communication via LTE, WLAN, or wired via Ethernet. Backup copies of the measurement data are stored in the device directly. The rinsing air function, which protects the laser and detector in the optical cell, further increases the reliability and long term stability of the EDM264 under different environmental and climatic conditions. The entire sample volume flow of 1.2 L/min is analyzed by 100% in the optical cell, which assures excellent counting efficiency at low and high concentrations and complies with the ISO 21501-1standard for OPCs. With all these features, the EDM264 is a world-leading dust monitor for precise monitoring of particulate matter and particle number concentration. This highly reliable instrument is an indispensable tool for many users who need to measure aerosol levels and air quality outdoors, on construction sites, or at production facilities.

Keywords: aerosol research, aerial observation, fence line monitoring, wild fire detection

Procedia PDF Downloads 151
814 The Coexistence of Dual Form of Malnutrition among Portuguese Institutionalized Elderly People

Authors: C. Caçador, M. J. Reis Lima, J. Oliveira, M. J. Veiga, M. Teixeira Veríssimo, F. Ramos, M. C. Castilho, E. Teixeira-Lemos

Abstract:

In the present study we evaluated the nutritional status of 214 institutionalized elderly residents of both genders, aged 65 years and older of 11 care homes located in the district of Viseu (center of Portugal). The evaluation was based on anthropometric measurements and the Mini Nutritional Assessment (MNA) score. The mean age of the subjects was 82.3 ± 6.1 years-old. Most of the elderly residents were female (72.0%). The majority had 4 years of formal education (51.9%) and was widowed (74.3%) or married (14.0%). Men presented a mean age of 81.2±8.5 years-old, weight 69.3±14.5 kg and BMI 25.33±6.5 kg/m2. In women, the mean age was 84.5±8.2 years-old, weight 61.2±14.7 kg and BMI 27.43±5.6 kg/m2. The evaluation of the nutritional status using the MNA score showed that 24.0% of the residents show a risk of undernutrition and 76.0% of them were well nourished. There was a high prevalence of obese (24.8%) and overweight residents (33.2%) according to the BMI. 7.5% were considered underweight. We also found that according to their waist circumference measurements 88.3% of the residents were at risk for cardiovascular disease (CVD) and 64.0% of them presented very high risk for CVD (WC≥88 cm for women and WC ≥102 cm for men). The present study revealed the coexistence of a dual form of malnutrition (undernourished and overweight) among the institutionalized Portuguese concomitantly with an excess of abdominal adiposity. The high prevalence of residents at high risk for CVD should not be overlooked. Given the vulnerability of the group of institutionalized elderly, our study highlights the importance of the classification of nutritional status based on both instruments: the BMI and the MNA.

Keywords: nutritional satus, MNA, BMI, elderly

Procedia PDF Downloads 324
813 Low Power CMOS Amplifier Design for Wearable Electrocardiogram Sensor

Authors: Ow Tze Weng, Suhaila Isaak, Yusmeeraz Yusof

Abstract:

The trend of health care screening devices in the world is increasingly towards the favor of portability and wearability, especially in the most common electrocardiogram (ECG) monitoring system. This is because these wearable screening devices are not restricting the patient’s freedom and daily activities. While the demand of low power and low cost biomedical system on chip (SoC) is increasing in exponential way, the front end ECG sensors are still suffering from flicker noise for low frequency cardiac signal acquisition, 50 Hz power line electromagnetic interference, and the large unstable input offsets due to the electrode-skin interface is not attached properly. In this paper, a high performance CMOS amplifier for ECG sensors that suitable for low power wearable cardiac screening is proposed. The amplifier adopts the highly stable folded cascode topology and later being implemented into RC feedback circuit for low frequency DC offset cancellation. By using 0.13 µm CMOS technology from Silterra, the simulation results show that this front end circuit can achieve a very low input referred noise of 1 pV/√Hz and high common mode rejection ratio (CMRR) of 174.05 dB. It also gives voltage gain of 75.45 dB with good power supply rejection ratio (PSSR) of 92.12 dB. The total power consumption is only 3 µW and thus suitable to be implemented with further signal processing and classification back end for low power biomedical SoC.

Keywords: CMOS, ECG, amplifier, low power

Procedia PDF Downloads 248
812 A Neural Network Classifier for Estimation of the Degree of Infestation by Late Blight on Tomato Leaves

Authors: Gizelle K. Vianna, Gabriel V. Cunha, Gustavo S. Oliveira

Abstract:

Foliage diseases in plants can cause a reduction in both quality and quantity of agricultural production. Intelligent detection of plant diseases is an essential research topic as it may help monitoring large fields of crops by automatically detecting the symptoms of foliage diseases. This work investigates ways to recognize the late blight disease from the analysis of tomato digital images, collected directly from the field. A pair of multilayer perceptron neural network analyzes the digital images, using data from both RGB and HSL color models, and classifies each image pixel. One neural network is responsible for the identification of healthy regions of the tomato leaf, while the other identifies the injured regions. The outputs of both networks are combined to generate the final classification of each pixel from the image and the pixel classes are used to repaint the original tomato images by using a color representation that highlights the injuries on the plant. The new images will have only green, red or black pixels, if they came from healthy or injured portions of the leaf, or from the background of the image, respectively. The system presented an accuracy of 97% in detection and estimation of the level of damage on the tomato leaves caused by late blight.

Keywords: artificial neural networks, digital image processing, pattern recognition, phytosanitary

Procedia PDF Downloads 327
811 Palyno-Morphological Characteristics of Gymnosperm Flora of Pakistan and Its Taxonomic Implications with Light Microscope and Scanning Electron Microscopy Methods

Authors: Raees Khan, Sheikh Z. Ul Abidin, Abdul S. Mumtaz, Jie Liu

Abstract:

The present study is intended to assess gymnosperms pollen flora of Pakistan using Light Microscope (LM) and Scanning Electron Microscopy (SEM) for its taxonomic significance in identification of gymnosperms. Pollens of 35 gymnosperm species (12 genera and five families) were collected from its various distributional sites of gymnosperms in Pakistan. LM and SEM were used to investigate different palyno-morphological characteristics. Five pollen types (i.e., Inaperturate, Monolete, Monoporate, Vesiculate-bisaccate, and Polyplicate) were observed. In equatorial view seven types of pollens were observed, in which ten species were sub-angular, nine species were triangular, six species were perprolate, three species were rhomboidal, three species were semi-angular, two species were rectangular and two species were prolate. While five types of pollen were observed in polar view, in which ten species were spheroidal, nine species were angular, eight were interlobate, six species were circular, and two species were elliptic. Eighteen species have rugulate and 17 species has faveolate ornamentation. Eighteen species have verrucate and 17 have gemmate type sculpturing. The data was analysed through cluster analysis. The study showed that these palyno-morphological features have significance value in classification and identification of gymnosperms. Based on these different palyno-morphological features, a taxonomic key was proposed for the accurate and fast identifications of gymnosperms from Pakistan.

Keywords: gymnosperms, palynology, Pakistan, taxonomy

Procedia PDF Downloads 221
810 Customer Preference in the Textile Market: Fabric-Based Analysis

Authors: Francisca Margarita Ocran

Abstract:

Underwear, and more particularly bras and panties, are defined as intimate clothing. Strictly speaking, they enhance the place of women in the public or private satchel. Therefore, women's lingerie is a complex garment with a high involvement profile, motivating consumers to buy it not only by its functional utility but also by the multisensory experience it provides them. Customer behavior models are generally based on customer data mining, and each model is designed to answer questions at a specific time. Predicting the customer experience is uncertain and difficult. Thus, knowledge of consumers' tastes in lingerie deserves to be treated as an experiential product, where the dimensions of the experience motivating consumers to buy a lingerie product and to remain faithful to it must be analyzed in detail by the manufacturers and retailers to engage and retain consumers, which is why this research aims to identify the variables that push consumers to choose their lingerie product, based on an in-depth analysis of the types of fabrics used to make lingerie. The data used in this study comes from online purchases. Machine learning approach with the use of Python programming language and Pycaret gives us a precision of 86.34%, 85.98%, and 84.55% for the three algorithms to use concerning the preference of a buyer in front of a range of lingerie. Gradient Boosting, random forest, and K Neighbors were used in this study; they are very promising and rich in the classification of preference in the textile industry.

Keywords: consumer behavior, data mining, lingerie, machine learning, preference

Procedia PDF Downloads 90
809 Detection and Quantification of Active Pharmaceutical Ingredients as Adulterants in Garcinia cambogia Slimming Preparations Using NIR Spectroscopy Combined with Chemometrics

Authors: Dina Ahmed Selim, Eman Shawky Anwar, Rasha Mohamed Abu El-Khair

Abstract:

A rapid, simple and efficient method with minimal sample treatment was developed for authentication of Garcinia cambogia fruit peel powder, along with determining undeclared active pharmaceutical ingredients (APIs) in its herbal slimming dietary supplements using near infrared spectroscopy combined with chemometrics. Five featured adulterants, including sibutramine, metformin, orlistat, ephedrine, and theophylline are selected as target compounds. The Near infrared spectral data matrix of authentic Garcinia cambogia fruit peel and specimens degraded by intentional contamination with the five selected APIs was subjected to hierarchical clustering analysis to investigate their bundling figure. SIMCA models were established to ensure the genuiness of Garcinia cambogia fruit peel which resulted in perfect classification of all tested specimens. Adulterated samples were utilized for construction of PLSR models based on different APIs contents at minute levels of fraud practices (LOQ < 0.2% w/w).The suggested approach can be applied to enhance and guarantee the safety and quality of Garcinia fruit peel powder as raw material and in dietary supplements.

Keywords: Garcinia cambogia, Quality control, NIR spectroscopy, Chemometrics

Procedia PDF Downloads 77
808 Dialectic Relationship between Urban Pattern Structural Methods and Construction Materials in Traditional Settlements

Authors: Sawsan Domi

Abstract:

Identifying urban patterns of traditional settlements perfumed in various ways. One of them through the three-dimensional ‘reading’ of the urban web: the density of structures, the construction materials and the colors used. Objectives of this study are to paraphrase and understand the relation between the formation of the traditional settlements and the shape and structure of their structural method. In the beginning, the study considered the components of the historical neighborhood, which reflected the social and economical effects in the urban planning pattern. Then, by analyzing the main components of the old neighborhood which included: analysis of urban patterns & streets systems, analysis of traditional architectural elements and the construction materials and their usage. ‘’Hamasa’’ Neighborhood in ‘’Al Buraimi’’ Governorate is considered as one of the most important archaeological sites in the Sultanate of Oman. The vivid features of this archaeological site are the living witness to the genius of the Omani person and his unique architecture. ‘’Hamasa’’ Neighborhood is also considered as the oldest human settlement at ‘’Al Buraimi’’ Governorate. It used to be the gathering area for Arab and Omani tribes who are coming from other governorates of Oman. In this old settlement, local characters were created to meet the climate problems and the social, religious requirements of the life. Traditional buildings were built of materials that were available in the surround environment and within hand reach. The Historical component was containing four main separate neighborhoods. The morphological structure of ‘’Hamasa’’ was characterized by a continuous and densely built-up pattern, featuring close interdependence between the spatial and functional pattern. The streets linked the plots, the marketplace and the open areas. Consequently, the traditional fabric had narrow streets with one- and two- storey houses. The material used in building facilities at ‘’Hamasa’' historical are from the traditionally used materials. These materials were cleverly used in building of local facilities. Most of these materials are locally made and formed, and used by the locals. ‘’Hamasa’’ neighborhood is an example of analyzing the urban patterns and geometrical features. The old ‘’ Hamasa’’ retains the patterns of its old settlements. Urban patterns were defined by both forms and structure. The traditional architecture of ‘’Hamasa’’ neighborhood has evolved as a direct result of its climatic conditions. The study figures out that the neighborhood characterized by the used construction materials, the scope of the residential structures and by the streets system. All formed the urban pattern of the settlement.

Keywords: urban pattern, construction materials, neighborhood, architectural elements, historical

Procedia PDF Downloads 97
807 Evaluating Models Through Feature Selection Methods Using Data Driven Approach

Authors: Shital Patil, Surendra Bhosale

Abstract:

Cardiac diseases are the leading causes of mortality and morbidity in the world, from recent few decades accounting for a large number of deaths have emerged as the most life-threatening disorder globally. Machine learning and Artificial intelligence have been playing key role in predicting the heart diseases. A relevant set of feature can be very helpful in predicting the disease accurately. In this study, we proposed a comparative analysis of 4 different features selection methods and evaluated their performance with both raw (Unbalanced dataset) and sampled (Balanced) dataset. The publicly available Z-Alizadeh Sani dataset have been used for this study. Four feature selection methods: Data Analysis, minimum Redundancy maximum Relevance (mRMR), Recursive Feature Elimination (RFE), Chi-squared are used in this study. These methods are tested with 8 different classification models to get the best accuracy possible. Using balanced and unbalanced dataset, the study shows promising results in terms of various performance metrics in accurately predicting heart disease. Experimental results obtained by the proposed method with the raw data obtains maximum AUC of 100%, maximum F1 score of 94%, maximum Recall of 98%, maximum Precision of 93%. While with the balanced dataset obtained results are, maximum AUC of 100%, F1-score 95%, maximum Recall of 95%, maximum Precision of 97%.

Keywords: cardio vascular diseases, machine learning, feature selection, SMOTE

Procedia PDF Downloads 118
806 An Examination of Changes on Natural Vegetation due to Charcoal Production Using Multi Temporal Land SAT Data

Authors: T. Garba, Y. Y. Babanyara, M. Isah, A. K. Muktari, R. Y. Abdullahi

Abstract:

The increased in demand of fuel wood for heating, cooking and sometimes bakery has continued to exert appreciable impact on natural vegetation. This study focus on the use of multi-temporal data from land sat TM of 1986, land sat EMT of 1999 and lands sat ETM of 2006 to investigate the changes of Natural Vegetation resulting from charcoal production activities. The three images were classified based on bare soil, built up areas, cultivated land, and natural vegetation, Rock out crop and water bodies. From the classified images Land sat TM of 1986 it shows natural vegetation of the study area to be 308,941.48 hectares equivalent to 50% of the area it then reduces to 278,061.21 which is 42.92% in 1999 it again depreciated to 199,647.81 in 2006 equivalent to 30.83% of the area. Consequently cultivated continue increasing from 259,346.80 hectares (42%) in 1986 to 312,966.27 hectares (48.3%) in 1999 and then to 341.719.92 hectares (52.78%). These show that within the span of 20 years (1986 to 2006) the natural vegetation is depreciated by 119,293.81 hectares. This implies that if the menace is not control the natural might likely be lost in another twenty years. This is because forest cleared for charcoal production is normally converted to farmland. The study therefore concluded that there is the need for alternatives source of domestic energy such as the use of biomass which can easily be accessible and affordable to people. In addition, the study recommended that there should be strong policies enforcement for the protection forest reserved.

Keywords: charcoal, classification, data, images, land use, natural vegetation

Procedia PDF Downloads 365
805 Introducing Standardized Nursing Language in Reporting Nursing Care in Resource-Limited Care Environments: An Exploratory Study

Authors: Naomi Mutea, Jossete Jones

Abstract:

The project aimed at exploring the views and perceptions of nurse leaders and educators regarding use of International Classification for Nursing Practice (ICNP) in an informal approach which involved face to face discussions, after which a decision would be made on whether to proceed and propose introduction of ICNP project in Kenya as a pilot project which would mean all nurses would use a standard approach to reporting and documenting nursing care. In addition the project was to determine the best approaches/methods that can be used to introduce ICNP in the Kenyan nursing education and practice environment using the findings of the pilot project. Further four cardex reports were reviewed to establish if nurses on the bedside used a standardized language in documenting and reporting care processes. The cardex reports showed that nurses do not use ICNP or any other standardized language. The results of the discussions revealed that this would be a challenge due to several challenges experienced in conducting nursing research in resource-limited environments. The following questions were asked during the informal discussions with the educators/leaders: •What is currently being taught in terms of standardized nursing language? •Are you familiar with ICNP? •Do you view it advantageous to have a standardized language? •What is the greatest need at the moment in terms of curriculum development for BSN regarding use of standardized nursing language? •If you had a wish to change something in your curriculum, what would that be?

Keywords: nursing, standardized language, ICNP, resource-limited care environments

Procedia PDF Downloads 417
804 Analysis of the 2023 Karnataka State Elections Using Online Sentiment

Authors: Pranav Gunhal

Abstract:

This paper presents an analysis of sentiment on Twitter towards the Karnataka elections held in 2023, utilizing transformer-based models specifically designed for sentiment analysis in Indic languages. Through an innovative data collection approach involving a combination of novel methods of data augmentation, online data preceding the election was analyzed. The study focuses on sentiment classification, effectively distinguishing between positive, negative, and neutral posts while specifically targeting the sentiment regarding the loss of the Bharatiya Janata Party (BJP) or the win of the Indian National Congress (INC). Leveraging high-performing transformer architectures, specifically IndicBERT, coupled with specifically fine-tuned hyperparameters, the AI models employed in this study achieved remarkable accuracy in predicting the INC’s victory in the election. The findings shed new light on the potential of cutting-edge transformer-based models in capturing and analyzing sentiment dynamics within the Indian political landscape. The implications of this research are far-reaching, providing invaluable insights to political parties for informed decision-making and strategic planning in preparation for the forthcoming 2024 Lok Sabha elections in the nation.

Keywords: sentiment analysis, twitter, Karnataka elections, congress, BJP, transformers, Indic languages, AI, novel architectures, IndicBERT, lok sabha elections

Procedia PDF Downloads 85
803 Evaluation of the Internal Quality for Pineapple Based on the Spectroscopy Approach and Neural Network

Authors: Nonlapun Meenil, Pisitpong Intarapong, Thitima Wongsheree, Pranchalee Samanpiboon

Abstract:

In Thailand, once pineapples are harvested, they must be classified into two classes based on their sweetness: sweet and unsweet. This paper has studied and developed the assessment of internal quality of pineapples using a low-cost compact spectroscopy sensor according to the Spectroscopy approach and Neural Network (NN). During the experiments, Batavia pineapples were utilized, generating 100 samples. The extracted pineapple juice of each sample was used to determine the Soluble Solid Content (SSC) labeling into sweet and unsweet classes. In terms of experimental equipment, the sensor cover was specifically designed to install the sensor and light source to read the reflectance at a five mm depth from pineapple flesh. By using a spectroscopy sensor, data on visible and near-infrared reflectance (Vis-NIR) were collected. The NN was used to classify the pineapple classes. Before the classification step, the preprocessing methods, which are Class balancing, Data shuffling, and Standardization were applied. The 510 nm and 900 nm reflectance values of the middle parts of pineapples were used as features of the NN. With the Sequential model and Relu activation function, 100% accuracy of the training set and 76.67% accuracy of the test set were achieved. According to the abovementioned information, using a low-cost compact spectroscopy sensor has achieved favorable results in classifying the sweetness of the two classes of pineapples.

Keywords: neural network, pineapple, soluble solid content, spectroscopy

Procedia PDF Downloads 75
802 A Machine Learning Framework Based on Biometric Measurements for Automatic Fetal Head Anomalies Diagnosis in Ultrasound Images

Authors: Hanene Sahli, Aymen Mouelhi, Marwa Hajji, Amine Ben Slama, Mounir Sayadi, Farhat Fnaiech, Radhwane Rachdi

Abstract:

Fetal abnormality is still a public health problem of interest to both mother and baby. Head defect is one of the most high-risk fetal deformities. Fetal head categorization is a sensitive task that needs a massive attention from neurological experts. In this sense, biometrical measurements can be extracted by gynecologist doctors and compared with ground truth charts to identify normal or abnormal growth. The fetal head biometric measurements such as Biparietal Diameter (BPD), Occipito-Frontal Diameter (OFD) and Head Circumference (HC) needs to be monitored, and expert should carry out its manual delineations. This work proposes a new approach to automatically compute BPD, OFD and HC based on morphological characteristics extracted from head shape. Hence, the studied data selected at the same Gestational Age (GA) from the fetal Ultrasound images (US) are classified into two categories: Normal and abnormal. The abnormal subjects include hydrocephalus, microcephaly and dolichocephaly anomalies. By the use of a support vector machines (SVM) method, this study achieved high classification for automated detection of anomalies. The proposed method is promising although it doesn't need expert interventions.

Keywords: biometric measurements, fetal head malformations, machine learning methods, US images

Procedia PDF Downloads 288
801 Fourier Transform and Machine Learning Techniques for Fault Detection and Diagnosis of Induction Motors

Authors: Duc V. Nguyen

Abstract:

Induction motors are widely used in different industry areas and can experience various kinds of faults in stators and rotors. In general, fault detection and diagnosis techniques for induction motors can be supervised by measuring quantities such as noise, vibration, and temperature. The installation of mechanical sensors in order to assess the health conditions of a machine is typically only done for expensive or load-critical machines, where the high cost of a continuous monitoring system can be Justified. Nevertheless, induced current monitoring can be implemented inexpensively on machines with arbitrary sizes by using current transformers. In this regard, effective and low-cost fault detection techniques can be implemented, hence reducing the maintenance and downtime costs of motors. This work proposes a method for fault detection and diagnosis of induction motors, which combines classical fast Fourier transform and modern/advanced machine learning techniques. The proposed method is validated on real-world data and achieves a precision of 99.7% for fault detection and 100% for fault classification with minimal expert knowledge requirement. In addition, this approach allows users to be able to optimize/balance risks and maintenance costs to achieve the highest bene t based on their requirements. These are the key requirements of a robust prognostics and health management system.

Keywords: fault detection, FFT, induction motor, predictive maintenance

Procedia PDF Downloads 170
800 Trace Analysis of Genotoxic Impurity Pyridine in Sitagliptin Drug Material Using UHPLC-MS

Authors: Bashar Al-Sabti, Jehad Harbali

Abstract:

Background: Pyridine is a reactive base that might be used in preparing sitagliptin. International Agency for Research on Cancer classifies pyridine in group 2B; this classification means that pyridine is possibly carcinogenic to humans. Therefore, pyridine should be monitored at the allowed limit in sitagliptin pharmaceutical ingredients. Objective: The aim of this study was to develop a novel ultra high performance liquid chromatography mass spectrometry (UHPLC-MS) method to estimate the quantity of pyridine impurity in sitagliptin pharmaceutical ingredients. Methods: The separation was performed on C8 shim-pack (150 mm X 4.6 mm, 5 µm) in reversed phase mode using a mobile phase of water-methanol-acetonitrile containing 4 mM ammonium acetate in gradient mode. Pyridine was detected by mass spectrometer using selected ionization monitoring mode at m/z = 80. The flow rate of the method was 0.75 mL/min. Results: The method showed excellent sensitivity with a quantitation limit of 1.5 ppm of pyridine relative to sitagliptin. The linearity of the method was excellent at the range of 1.5-22.5 ppm with a correlation coefficient of 0.9996. Recoveries values were between 93.59-103.55%. Conclusions: The results showed good linearity, precision, accuracy, sensitivity, selectivity, and robustness. The studied method was applied to test three batches of sitagliptin raw materials. Highlights: This method is useful for monitoring pyridine in sitagliptin during its synthesis and testing sitagliptin raw materials before using them in the production of pharmaceutical products.

Keywords: genotoxic impurity, pyridine, sitagliptin, UHPLC -MS

Procedia PDF Downloads 95
799 Short Answer Grading Using Multi-Context Features

Authors: S. Sharan Sundar, Nithish B. Moudhgalya, Nidhi Bhandari, Vineeth Vijayaraghavan

Abstract:

Automatic Short Answer Grading is one of the prime applications of artificial intelligence in education. Several approaches involving the utilization of selective handcrafted features, graphical matching techniques, concept identification and mapping, complex deep frameworks, sentence embeddings, etc. have been explored over the years. However, keeping in mind the real-world application of the task, these solutions present a slight overhead in terms of computations and resources in achieving high performances. In this work, a simple and effective solution making use of elemental features based on statistical, linguistic properties, and word-based similarity measures in conjunction with tree-based classifiers and regressors is proposed. The results for classification tasks show improvements ranging from 1%-30%, while the regression task shows a stark improvement of 35%. The authors attribute these improvements to the addition of multiple similarity scores to provide ensemble of scoring criteria to the models. The authors also believe the work could reinstate that classical natural language processing techniques and simple machine learning models can be used to achieve high results for short answer grading.

Keywords: artificial intelligence, intelligent systems, natural language processing, text mining

Procedia PDF Downloads 133
798 Visitor Management in the National Parks: Recreational Carrying Capacity Assessment of Çıralı Coast, Turkey

Authors: Tendü H. Göktuğ, Gönül T. İçemer, Bülent Deniz

Abstract:

National parks, which are rich in natural and cultural resources values are protected in the context of the idea to develop sustainability, are among the most important recreated areas demanding with each passing day. Increasing recreational use or unplanned use forms negatively affect the resource values and visitor satisfaction. The intent of national parks management is to protect the natural and cultural resource values and to provide the visitors with a quality of recreational experience, as well. In this context, the current studies to improve the appropriate tourism and recreation planning and visitor management, approach have focused on recreational carrying capacity analysis. The aim of this study is to analyze recreational carrying capacity of Çıralı Coast in the Bey Mountains Coastal National Park to compare the analyze results with the current usage format and to develop alternative management strategies. In the first phase of the study, the annual and daily visitations, geographic, bio-physical, and managerial characteristics of the park and the type of recreational usage and the recreational areas were analyzed. In addition to these, ecological observations were carried out in order to determine recreational-based pressures on the ecosystems. On-site questionnaires were administrated to a sample of 284 respondents in the August 2015 - 2016 to collect data concerning the demographics and visit characteristics. The second phase of the study, the coastal area separated into four different usage zones and the methodology proposed by Cifuentes (1992) was used for capacity analyses. This method supplies the calculation of physical, real and effective carrying capacities by using environmental, ecological, climatic and managerial parameters in a formulation. Expected numbers which estimated three levels of carrying capacities were compared to current numbers of national parks’ visitors. In the study, it was determined that the current recreational uses in the north of the beach were caused by ecological pressures, and the current numbers in the south of beach much more than estimated numbers of visitors. Based on these results management strategies were defined and the appropriate management tools were developed in accordance with these strategies. The authors are grateful for the financial support of this project by The Scientific and Technological Research Council of Turkey (No: 114O344)

Keywords: Çıralı Coast, national parks, recreational carrying capacity, visitor management

Procedia PDF Downloads 274
797 Analysis Model for the Relationship of Users, Products, and Stores on Online Marketplace Based on Distributed Representation

Authors: Ke He, Wumaier Parezhati, Haruka Yamashita

Abstract:

Recently, online marketplaces in the e-commerce industry, such as Rakuten and Alibaba, have become some of the most popular online marketplaces in Asia. In these shopping websites, consumers can select purchase products from a large number of stores. Additionally, consumers of the e-commerce site have to register their name, age, gender, and other information in advance, to access their registered account. Therefore, establishing a method for analyzing consumer preferences from both the store and the product side is required. This study uses the Doc2Vec method, which has been studied in the field of natural language processing. Doc2Vec has been used in many cases to analyze the extraction of semantic relationships between documents (represented as consumers) and words (represented as products) in the field of document classification. This concept is applicable to represent the relationship between users and items; however, the problem is that one more factor (i.e., shops) needs to be considered in Doc2Vec. More precisely, a method for analyzing the relationship between consumers, stores, and products is required. The purpose of our study is to combine the analysis of the Doc2vec model for users and shops, and for users and items in the same feature space. This method enables the calculation of similar shops and items for each user. In this study, we derive the real data analysis accumulated in the online marketplace and demonstrate the efficiency of the proposal.

Keywords: Doc2Vec, online marketplace, marketing, recommendation systems

Procedia PDF Downloads 112
796 Breast Cancer Risk is Predicted Using Fuzzy Logic in MATLAB Environment

Authors: S. Valarmathi, P. B. Harathi, R. Sridhar, S. Balasubramanian

Abstract:

Machine learning tools in medical diagnosis is increasing due to the improved effectiveness of classification and recognition systems to help medical experts in diagnosing breast cancer. In this study, ID3 chooses the splitting attribute with the highest gain in information, where gain is defined as the difference between before the split versus after the split. It is applied for age, location, taluk, stage, year, period, martial status, treatment, heredity, sex, and habitat against Very Serious (VS), Very Serious Moderate (VSM), Serious (S) and Not Serious (NS) to calculate the gain of information. The ranked histogram gives the gain of each field for the breast cancer data. The doctors use TNM staging which will decide the risk level of the breast cancer and play an important decision making field in fuzzy logic for perception based measurement. Spatial risk area (taluk) of the breast cancer is calculated. Result clearly states that Coimbatore (North and South) was found to be risk region to the breast cancer than other areas at 20% criteria. Weighted value of taluk was compared with criterion value and integrated with Map Object to visualize the results. ID3 algorithm shows the high breast cancer risk regions in the study area. The study has outlined, discussed and resolved the algorithms, techniques / methods adopted through soft computing methodology like ID3 algorithm for prognostic decision making in the seriousness of the breast cancer.

Keywords: ID3 algorithm, breast cancer, fuzzy logic, MATLAB

Procedia PDF Downloads 519
795 Influence of CO₂ on the Curing of Permeable Concrete

Authors: A. M. Merino-Lechuga, A. González-Caro, D. Suescum-Morales, E. Fernández-Ledesma, J. R. Jiménez, J. M. Fernández-Rodriguez

Abstract:

Since the mid-19th century, the boom in the economy and industry has grown exponentially. This has led to an increase in pollution due to rising Greenhouse Gas (GHG) emissions and the accumulation of waste, leading to an increasingly imminent future scarcity of raw materials and natural resources. Carbon dioxide (CO₂) is one of the primary greenhouse gases, accounting for up to 55% of Greenhouse Gas (GHG) emissions. The manufacturing of construction materials generates approximately 73% of CO₂ emissions, with Portland cement production contributing to 41% of this figure. Hence, there is scientific and social alarm regarding the carbon footprint of construction materials and their influence on climate change. Carbonation of concrete is a natural process whereby CO₂ from the environment penetrates the material, primarily through pores and microcracks. Once inside, carbon dioxide reacts with calcium hydroxide (Ca(OH)2) and/or CSH, yielding calcium carbonates (CaCO3) and silica gel. Consequently, construction materials act as carbon sinks. This research investigated the effect of accelerated carbonation on the physical, mechanical, and chemical properties of two types of non-structural vibrated concrete pavers (conventional and draining) made from natural aggregates and two types of recycled aggregates from construction and demolition waste (CDW). Natural aggregates were replaced by recycled aggregates using a volumetric substitution method, and the CO₂ capture capacity was calculated. Two curing environments were utilized: a carbonation chamber with 5% CO₂ and a standard climatic chamber with atmospheric CO₂ concentration. Additionally, the effect of curing times of 1, 3, 7, 14, and 28 days on concrete properties was analyzed. Accelerated carbonation in-creased the apparent dry density, reduced water-accessible porosity, improved compressive strength, and decreased setting time to achieve greater mechanical strength. The maximum CO₂ capture ratio was achieved with the use of recycled concrete aggregate (52.52 kg/t) in the draining paver. Accelerated carbonation conditions led to a 525% increase in carbon capture compared to curing under atmospheric conditions. Accelerated carbonation of cement-based products containing recycled aggregates from construction and demolition waste is a promising technology for CO₂ capture and utilization, offering a means to mitigate the effects of climate change and promote the new paradigm of circular economy.

Keywords: accelerated carbonation, CO₂ curing, CO₂ uptake and construction and demolition waste., circular economy

Procedia PDF Downloads 65